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The role of the arterial prestress in blood flow dynamics
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Abstract

Blood flowing in a vessel is modelled using one-dimensional equations derived from the Navier–Stokes theory on the base of long pressure
wavelength. The vessel wall is modelled as an initially highly prestressed elastic membrane, which slightly deforms under the blood pressure
pulses. On the stressed configuration, the vessel wall undergoes, even in larger arteries, small deformation and its motion is linearized around
such initial prestressed state.

The mechanical fluid–wall interaction is expressed by a set of four partial differential equations. To account for a global circulation
features, the distributed model is coupled with a six compartments lumped parameter model which provide the proper boundary conditions by
reproducing the correct waveforms entering into the vessel and avoid unphysical reflections. The solution has been computed numerically: the
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pace derivatives are discretized by a finite difference method on a staggered grid and a Runge–Kutta scheme is used to advanc
n time. Numerical experiments show the role of the initial stresses in the flow dynamics and the wall deformation.
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. Introduction

The study of the propagation of pulse waves in arteries has
ttracted many researchers in biomedical engineering. The
elevance of theoretical and clinical aspects of such problem
s widely recognized in cardiovascular mechanics, angiology
nd atherogenesis[1].

The complexity of theblood-wall system and the different
ime and space scales involved in vascular flows stimulate
he formulation of reduced models, aimed to analyze and
olve simpler problems. For wave propagation phenomena,
he mechanical model of an inflated elastic tube filled with
n incompressible liquid is commonly used. As the pressure
ave travels, the tube deforms under the influence of internal
lastic forces and external loads. The wave dynamics strictly
epends on the interaction between blood flow and arterial
all [2].
For long wavelengths and being the axial dimension pre-

ailing on the others, one-dimensional models are usually
roposed and offer quite satisfactory results[3]. They are

∗ Tel.: +39 6 8847 0251; fax: +39 6 4404 306.
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built by averaging variables over the cross sectionA of the
tube and describe the mean flow dynamics. Several
els based on the tube law of typeA = A(p, x) have bee
developed[2,3]. They do not include any wall displacem
along the axial direction due to the fluid shear stress: thi
be of some importance when remodelling process and gr
of the arterial endothelium are considered. A more rea
approach is obtained when the arterial wall is modelle
a two-dimensional anisotropic membrane that deforms
der the forces exerted by the fluid in its tangential plane[4].
Moreover, arteries are naturally under longitudinal and
cumferential tensions and in vivo measurements point ou
presence of longitudinal stretch and stress[5–7]. Some othe
work has been done on a theoretical base to extend the
ersley solution to an initially stressed elastic tube[8]. Though
much smaller than the radial displacement and generall
glected, the longitudinal wall motion needs a deeper stu
vascular mechanics, since it is revealed of some impor
in the analysis of the wall shear stress and may have in
in the investigation of pathologies.

A mathematical model with such characteristics has
recently developed. The full nonlinear coupled wall-fluid s
tem has been solved numerically and the flow and of the
350-4533/$ – see front matter © 2005 IPEM. Published by Elsevier Ltd. All rights reserved.
oi:10.1016/j.medengphy.2005.04.013
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deformation dependence on the elasticity parameter has been
highlighted[9]. The alternative approach proposed here is to
apply the theory of infinitesimal elasticity to the small in-
cremental deformations. Because arterial walls undergo only
small changes at each cardiac cycle, the degree of local non-
linear behaviour is small and can be locally linearized[10].
On the other hand, the deformations leading from an un-
stressed state to an initial stressed configuration are very
large, and a nonlinear theory has to be used to compute the
initial stress[6].

