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Abstract

Blood flowing in a vessel is modelled using one-dimensional equations derived from the Navier—Stokes theory on the base of long pressur
wavelength. The vessel wall is modelled as an initially highly prestressed elastic membrane, which slightly deforms under the blood pressur
pulses. On the stressed configuration, the vessel wall undergoes, even in larger arteries, small deformation and its motion is linearized arour
such initial prestressed state.

The mechanical fluid—wall interaction is expressed by a set of four partial differential equations. To account for a global circulation
features, the distributed model is coupled with a six compartments lumped parameter model which provide the proper boundary conditions b
reproducing the correct waveforms entering into the vessel and avoid unphysical reflections. The solution has been computed numerically: th
space derivatives are discretized by a finite difference method on a staggered grid and a Runge—Kutta scheme is used to advance the solut
in time. Numerical experiments show the role of the initial stresses in the flow dynamics and the wall deformation.
© 2005 IPEM. Published by Elsevier Ltd. All rights reserved.
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1. Introduction built by averaging variables over the cross sectoof the
tube and describe the mean flow dynamics. Several mod-
The study of the propagation of pulse waves in arteries hasels based on the tube law of type= A(p, x) have been
attracted many researchers in biomedical engineering. Thedeveloped2,3]. They do not include any wall displacement
relevance of theoretical and clinical aspects of such problemalong the axial direction due to the fluid shear stress: this can
is widely recognized in cardiovascular mechanics, angiology be of some importance when remodelling process and growth
and atherogenesjs]. of the arterial endothelium are considered. A more realistic
The complexity of thélood-wall system and the different  approach is obtained when the arterial wall is modelled as
time and space scales involved in vascular flows stimulate a two-dimensional anisotropic membrane that deforms un-
the formulation of reduced models, aimed to analyze and der the forces exerted by the fluid in its tangential plpte
solve simpler problems. For wave propagation phenomena,Moreover, arteries are naturally under longitudinal and cir-
the mechanical model of an inflated elastic tube filled with cumferential tensions and in vivo measurements point out the
an incompressible liquid is commonly used. As the pressure presence of longitudinal stretch and strgss7]. Some other
wave travels, the tube deforms under the influence of internalwork has been done on a theoretical base to extend the Wom-
elastic forces and external loads. The wave dynamics strictly ersley solution to an initially stressed elastic t{@je Though
depends on the interaction between blood flow and arterial much smaller than the radial displacement and generally ne-
wall [2]. glected, the longitudinal wall motion needs a deeper study in
For long wavelengths and being the axial dimension pre- vascular mechanics, since it is revealed of some importance
vailing on the others, one-dimensional models are usually in the analysis of the wall shear stress and may have interest
proposed and offer quite satisfactory resy8k They are in the investigation of pathologies.
A mathematical model with such characteristics has been
"+ Tel.: +39 6 8847 0251: fax: +39 6 4404 306, recently developed. The full nonlinear coupled wall-fluid sys-
E-mail address: g.pontrelli@iac.cnr.it (G. Pontrelli). tem has been solved numerically and the flow and of the wall
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deformation dependence on the elasticity parameter has bee®oiseuille steady flow in a tube of radiRs

highlighted[9]. The alternative approach proposed here is to
apply the theory of infinitesimal elasticity to the small in-

cremental deformations. Because arterial walls undergo only

small changes at each cardiac cycle, the degree of local nonAs a consequence, the wall shear stress is given by

linear behaviour is small and can be locally linearized].
On the other hand, the deformations leading from an un-

stressed state to an initial stressed configuration are very

7
8uu
~_ 2.2
fe- 22)
du Auu
- — - = 2.3
e (2.3)

large, and a nonlinear theory has to be used to compute theStrictIy speaking, the expressio(&2) and (2.3jold for a

initial stresg6].

