Corso di Metodi Matematici per la Finanza

Esercizi sui numeri complessi

1. Semplificare le seguenti espressioni:

$$a) \ \frac{1+i}{i(2+3i)} \,, \quad b) \ i^5 - \frac{1}{i^3} \,, \quad c) \ \frac{i(i-1)}{(i+1)^2} \,, \quad d) \ \frac{(1+i)^3}{1-i} \,.$$

2. Fattorizzare completamente i polinomi:

a)
$$z^2 - 4z + 5 = 0$$
, b) $z^4 + z^2 - 2 = 0$, c) $z^4 + z^3 + 2z^2 + 4z - 8 = 0$, d) $z^3 - z^2 + 2 = 0$.

3. Rappresentare sul piano di Gauss i seguenti numeri complessi, ricavandone il modulo e l'argomento. Scrivere la loro rappresentazione esponenziale:

$$z_1 = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$
, $z_2 = -2 + 2i$, $z_3 = -i$, $z_4 = \sqrt{3} + i$.

Per tutti e tre i numeri complessi determinare

$$-z$$
, \overline{z} , iz , z^2

e disegnarli sul piano di Gauss.

4. Disegnare i seguenti sottoinsiemi del piano complesso:

$$\begin{aligned} \{z \in \mathbb{C} \ : \ \operatorname{Re}(z) \operatorname{Im}(z) > 0 \} & \quad \{z \in \mathbb{C} \ : \ |z| \leq 2 \operatorname{e}|z - i| > 1 \} \\ \{z \in \mathbb{C} \ : \ \operatorname{Im}(z) > 2 \operatorname{Re}(z) \} & \quad \{z \in \mathbb{C} \ : \ \operatorname{Im}(z^2) \in [-1, 1] \}. \end{aligned}$$

5. Determinare tutte le possibili soluzioni delle equazioni:

a)
$$z^2 = i \overline{z}$$
, b) $(z+i)\operatorname{Re} z = \overline{z}$, c) $z + i \overline{z} = \frac{i}{z}$, d) $\frac{1}{\overline{z}} + 1 = \frac{2}{z}$.

6. Determinare una coppia di numeri complessi w e z in modo che le seguenti equazioni siano soddisfatte:

a)
$$2w - iz = 0$$
 b) $iw - (1+i)z = 0$ c) $\frac{w}{1-i} - (2-i)z = 0$ d) $\frac{iw}{1+i} - \frac{z}{1-i} = 0$ e) $\frac{2(1+i)w}{i} - \frac{iz}{i-1} = 0$ f) $\left(\frac{1+i}{1-i} - 1\right)z - \frac{iw}{1-2i} = 0$.

Soluzione esercizi blocco 1

[1a]
$$-\frac{1+5i}{13}$$
 [1b] 0 [1c] $\frac{-1+i}{2}$ [1d] -2

Soluzione esercizi blocco 2

$$\begin{aligned} & \left[\mathbf{2a}\right] \, z_{1,2} = 2 \pm i \,, \quad P_2(z) = (z-2-i)(z-2+i) \\ & \left[\mathbf{2b}\right] \, z_{1,2,3,4} = \pm 1 \,, \ \pm i \sqrt{2} \,, \quad P_4(z) = (z-1)(z+1)(z-i\sqrt{2})(z+i\sqrt{2}) \\ & \left[\mathbf{2c}\right] \, z_{1,2,3,4} = 1 \,, \quad -2 \,, \ \pm 2i \,, \quad P_4(z) = (z-1)(z+2)(z-2i)(z+2i) \\ & \left[\mathbf{2d}\right] \, z_{1,2,3} = -1 \,, \ 1 \pm i \,, \quad P_3(z) = (z+1)(z-1-i)(z-1+i) \end{aligned}$$

Soluzione esercizi blocco 3

[3a]
$$|z_1| = 1$$
, $\arg(z_1) = \frac{\pi}{4}$
[3b] $|z_2| = 2\sqrt{2}$, $\arg(z_1) = \frac{3}{4}\pi$
[3c] $|z_3| = 1$, $\arg(z_2) = \frac{3}{2}\pi$
[3d] $|z_4| = 2$, $\arg(z_3) = \frac{\pi}{6}$

Soluzione esercizi blocco 5

[5a]
$$z = \pm \frac{\sqrt{3}}{2} + \frac{i}{2}$$
, $z = 0$, $z = -i$ [5b] $z = 1 - \frac{i}{2}$, $z = 0$ [5c] $z = \pm \frac{1}{2}(1+i)$ [5d] $z = 1$