The purpose of this study is to develop a simple one-
dimensional model for the fluid-structure problem describing
the blood flow and the wave propagation in an arterial seg-
ment. The wall constitutive equation for the vascular tissue
proposed in[6] has been used to derive both the longitudi-
nal and circumferential prestretches and prestresses (Section
2) and the linearized wall–fluid equations are written over
such initial configuration (Section3). Since numerical sim-
ulations should be performed in a tube of finite length, the
problem of assigning suitable inflow and outflow conditions
is circumvented by using a lumped parameter model[11].
The resulting coupled system form a unique closed-loop and
no boundary conditions for the flow is required (multiscale
model, Section4). Finally, many computational results show
the appropriateness of such an approach, and evidence the
role of the prestreches on the fluid-wall mechanics (Section
5

2

plex
d cture
p mu-
t cts,
w wave
p ls for
t lar,
d r the
u del
i

2

v ble
t tem
w aged
m

w th
a e
v he

Poiseuille steady flow in a tube of radiusR:

f � −8µu

ρR2 (2.2)

As a consequence, the wall shear stress is given by

τ = µ
du

dr

∣∣∣∣
r = R

= 4µu

R
(2.3)

Strictly speaking, the expressions(2.2) and (2.3)hold for a
steady flow in a rigid tube, but they are considered acceptable
for quasi steady flows and for small deformations[3].

The principle of conservation of mass in a deformable tube
is expressed by the following continuity equation[2]:

∂R

∂t
+ R

2

∂u

∂x
+ u

∂R

∂x
= 0 (2.4)

2.2. The wall equations

The vessel wall is modelled as an elastic axisymmetric
membrane, that is a 2D thin shell with a mass negligible
(wall thickness→ 0) compared with that of the fluid con-
tained in it. The membrane, which has no bending stiffness,
is capable to deform under the forces exerted by the fluid (i.e.
the shear stressτ and the transmural pressurep - cfr. (2.3)).
Let (xP (s), rP (s)) be the Lagrangian coordinates of a particle
P n its
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. Mathematical formulation

Blood flowing in a compliant tube as an artery is a com
ynamical system and constitutes a genuine fluid-stru
roblem. The fluid motion and the wall deformation are

ually influenced and their coupling is responsible for effe
hich cannot be explained by each of them alone. When
ropagation phenomena are concerned, simplified mode

he system “blood–arterial wall” can be devised. In particu
ue to the small deformations of the vascular wall and fo
nidirectional nature of blood flow, a one-dimensional mo

s adopted.

.1. The flow equations

Let us consider a homogeneous fluid of densityρ and
iscosityµ, flowing in a straight, axisymmetric, distensi
ube of circular cross section. A cylindrical coordinate sys
ith x as symmetry axis is used. The quasi-1D cross aver
omentum equation are[2]:

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
+ f (2.1)

hereu is the axial velocity,p the transmural pressure, bo
veraged over the cross section, andt denotes the time. Th
iscous termf is approximated by the friction term of t
with s a parametric coordinate along the membrane i
ymmetry plane. In such reference frame, the principa
ormation ratios in the axial and circumferential directi
re respectively:

1 =
√(

drP

ds

)2

+
(

dxP

ds

)2

, λ2 = rP

R0 (2.5)

hereR0 is the undeformed radius (corresponding to the
ransmural pressure – see Section3).

Since the fluid equations are expressed in Eulerian
inates, let us make a change of variables and letR(x, t) and
(x, t) be the Eulerian counterparts of the Lagrangian c
inates of a particle of the a membrane. In such coord
ystem, the stretches(2.5)are written as

1 =
√

1 + R′2

S′2 , λ2 = R

R0 (2.6)

the prime denotesx-derivative). By balance of forces, t
uid–membrane equilibrium equations in tangential and
al directions are provided[4]:

′(T1 − T2) + RT ′
1 = ρτR(1 + R′2)1/2,

−R′′

(1 + R′2)3/2T1 + 1

R(1 + R′2)1/2T2 = p (2.7)

hereT1 and T2 are the longitudinal and circumferent
tresses, respectively. Let us now define a constitutive e
ion for the arterial vessel that give an expression forT1 and
2 in Eq.(2.7). For an incompressible hyperelastic mate
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Fig. 1. Contour plot of the stressesT1 (dashed line) andT2 (solid line), as
in Eqs.(2.9) and (2.10), with c1 = 0.38, c2 = 0.26, c3 = 0.046.

it is possible to define a strain-energy functionW as a func-
tion of the principal strains: it represents the elastically stored
energy per unit volume in terms of the strain variables and is
a potential for the stress[7].