The purpose of this study is to develop a simple one-
dimensional model for the fluid-structure problem describing
the blood flow and the wave propagation in an arterial seg-
ment. The wall constitutive equation for the vascular tissue
proposed ir6] has been used to derive both the longitudi-

nal and circumferential prestretches and prestresses (Sectionot

2) and the linearized wall-fluid equations are written over
such initial configuration (Sectio8). Since numerical sim-
ulations should be performed in a tube of finite length, the
problem of assigning suitable inflow and outflow conditions
is circumvented by using a lumped parameter mqgl&].

steady flow in a rigid tube, but they are considered acceptable
for quasi steady flows and for small deformati¢8k

The principle of conservation of mass in a deformable tube
is expressed by the following continuity equati@j:

OR  Rou  OR

— =0
2 0x u(’)x

(2.4)

2.2. The wall equations

The vessel wall is modelled as an elastic axisymmetric
membrane, that is a 2D thin shell with a mass negligible

The resulting coupled system form a unique closed-loop and (Wall thickness— 0) compared with that of the fluid con-

no boundary conditions for the flow is requiredi{tiscale
model, Sectiord). Finally, many computational results show

tained in it. The membrane, which has no bending stiffness,
is capable to deform under the forces exerted by the fluid (i.e.

the appropriateness of such an approach, and evidence thihe shear stressand the transmural pressyre cfr. (2.3)).

role of the prestreches on the fluid-wall mechanics (Section
5).

2. Mathematical formulation

Blood flowing in a compliant tube as an artery is a complex

dynamical system and constitutes a genuine fluid-structure

problem. The fluid motion and the wall deformation are mu-
tually influenced and their coupling is responsible for effects,

which cannot be explained by each ofthem alone. When wave

propagation phenomena are concerned, simplified models fo
the system “blood—arterial wall” can be devised. In particular,

due to the small deformations of the vascular wall and for the
unidirectional nature of blood flow, a one-dimensional model

is adopted.

2.1. The flow equations

Let us consider a homogeneous fluid of dengitand
viscosity u, flowing in a straight, axisymmetric, distensible
tube of circular cross section. A cylindrical coordinate system

with x as symmetry axis is used. The quasi-1D cross averaged

momentum equation afé]:

u
ot

ou

Uu—— =
ox

1dp

p8x+f

(2.1)

whereu is the axial velocityp the transmural pressure, both
averaged over the cross section, aa@notes the time. The
viscous terny is approximated by the friction term of the

Let (xp(s), rp(s)) be the Lagrangian coordinates of a particle
P with s a parametric coordinate along the membrane in its
symmetry plane. In such reference frame, the principal de-
formation ratios in the axial and circumferential directions

are respectively:
o\ 2
P) ) A2

W >2+<ds

whereRr? is the undeformed radius (corresponding to the zero
transmural pressure — see Sect®n

f Since the fluid equations are expressed in Eulerian coor-
dinates, let us make a change of variables anft(efr) and

S(x, t) be the Eulerian counterparts of the Lagrangian coor-
dinates of a particle of the a membrane. In such coordinate
system, the stretché®.5) are written as

|1+ R?
T, A2 =

(the prime denotes-derivative). By balance of forces, the
fluid—-membrane equilibrium equations in tangential and nor-
mal directions are provideid]:

drp
ds

rp

)\,12 _ﬁ

(2.5)

R
RO

Al (2.6)

R'(T1 — T2) + RT] = ptR(1+ R})Y/?,
_R// 1
Ty =
(1+ R/2)3/ R(l+ R/2)l/2
where 71 and 7> are the longitudinal and circumferential
stresses, respectively. Let us now define a constitutive equa-

tion for the arterial vessel that give an expressionifoand
T» in EQ.(2.7). For an incompressible hyperelastic material,

2.7)

511+ p
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the principal Green strains. Hence, the stress components
(averaged across the thickness) along the longitudinal and
circumferential directions are given by differentiationaf

A Ow 1 ow

Ti(v, hp) = 22— — =72
1(A1, 22) Ap 0E1  Ap Org
A
— 271 ¢ (c1E1 + c3E2) exp(Q) (2.9)
2
Ao 0w 1 ow
(A, 22) = —— =

T 2 0Ez A1 dhz

A
- 272 ¢ (c3E1 + c2E2) exp(Q) (2.10)
1

. The formerrelations hold in the case of anincompressible and
" anisotropic material, wherein principal directions of strain
and stress coincide and express the property that the instan-
Fig. 1. Contour plot of the stress&s (dashed line) and> (solid line), as taneous Young’s modulus increases with the strain, but with

in Egs.(2.9) and (2.1Q)with ¢; = 0.38, ¢z = 0.26, c3 = 0.046. a different amount in the two direction§i¢. 1). The full
- . ! _ nonlinear fluid-wall interaction problem has been solved in
it is possible to define a strain-energy functidias a func- [9l.

tion of the principal strains: it represents the elastically stored
energy per unit volume in terms of the strain variables and is
a potential for the stre43]. . oo . )

