Corso di "Metodi Matematici per la Finanza" Prof. Davide Vergni, Dr.ssa Alessandra Cretarola

Esame scritto del 09/02/2009

- 1. Sia dato lo spazio vettoriale $\mathbb{V} \equiv \mathbb{R}^2$ e l'operatore $\hat{L} : \mathbb{V} \to \mathbb{V}$ tale che $\hat{L} = \begin{pmatrix} 0 & 1 \\ 2 & a \end{pmatrix}$.
- (3 punti) a. Determinare a in modo che il vettore $\mathbf{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ sia una base per un sottospazio invariante di \hat{L} .
- (1 punti) b. Definendo una nuova base, \mathbb{F} , formata dagli autovettori di \hat{L} , determinare le componenti del vettore $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \mathbf{e}_1 + \mathbf{e}_2$ rispetto a tale base, $\mathbf{v}_{\mathbb{F}}$.
- (2 punto) c. Calcolare la rappresentazione di $\mathbf{w} = \hat{L}\mathbf{v}$ nella base \mathbb{F} , $\mathbf{w}_{\mathbb{F}}$, senza utilizzare la formula $\mathbf{w}_{\mathbb{F}} = \hat{U}^{-1}\mathbf{w}$, dove \hat{U} è la matrice del cambiamento di base dalla base canonica alla base \mathbb{F} .
 - 2. Siano $\mathcal{T} = \mathbb{N}$ e $X = \mathbb{R}$. Data la seguente equazione alle differenze: $x_{t+1} = x_t^3 2x_t^2 + 2x_t + 1$
- (4 punti) a. determinarne i punti di equilibrio studiandone la stabilità;
- (2 punti) b. tracciare il grafico della dinamica e il diagramma di fase (qualitativo).
 - 3. Siano $\mathcal{T} = \mathbb{R}_+$ e $X = \mathbb{R}$. Data la seguente equazione differenziale: $x'' x = e^t + \sin t$,
- (4 punti) a. determinarne la soluzione generale;
- (2 punti) b. calcolare la soluzione particolare relativa ai dati iniziali x(0) = 0 e x'(0) = 1.
 - 4. Data l'equazione differenziale in \mathbb{R}^3 : $\mathbf{x}' = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix} \mathbf{x}$
- (3 punti) a. determinarne la soluzione generale;
- (3 punti) b. determinarne i punti di equilibrio studiandone la stabilità.
 - 5. Si consideri il seguente sistema di equazioni differenziali non lineari: $\left\{ \begin{array}{l} x'=2y^3+xy\\ y'=2y^2-x-1 \end{array} \right.$
- (2 punti) a. Determinare le equazioni delle isocline e darne una rappresentazione grafica.
- (2 punti) b. Determinare i punti di equilibrio studiandone la stabilità.
- (2 punti) c. Tracciare il diagramma di fase.