Based on a series of experiments on canine arterial speci-
mens, a strain-energy density functionw modelling the me-
chanical properties of the arterial wall has been recently pro-
posed by Zhou and Fung[6] as

w = c (exp(Q) − 1), Q = c1E
2
1 + c2E

2
2 + 2c3E1E2

(2.8)

wherec is a material parameter having the dimensions of
dyne/cm, c1, c2, c3 are nondimensional constants (with
c1 ≈ c2 andc1, c2 � c3) andEk = 1

2(λ2
k − 1) k = 1, 2 are

F format
a

the principal Green strains. Hence, the stress components
(averaged across the thickness) along the longitudinal and
circumferential directions are given by differentiation ofw:

T1(λ1, λ2) = λ1

λ2

∂w

∂E1
= 1

λ2

∂w

∂λ1

= 2
λ1

λ2
c (c1E1 + c3E2) exp(Q) (2.9)

T2(λ1, λ2) = λ2

λ1

∂w

∂E2
= 1

λ1

∂w

∂λ2

= 2
λ2

λ1
c (c3E1 + c2E2) exp(Q) (2.10)

The former relations hold in the case of an incompressible and
anisotropic material, wherein principal directions of strain
and stress coincide and express the property that the instan-
taneous Young’s modulus increases with the strain, but with
a different amount in the two directions (Fig. 1). The full
nonlinear fluid-wall interaction problem has been solved in
[9].

3. Linearization of the wall dynamics equations

Eqs.
( ar-
t nlin-
e ctua-
t all
e ri-
a meter
ε v-
e erms
ig. 2. Schematic decomposition of the motion in a nonlinear large de
s a small variation on the paragon stateχ∗.
ion (a) and a small linear deformation (b). The present configurationχ is regarded

Despite the nonlinear character of the strain–stress
2.9) and (2.10), the wall deformation, even in large
eries, can be regarded as the resultant of a large no
ar deformation and a small superimposed linear flu

ions over it (seeFig. 2). This suggests to linearize the w
quilibrium Eq. (2.7) as follows. All the dependent va
bles are expanded in power series of a small para
asχ = χ∗ + εχ̃ + ε2χ̃2 + · · · and substituted in the go
rning equations. In the linearization process, all the t
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containing powers ofε of order greater than one are higher
order infinitesimals and have been neglected. The stateχ∗,
corresponding toε = 0, is the 0th order approximation and
can be considered as a known initial (stressed) state of the
motion and the present stateχ is regarded as a first-order
perturbed state (of magnitudeεχ̃) overχ∗. We therefore as-
sume that the excess stresses are related to the correspondent
excess strains linearly.

From a mechanical point of view, an ideal stress-free con-
figurationχ0 (or natural or ground state) is defined as the
possible state where no forces act on the wall (p0 = 0). It is
characterized by a constant radiusR0 and finite lengthL0.
We then define a reference (orparagon) stressed steady con-
figurationχ∗ as the state of an inflated (with a constant load
p∗) and uniformly stretched tube (of finite lengthL∗). Such a
state is defined by a solution of Eq.(2.7), havingR∗ = const.

andS∗(x) = x (see[10]). The longitudinal and the circum-
ferential stretches in the paragon configuration, referred to
the ground state, are defined as

λ∗
1 = L∗

L0 , λ∗
2 = R∗

R0 (3.1)

By using Eqs.(2.9) and (2.10)the stresses in paragon
configuration are constant and given by

T ∗ ∗ ∗ λ∗
1 ∗ ∗ ∗

T

w

t
s a-
r signe
F

T

W d the
p -
n given
b

λ

A the
s

T

T

o
p

D∗
11 = c

(λ∗
1)3

λ∗
2

[c1 + 2(c1E
∗
1 + c3E

∗
2)2] exp(Q∗),

D∗
22 = c

(λ∗
2)3

λ∗
1

[c2 + 2(c3E
∗
1 + c2E

∗
2)2] exp(Q∗),

D∗
12 = D∗

21 = cλ∗
1λ

∗
2[c3 + 2(c1E

∗
1 + c3E

∗
2)

× (c3E
∗
1 + c2E

∗
2)] exp(Q∗) (3.6)

It is worth noting that the constitutive laws(3.5) depend
nonlinearly on the prestretchesλ∗

1 andλ∗
2 but linearly onR̃

and onS̃′; moreover, ifλ∗
1 = λ∗

2 = 1 (i.e. the paragon con-
figuration is the ground state) they reduce to the standard
linear strain–stresses constitutive relations of an anisotropic
membrane.