Based on a series of experiments on canine arterial speci>- Linearization of the wall dynamics equations
mens, a strain-energy density functiormodelling the me-
chanical properties of the arterial wall has been recently pro-
posed by Zhou and Fur§] as

Despite the nonlinear character of the strain—stress Eqs.
(2.9) and (2.1Q) the wall deformation, even in large ar-
teries, can be regarded as the resultant of a large nonlin-
w = c(exp(@) — 1), O = c1E% + c2E5 + 2c3E1E2 ear deformation and a small superimposed linear fluctua-

2.8) tions over it (sed=ig. 2). This suggests to linearize the wall
equilibrium Eg.(2.7) as follows. All the dependent vari-
wherec is a material parameter having the dimensions of ables are expanded in power series of a small parameter
dyne/cm, c1, c2, c3 are nondimensional constants (with easy = x*+¢ex+ £2%> + - - - and substituted in the gov-
c1 ~ czandcy, c2 > c3) andEy = %(A,f —1) k=1,2are erning equations. In the linearization process, all the terms

[¢]
-
o}

L
R Present state X
Ground state X°
\ /

Paragon state X

L

Fig. 2. Schematic decomposition of the motion in a nonlinear large deformation (a) and a small linear deformation (b). The present configuegi@oded
as a small variation on the paragon state
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containing powers of of order greater than one are higher
order infinitesimals and have been neglected. The gtate
corresponding t@ = 0, is the Oth order approximation and

can be considered as a known initial (stressed) state of the .,

motion and the present stajeis regarded as a first-order
perturbed state (of magnitudg) over x*. We therefore as-

sume that the excess stresses are related to the correspondeﬁt12

excess strains linearly.

From a mechanical point of view, an ideal stress-free con-
figuration x° (or natural or ground state) is defined as the
possible state where no forces act on the walll£€ 0). It is
characterized by a constant radik$ and finite lengthL°.

We then define a reference (arragon) stressed steady con-
figuration x* as the state of an inflated (with a constant load
p*) and uniformly stretched tube (of finite lengtti). Such a
state is defined by a solution of H§-7), havingR* = const.
and S*(x) = x (see[10]). The longitudinal and the circum-

ferential stretches in the paragon configuration, referred to

the ground state, are defined as

=L

=0 - (3.1)

RO
By using E@s.(2.9) and (2.10%he stresses in paragon
configuration are constant and given by

)\'*
T{0.33) = 2¢ S (1 Ef + cak3) exp@),
2

)\‘*
T3(05,23) = 2¢ A—fi(csEz + c2E5) exp(Q”) (32)
with O* = Q(A}, AY) andE} = Ei ().
The stretchesa.], A5 and the stresseB[, T are related
through EQ.(3.2) and are sometimes referred to a=-
stretches andprestresses. They are the initial reference pa-

9
DY, — ()‘T)B 2 E* EX 2 *
n=c AL [c1+ 2(c1E7 + c3E3)] exp(Q7),
_ ()“3)3 * *\2 *
2= % [c2 + 2(c3ET + c2E5)7] exp(Q7),
1
1o = D5 = cAiA3[c3 + 2(c1ET + c3E3)
x (c3E7 + c2E3)] exp(Q*) (3.6)

It is worth noting that the constitutive law@.5) depend
nonlinearly on the prestretche$ and} but linearly onRk
and on$’; moreover, ifA* = A5 =1 (i.e. the paragon con-
figuration is the ground state) they reduce to the standard
linear strain—stresses constitutive relations of an anisotropic
membrane.

By using (3.5), the wall motion Eq.(2.7) are therefore
linearized around the paragon stateas

~ R
(11 + D1PS" + (=15 + Diz)ﬁ = pT,

* Dl 1 * * 0\ O/ * R
wherep'is the excess pressurg € p* + ¢p).

The fluid nonlinearity has an intrinsic significance, being
the inertial effect dominant in large vessels, and cannot be
eliminated. For uniformity of notation, Eq§2.1) and (2.4)
are rewritten with respect to the paragon configuration re-
spectively as

=P 3.7)

it . 00 19p

ou ow__=oa 3.8
ot + +u)3x p8x+f (3.8)
aR  R*+ R i . . OR

- — — =0 3.9
o 2 o T A (3.9)

rameters and the ones or the others are assumed preassignefith #* a constant velocity satisfying the flow and the con-

From Eq.(2.7), it follows that

Tf = p*R* (3.3)

Laplace’ s law

tinuity equations at the paragon state (for a viscous flow,
u* =0).

