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Abstract

A di�erential model for a viscous uid owing in a deformable tube �xed at the
two ends is presented as a fundamental study. The main application is in arterial
mechanics where the uid-solid interaction is of primary importance. A nonlinear
viscoelastic constitutive equation for the wall is coupled with the 1D averaged uid
momentum equation. The equations are solved numerically by a �nite di�erence
method on a staggered grid and the dependence on the relevant physical parameters
is discussed.
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1 Introduction

Model studies of ows in liquid �lled distensible tubes are motivated from
the desire to understand the many aspects of the cardiovascular system in
physiological and pathological states. Blood ow in arteries is dominated by
unsteadiness and by wave propagation phenomena generated by the interac-
tion of the blood with the arterial wall.
The importance of the arterial mechanics is widely recognized in modelling
hemodynamical problems. Some work has been carried out with the simplistic
assumption that the vessel wall is linearly elastic and isotropic [1],[2]. Actually,
the complex nature of biological tissues needs the development of nonlinear
theories. Nonlinearities are not much relevant for predictions of wave speed,

Email address: pontrelli@iac.rm.cnr.it (Giuseppe Pontrelli).
1 Partially supported by the Progetto Strategico CNR:Metodi e Modelli matematici

nello studio dei fenomeni biologici, 1999.

Preprint submitted to Elsevier Preprint 8 January 2001



but inuence the pressure and ow waveforms. This type of nonlinearity is a
consequence of the curvature of the stress-strain function which shows that an
artery becomes sti�er as the distending pressure is raised. Some authors have
shown that elasticity dominates the nonlinear mechanical properties of arte-
rial tissues, whereas the vessel viscosity can be considered as a second order
e�ect [3]. On the other hand, experimental studies indicate that the arterial
material is viscoelastic and anisotropic [4]. In principle, viscoelastic dissipa-
tion of the vascular wall proves to be more important than viscous dissipation
of the uid. Actually, the latter can be neglected in a number of applications
involving large blood vessels [1]. A review on the theoretical developments and
new trends in arterial mechanics is given in [5].
Many theoretical and experimental formulations have been developed to de-
scribe the �nite deformation and the nonlinear viscolasticity of arteries in time
dependent ows. A nonlinear constitutive relation for the vascular wall that
depends on the Green strains has been introduced in [6] and a stability anal-
ysis on the saccular aneurysm evolution is presented in [7]. The model is here
extended to include the e�ect of the viscoelasticity of the solid tube and, when
necessary, the viscosity of the blood. According to the experimental results,
the wall stress is a function of both the strain and strain rate. The inertia
of the wall mass, even including the e�ective mass from the surrounding soft
tissues, is negligible compared with the elastic force because of low wall veloc-
ities [8].
Being interested in the pulse propagation phenomena, the assumption of a
quasi-1D ow is a valid approach under the hypothesis that the wave ampli-
tude is small and the wavelength is long compared with the tube radius, so
that the slope of the deformed wall remains small at all times [9]. We consider
a homogeneous nonlinear viscoelastic tube �lled with an incompressible uid
and all the quantities are assumed to vary in the axial direction only because
the equations have been averaged over the cross section.
Our aim is to get a satisfactory understanding of the mechanism of propagation
of the pressure pulse, and of the changes in the pressure waveform which oc-
cur as it travels along the arteries through the nonlinear wall-uid interaction.
The e�ect of the elasticity parameter is related to the frequency of oscillations
in the transient, while the inuence of viscosity parameter is to attenuate the
oscillations, to reduce the tendency of shock formation as in a purely elastic
wall model, and to counterbalance possible instability phenomena. Despite the
nonlinearity of the elastic part, the results are qualitatively similar to those
obtained with a linear elastic relation studied in [10], because of the small
arterial deformations. However, the numerical value of the elastic and viscous
coe�cients appearing in the constitutive equation are critical and need to be
carefully identi�ed by comparing numerical results with measurements.
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2 The viscoelasticity of the vessel wall

The adequate mechanical characterization of blood vessels is an important
prerequisite for a quantitative description of blood ow, as well as for the
study of the wave propagation phenomena.
For an incompressible hyperelastic material it is possible to de�ne a strain-
energy function W as a function of the stretch-ratio invariants I1, I2, I3: it
represents the elastically stored energy per unit volume in terms of the strain
variables and is a potential for determining the stress [5]. The problem of de-
termining the form of the strain-energy function for biological material has
been examined from theoretical and experimental points of view. A variety of
mathematical expressions for W has been proposed in biomechanics, accord-
ing to di�erent materials and organic tissues, and their e�ciency is tested in
the ability to �t experimental data over a wide range of strains. As pointed
out by Fung [4] and other authors [5], the properties of vascular tissues are
highly nonlinear. Some attempts to de�ne a non-linear strain-energy density
function for the arterial tissue are based on the static relationship between
strains and elastic energy (see for example [4],[6],[11], and references therein).
Let us now consider the vessel wall modelled as an elastic axisymmetric mem-
brane. This is a 2D thin shell with a mass negligible compared with that of
the uid contained in it. The membrane is capable to deform under the forces
exerted by the uid, is subject only to stresses in the tangential plane and has
no bending sti�ness. Let (x