By using (3.5), the wall motion Eq.(2.7) are therefore
linearized around the paragon stateχ∗ as

(T ∗
1 + D∗

11)S̃
′′ + (−T ∗

2 + D∗
12)

R̃′

R∗ = ρτ,

−T ∗
1 R̃′′ + 1

R∗ (−T ∗
2 + D∗

21)S̃
′ + D∗

22
R̃

(R∗)2
= p̃ (3.7)

wherep̃ is the excess pressure (p = p∗ + εp̃).
The fluid nonlinearity has an intrinsic significance, being

the inertial effect dominant in large vessels, and cannot be
e )
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(c1E1 + c3E2) exp(Q ),

∗
2 (λ∗

1, λ
∗
2) = 2c

λ∗
2

λ∗
1

(c3E
∗
1 + c2E

∗
2) exp(Q∗) (3.2)

ith Q∗ = Q(λ∗
1, λ

∗
2) andE∗

k = Ek(λ∗
k).

The stretchesλ∗
1, λ

∗
2 and the stressesT ∗

1 , T ∗
2 are related

hrough Eq.(3.2) and are sometimes referred to aspre-
tretches andprestresses. They are the initial reference p
ameters and the ones or the others are assumed preas
rom Eq.(2.7), it follows that

∗
2 = p∗R∗ Laplace’s law (3.3)

e now linearize the stretches and the stresses aroun
aragon stateχ∗. Hence, forR̃ and S̃′ small, the longitudi
al and hoop stretches at the present configuration are
y

1 = (1 + S̃′)λ∗
1, λ2 =

(
1 + R̃

R∗

)
λ∗

2 (3.4)

ccordingly, the linearized constitutive laws relating
tressesT1 andT2 to S̃′ andR̃ are

1 = (T ∗
1 + D∗

11) S̃′ + (−T ∗
1 + D∗

12)
R̃

R∗ ,

2 = (−T ∗
2 + D∗

21) S̃′ + (T ∗
2 + D∗

22)
R̃

R∗ (3.5)

btained by a linearization of(2.9) and (2.10)around the
aragon configuration, where
d.

liminated. For uniformity of notation, Eqs.(2.1) and (2.4
re rewritten with respect to the paragon configuration
pectively as

∂ũ

∂t
+ (u∗ + ũ)

∂ũ

∂x
= −1

ρ

∂p̃

∂x
+ f (3.8)

∂R̃

∂t
+ R∗ + R̃

2

∂ũ

∂x
+ (u∗ + ũ)

∂R̃

∂x
= 0 (3.9)

ith u∗ a constant velocity satisfying the flow and the c
inuity equations at the paragon state (for a viscous
∗ = 0).

. Boundary conditions and multiscale models

The linearized wall Eq.(3.7)and the fluid flow Eqs.(3.8)
nd (3.9)have to be solved in a finite domain represen
n arterial segment. Such a segment is extracted from
rterial tree and boundary conditions of physical significa

or the variables are required. When balance of flows
ressures for the systemic circulation has to be t

nto account, models for the closed-loop system sh
e addressed. They are built by partitioning the w
ascular tree in elementary districts and by “lumping”
ynamical variables in each of them (lumped param
r 0D models). These models date back to the pionee
orks of Westerhof et al. and are based on the ana
etween hydraulic networks and electrical circuits[12]. In
ach compartment the values of the resistance, comp
nd inertial parameters are constant and a linear differe
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relationship between flow and pressure is given. These
elementary blocks are linked between them and connected
with the heart pump to form a closed loop representing
the cardiovascular system. The whole model describes the
time evolution of the mean values of the variables in each
section.

To account for a comprehensive system of the global
circulation, the six compartment lumped model described
by Avanzolini et al.[13] is used. Following[11], we have
inserted the distributed wall–fluid model in the point of
network corresponding to the descending aorta (Fig. 3).
This approach (multiscale model) allows to implicitly as-
sign boundary conditions for the distributed system. These
are easily expressed as a functions of lumped variables
to guarantee the continuity of flow and pressure at the
interfaces.