We now linearize the stretches and the stresses around thq, Boundary conditions and multiscale models

paragon state*. Hence, fork andS’ small, the longitudi-

nal and hoop stretches at the present configuration are given  The linearized wall Eq(3.7)and the fluid flow Eqs(3.8)

by

- R
r= 1+ )AL, Ao = (1+ R*) A5 (3.4)

Accordingly, the linearized constitutive laws relating the
stressed’ and7» to S’ andR are

. R
Ty = (T{ + Dip) S’ + (=T{ + Di,) ol

- R
T, = (—T5 + D5) S+ (T5 + Diz)ﬁ (3.5)

obtained by a linearization 2.9) and (2.10)around the
paragon configuration, where

and (3.9)have to be solved in a finite domain representing
an arterial segment. Such a segment is extracted from the
arterial tree and boundary conditions of physical significance
for the variables are required. When balance of flows and
pressures for the systemic circulation has to be taken
into account, models for the closed-loop system should
be addressed. They are built by partitioning the whole
vascular tree in elementary districts and by “lumping” the
dynamical variables in each of them (lumped parameter
or OD models). These models date back to the pioneeristic
works of Westerhof et al. and are based on the analogy
between hydraulic networks and electrical circt&]. In

each compartment the values of the resistance, compliance
and inertial parameters are constant and a linear differential
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relationship between flow and pressure is given. These
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holds at both ends. Such a condition unifies the four condi-

elementary blocks are linked between them and connectedtions(4.2). Moreover, the boundary conditions 6n

with the heart pump to form a closed loop representing

the cardiovascular system. The whole model describes theS(0, r) = 0,

time evolution of the mean values of the variables in each
section.

To account for a comprehensive system of the global
circulation, the six compartment lumped model described
by Avanzolini et al.[13] is used. Followind11], we have
inserted the distributed wall-fluid model in the point of
network corresponding to the descending aofay.(3).
This approach nultiscale model) allows to implicitly as-
sign boundary conditions for the distributed system. These

S(L,)=L

expressing a finite axial deformation are imposed. This im-
plies that:

5(0,=0, S(L,)=L-L" (4.4)

For details on the implementation of the multiscale algorithm
and on the procedure of coupling models of different physical
dimension, sef9].

are easily expressed as a functions of lumped variables

to guarantee the continuity of flow and pressure at the
interfaces.

The coupled system is equivalent to a 1D model for the
full circulatory system where, except for a segment, the

5. Results and discussion

To solve the 1D fluid—structure model numerically, Egs.
(3.7)—(3.9) are solved simultaneously in a finite interval

remaining arterial tree has been truncated and lumped in[o, £]. Let us consider a sequence of+ 1 equispaced

.....

coupled model can be regarded as a lumped parameter modeta| discretization is obtained by evaluating membrane pre-
where a compartment has been expanded in a distributedstretches and prestresses (see E8id), (3.2), (3.6) at n

model.

If the coupling strategy eliminates the drawback of
assigning a boundary value farandp, wall displacement
conditions at the extrema of the vessel are to be provided.
These are given by consideringaug vessel (i.e. of length
much larger than the reference radiR$) with free ends.
Therefore, the conditions:

R=R'=0 §=1 4.1)
hold at the ends. This implies that
R=R'=0 $=5=0 (4.2)

From (3.7.2) it follows that the implicit relation betwedh
andp:

D3,R = p (R*)? (4.3)

inner pointss; = (x; + x; + 1)/2 of a staggered grid by con-
sidering averaged neighboring variables. On the other hand,
wall—fluid equilibrium Eq(3.7)and flow Eqs(3.8) and (3.9)
are computed at the — 1 inner points;. In the following
numerical experiments, the spatial mesh has been obtained by
dividing the length of the vessél = 8 cm in 800 equal parts
(Ax = 0.01cm) and with a time stepr = 10~*s. The 1D
model is inserted in correspondence of the descending aortic
artery Fig. 3) and is solved coupled with the OD model. The
Runge—Kutta scheme of second order has been used both in
the distributed and the lumped parameter model to advance in
time. The choice of the above numerical parameters guaran-
tees stability and grid independence. The resulting nonlinear
algebraic system is solved by a globally convergent Newton
type method.

