Corso di "Metodi Matematici per la Finanza" Prof. Fausto Gozzi, Dr. Davide Vergni

Esame scritto del 05/07/2010

1. Siano dati i due operatori
$$\hat{A}, \hat{B}: \mathbb{R}^3 \to \mathbb{R}^3$$
 tali che $\hat{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ e $\hat{B} = \begin{pmatrix} 1 & a & 1 \\ a & 0 & a \\ a^2 & 1 & 4 \end{pmatrix}$

- (1 punti) a. Determinare almeno un vettore ${\bf v}$ che non appartiene all'immagine di \hat{A} .
- (2 punti) b. Determinare il nucleo di \hat{A} .
- (3 punti) c. Trovare quei valori di a per cui \hat{A} ed \hat{B} hanno lo stesso nucleo.

2. Sia dato il sistema di equazioni differenziali in
$$\mathbb{R}^3$$
 $\mathbf{x}' = \hat{A}\mathbf{x}'$, con $\hat{A} = \begin{pmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$.

- (2 punti) a. Determinarne la soluzione generale.
- (2 punti) b. Determinarne i punti di equilibrio.
- (2 punti) c. Studiare la stabilità dei punti di equilibrio.

3. Data la funzione
$$f(x) = x^2(1-x^2)$$
, si consideri il seguente problema di Cauchy
$$\begin{cases} x'(t) = f(x(t)) \\ x(0) = x_0 \in \mathbb{R} \end{cases}$$
.

- (1 punto) a. Dire, motivando la risposta, se esiste un'unica soluzione locale per ogni $x_0 \in \mathbb{R}$.
- (2 punti) b. Trovare i punti di equilibrio e disegnare il diagramma di fase.
- (2 punti) c. Discutere, motivando la risposta, la stabilità dei punti di equilibrio e la monotonia delle soluzioni.
- (1 punto) d. Dire, motivando la risposta, per quali $x_0 \in \mathbb{R}$ esiste un'unica soluzione globale.

4. Data la funzione
$$f(t,x)=ax+t$$
 (con $a\in\mathbb{R}$), si consideri il problema di Cauchy
$$\begin{cases} x'(t)=f(t,x(t))\\ x(0)=x_0 \end{cases}.$$

- (4 punti) a. Trovare la soluzione al variare di $a \in \mathbb{R}$.
- (2 punti) b. Trovare il limite della soluzione per $t \to +\infty$.
 - 5. Si consideri il seguente sistema di equazioni differenziali ordinarie al variare dei parametri $a \neq 0$ e $b \neq 0$:

$$\begin{cases} x'(t) = ax(t) - bx^2(t)y(t) \\ y'(t) = 2y(t) - 3x(t)y(t) \end{cases}$$

- (2 punti) a. Determinare i punti di equilibrio al variare di $a \neq 0$ e $b \neq 0$.
- (4 punti) c. Discutere la stabilità dei punti di equilibrio al variare di $a \neq 0$ e $b \neq 0$, sia per il sistema linearizzato che per il sistema nonlineare.