The coupled system is equivalent to a 1D model for the
full circulatory system where, except for a segment, the
remaining arterial tree has been truncated and lumped in
a finite number of blocks. On the other way around, the
coupled model can be regarded as a lumped parameter model
where a compartment has been expanded in a distributed
model.

If the coupling strategy eliminates the drawback of
assigning a boundary value foru andp, wall displacement
conditions at the extrema of the vessel are to be provided.
These are given by considering along vessel (i.e. of length
much larger than the reference radiusR∗) with free ends.
Therefore, the conditions:

R′ = R′′ = 0, S′ = 1 (4.1)

hold at the ends. This implies that

R̃′ = R̃′′ = 0, S̃′ = S̃′′ = 0 (4.2)

From (3.7.2) it follows that the implicit relation betweenR̃

andp̃:

D∗
22R̃ = p̃ (R∗)2 (4.3)

Fig. 3. Coupling of 0D and 1D models at the level of the descending aorta to guarantee
continuity (by courtesy of Formaggia et al.[11]).

holds at both ends. Such a condition unifies the four condi-
tions(4.2). Moreover, the boundary conditions onS:

S(0, t) = 0, S(L, t) = L̄

expressing a finite axial deformation are imposed. This im-
plies that:

S̃(0, t) = 0, S̃(L, t) = L̄ − L∗ (4.4)

For details on the implementation of the multiscale algorithm
and on the procedure of coupling models of different physical
dimension, see[9].

5. Results and discussion

To solve the 1D fluid–structure model numerically, Eqs.
(3.7)–(3.9) are solved simultaneously in a finite interval
[0,L]. Let us consider a sequence ofn + 1 equispaced
grid points (xi)i=0,...,n with x0 = 0 andxn = L. The spa-
tial discretization is obtained by evaluating membrane pre-
stretches and prestresses (see Eqs.(3.1), (3.2), (3.6)) at n
inner pointsξi = (xi + xi + 1)/2 of a staggered grid by con-
sidering averaged neighboring variables. On the other hand,
wall–fluid equilibrium Eq.(3.7)and flow Eqs.(3.8) and (3.9)
a
n ed by
d ts
(
m aortic
a he
R oth in
t ce in
t aran-
t inear
a wton
t

del
a

. Pressure and flow variables are exchanged at the interface points

re computed at then − 1 inner pointsxi. In the following
umerical experiments, the spatial mesh has been obtain
ividing the length of the vesselL = 8 cm in 800 equal par
�x = 0.01 cm) and with a time step�t = 10−4 s. The 1D
odel is inserted in correspondence of the descending
rtery (Fig. 3) and is solved coupled with the 0D model. T
unge–Kutta scheme of second order has been used b

he distributed and the lumped parameter model to advan
ime. The choice of the above numerical parameters gu
ees stability and grid independence. The resulting nonl
lgebraic system is solved by a globally convergent Ne

ype method.
The following numerical values for the distributed mo

re used:
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c = 2 × 105 dyne/cm, c1 = 0.38, c2 = 0.26,

c3 = 0.046, R∗ = 1.2 cm, L∗ = L̄ = 8 cm,

ρ = 1.05 g/cm3

(note thatc in (2.8)is obtained by integration across the wall
thickness of the analogous density energy function in Zhou
and Fung[6] and the other material constants are determined
from in vivo experimental data[6]).

In a large vessel, as that considered here, the frictional
force due to the fluid viscosity is comparatively small and
is disregarded. Actually, experiments carried out with and
without the fluid viscosity do not exhibit remarkable quanti-
tative differences. For the lumped parameter model the same
parametersRk, Ck, Lk as in[13] have been used. In all the
simulations, the dependence of the small motions on the pre-
stretches (λ∗

1, λ
∗
2) is investigated. Subject to the heart pres-

sure, transmitted through the 0D model, the wall expands up
to a mean value ofR and oscillates periodically between a
maximum and a minimum limits. Similarly, all the flow vari-
ables have a periodical small fluctuations over a mean value.
In particular, the values ofR andS depend not only on the
elasticity coefficientc, but on the reference radiusR∗.