The following numerical values for the distributed model
are used:

R,

Fig. 3. Coupling of OD and 1D models at the level of the descending aorta. Pressure and flow variables are exchanged at the interface points to guarante

continuity (by courtesy of Formaggia et §l1]).
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c=2x10dynelcm  ¢1 = 0.38, ¢ = 0.26,
c3=0046 R*=12cm L*=L=28cm
o = 1.05g/cn?

(note thate in (2.8)is obtained by integration across the wall

thickness of the analogous density energy function in Zhou

and Fund6] and the other material constants are determined 3.881- :

from in vivo experimental datg6]). 3s8l ;
In a large vessel, as that considered here, the frictional £ 379!

force due to the fluid viscosity is comparatively small and 7 5g75|

is disregarded. Actually, experiments carried out with and

without the fluid viscosity do not exhibit remarkable quanti- » .

tative differences. For the lumped parameter model the same s 2 _ 25 3

parametersR;, Cx, L; as in[13] have been used. In all the tme {s]

simulations, the dependence of the small motions on the pre'Fig. 5. Time histories foR, S at the center of the artery for three values

stretches X7, A3) is investigated. Subject to the heart pres- of the longitudinal prestress; (15 = 1.75). Longitudinal deformatio is

sure, transmitted through the 0D model, the wall expands upsmall (cfr the different scale), but its variation are quite effective witin

to a mean value oR and oscillates periodically between a correspondance to the pressure peak.

maximum and a minimum limits. Similarly, all the flow vari- o o )

ables have a periodical small fluctuations over a mean value. 1he variation of the longitudinal displacemefits com-

In particular, the values at andS depend not only on the paratively smaller, butis more sensitive to the variatiohjof .

elasticity coefficient, but on the reference radius. Marked changes of occur in correspondence of large vari-
The behaviour of the variablggands in the mid point ation of the pressure, and of its derlvaqu_fg( 5. The fI_U|_d_

are depicted for three values of the initial strexgHwith 2 dynamical variablep andu are less sensitive to the initial

fixed) inFig. 4, and for varied. (with A5 unchanged) ifFig. state of stress. o

5, and evidence a different mechanical response inthe two di- 1 he solution has been found for a limited range of the pre-

rections. The radial displacemebtiecreases monotonically ~ Stretches: these probably c.orrespond to the admissible values

with 2.3. Furthermore, the variation @fon the prestretch; ~ ©f the elastic energy functio(2.8). Actually, the values of

is much larger than the variation . On the other hand, it K" p* andc (as well as of7, 27) cannot be chosen inde-

first increases and then decreases with the axial prestretch: #endently, but should satisfy a compatibility condition (see

maximum is attained at aboit = 1.4 for all circumferen-  E0S.(3.1)=(3.3). Another restriction comes from the pres-

tial prestretches (this behaviour is related to the material prop-€nce of the lumped parameter model which, coupled to the

erties along the two directions (cfr. Eq®.9), (2.10)and see  distributed model, should provide consistent values of the
Fig. 6). pressure and flows (see Sectidhn In particular the global

pressure should be compatible with the initial stretch and

(cm

3.877 1

1.5 max R(4.)
2.2
€ 2
RS
o 1.8
1.6
1.1 ! '
1.5 2 2.5 3 1.4
3.89 T T - 1.2
= N7
= 3.885F -- l?=1 751 1
8 — k=18 1-1
v 3.88
1.2
3.875
pi] — :
L L 175 1.8
3.871.5 5 o5 3 1.6 14 145 1.5 16565 1.6 1.65 1.7 5

time (s) Ay

Fig. 4. Time histories for, S at the center of the artery for three values of  fig 6. Maximum radial deformation for varying prestretches. The surface is

the circumferential prestress (i1 = 1.4). Longitudinal deformatiors is obtained by a linear fit of simulated values and shows as different mechanical
small (cfr. the different scale) and almost insensitiva3o behaviour in the two directions.
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1 X 10° waves. It is based on the validity of the water—-hammer
‘ I equation ¢ = +pydu and consists in measuring the
sl slope of the PU loop curves. For a typical PU loop as that
‘ displayed inFig. 7, the local wave speed ig = 5.2m/s
1l (A1 = 14,15 = 1.8, solid line), in agreement with experi-
ments. Following such method, it is shown that initial hoop
sl stretching hinders the propagation of the pulses, while no
g significant differences are related to axial loading.
E 1.2
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