The behaviour of the variablesR andS in the mid point
are depicted for three values of the initial stretchλ∗

2 (with λ∗
1

fixed) inFig. 4, and for variedλ∗
1 (with λ∗

2 unchanged) inFig.
5, and evidence a different mechanical response in the two di-
rections. The radial displacementR decreases monotonically
with λ∗

2. Furthermore, the variation ofR on the prestretchλ∗
2

is much larger than the variation onλ∗
1. On the other hand, it

first increases and then decreases with the axial prestretch: a
maximum is attained at aboutλ∗

1 = 1.4 for all circumferen-
tial prestretches (this behaviour is related to the material prop-
erties along the two directions (cfr. Eqs.(2.9), (2.10), and see
Fig. 6).

Fig. 4. Time histories forR, S at the center of the artery for three values of
the circumferential prestressλ∗

2 (λ∗
1 = 1.4). Longitudinal deformationS is

small (cfr. the different scale) and almost insensitive toλ∗
2.

Fig. 5. Time histories forR, S at the center of the artery for three values
of the longitudinal prestressλ∗

1 (λ∗
2 = 1.75). Longitudinal deformationS is

small (cfr the different scale), but its variation are quite effective withλ∗
1 in

correspondance to the pressure peak.

The variation of the longitudinal displacementS is com-
paratively smaller, but is more sensitive to the variation ofλ∗

1.
Marked changes ofS occur in correspondence of large vari-
ation of the pressure, and of its derivatives (Fig. 5). The fluid
dynamical variablesp andu are less sensitive to the initial
state of stress.

The solution has been found for a limited range of the pre-
stretches: these probably correspond to the admissible values
of the elastic energy function(2.8). Actually, the values of
R∗, p∗ andc (as well as ofλ∗

1, λ∗
2) cannot be chosen inde-

pendently, but should satisfy a compatibility condition (see
Eqs.(3.1)–(3.3)). Another restriction comes from the pres-
ence of the lumped parameter model which, coupled to the
distributed model, should provide consistent values of the
pressure and flows (see Section4). In particular the global
pressure should be compatible with the initial stretch and

F ce is
o anical
b

ig. 6. Maximum radial deformation for varying prestretches. The surfa
btained by a linear fit of simulated values and shows as different mech
ehaviour in the two directions.
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Fig. 7. PU loop curves in the central point of the vessel. Slopes of such
curves indicate the local wave speed when no reflections are present. The plot
evidences the influence of the circumferential prestressλ∗

2 (with λ∗
1 = 1.4

fixed) on the mean fluid velocity, on the pressure and on the wave speed.

tension according to Eq.(3.3). For largeλ∗
2 the wall stiffens

and undergoes a smaller deformation. Over a critical value,
the radial deformation, at some instants, is below the refer-
ence radiusR∗. In such a case the mean pressure is below
the reference pressurep∗ = T ∗

2 /R∗ and a moderate buckling
takes place (the prestretch is not compatible with the inflow
pressure). On the other way around, for a low value ofλ∗

2,
the vessel wall undergoes large deformations that cannot be
adequately represented by the present 1D linearized model.

In a recent work, the same problem has been studied by
solving the full nonlinear equations for the wall over an un-
stressed reference state (see Eqs.(2.7), (2.9), (2.10)) [9]. A
comparison with the simulation in[9] having the same nu-
merical parameters show that similar results are obtained in
correspondence ofλ∗

1 = 1.4 andλ∗
2 = 1.8 and demonstrate

the adequacy of the linearization.
In principle, the velocity of the wave can be obtained by

fixing two points in the vessel and measuring the crossing
time of a peak. However, such a procedure is not accurate
over a short length and for the time and space steps as those
considered in this work. Moreover the profiles change their
shape as they travel, and it is difficult to follow a profile in time
[8]. As a consequence, the computed speed value measured
for u, p andR between the same grid points may be different,
and varies in time.

Khir and Parkers[14] suggest another method to measure
t ted

waves. It is based on the validity of the water–hammer
equation dp = ±ργ du and consists in measuring the
slope of the PU loop curves. For a typical PU loop as that
displayed inFig. 7, the local wave speed isγ = 5.2 m/s
(λ∗

1 = 1.4, λ∗
2 = 1.8, solid line), in agreement with experi-

ments. Following such method, it is shown that initial hoop
stretching hinders the propagation of the pulses, while no
significant differences are related to axial loading.
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