P
(s); r

P
(s)) be the lagrangian coordinates of a par-

ticle P having a parametric coordinate s along the membrane in its symmetry
plane. The strain-energy density function per unit area can be formulated as:

w = w(�1; �2)

where

�1 =

vuut drP
ds

!2

+

 
dx

P

ds

!2
�2 =

r
P

Ru

(2.1)

are the principal deformation ratios in the meridional and circumferential
directions and Ru is the undeformed radius. In this context, a constitutive
strain-energy function modelling the mechanical properties of the arterial wall
has been recently proposed [6],[7] as:

w = c (eQ � 1) Q = c1(E
2

1 + E2

2) + 2c3E1E2

where c is a material parameter, c1, c3 are nondimensional constants and
Ek =

1

2
(�2k � 1) k = 1; 2 are the principal Green strains. Once the form of w
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is speci�ed, the mechanical properties are completely determined, being the
stress components (averaged across the thickness) along the longitudinal and
circumferential directions given by di�erentiation of w:

T1(�1; �2) =
�1

�2

@w

@E1

=
1

�2

@w

@�1
T2(�1; �2) =

�2

�1

@w

@E2

=
1

�1

@w

@�2
(2.2)

The former relations hold in the case of an incompressible and isotropic mate-
rial, wherein principal directions of strain and stress coincide and express the
property that the instantaneous Young's modulus increases with the strain,
but with a di�erent amount in the two directions [5].
On the other hand, many authors have pointed out that the vessel walls are
viscoelastic. Patel and Vaishnav veri�ed the existence of the arterial viscoelas-
ticity through a dynamical experiment [9]. Reuderink found that a neglect of
the viscoelasticity generates an underestimation of both phase velocity and
damping [2]. Generally, a viscoelastic wall model yields results closer to physi-
ological measurement than an elastic one, and a dissipative wall is more e�ec-
tive than a dissipative uid in eliminating the high frequency oscillations. The
damping resulting from viscoelasticity inhibits the sharp peaks of the pressure
and ow pulses and leads to more realistic results when a comparison with
experimental data is carried out [12].
The simplest generalization of (2.2), including a viscoelastic e�ect, is given by
the following strain-stress relationship:

T1(�1; �2; _�1; _�2) =
1

�2
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2
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T2(�1; �2; _�1; _�2) =
1

�1

@w

@�2
+ 

 
_�2 +

_�1
2

!
(2.3)

where  > 0 is a wall viscosity coe�cient and the dot denotes time derivative
[13].
Although the inertia of the membrane is neglected and a general theoretical
framework is still lacking, in the model case studied here the simple functional
dependence strain-stress in equations (2.3) takes into account the viscous ef-
fects of a material in time dependent motions and models the response of
the arterial wall to the deformation and to the rate of deformation. In other
words, equations (2.3) mean that the membrane does not respond instanta-
neously to forces, as a purely elastic body, but with a dissipative mechanism
as a viscoelastic material.
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3 The wall-uid coupling

Being interested in pulse propagation in arteries and because of the small
deformations of the vascular wall, a quasi-one dimensional model is assumed.
Let us consider the 1D cross averaged momentum equation of a homogeneous,
incompressible uid in an axisymmetrical distensible tube of circular cross
section of radius R and length L, with the two ends at �xed radius R0 (all
variables are assumed to be nondimensional):

@u

@t
+ u

@u

@x
= �

@p

@x
+ f (3.1)

where x is the axial coordinate, u is the mean axial velocity, p denotes the
transmural pressure, t the time and f a friction term. The latter is locally
approximated by the friction term of the Poiseuille steady ow in a tube of
radius R given by:

f ' �
8u

Re R2
(3.2)

with Re =
U0R0

�
the Reynolds number and U0 a characteristic velocity. As a

consequence, the wall shear stress is approximated by:

� =
du

dr

�����
R

' �
4u

Re R
(3.3)

In principle, the expressions (3.2) and (3.3) hold for a steady ow in a rigid
tube, but they are considered acceptable for quasi-steady regimes and for small
deformations (R � R0) [2].

In a distensible tube the continuity equation is:

@R

@t
+
R

2

@u

@x
+ u

@R

@x
= 0 (3.4)

[1]. Because of its small inertia, the vessel wall is modelled as a membrane
which deforms under the uid forces and reaches an equilibrium state. Let us
indicate by R(x; t) and S(x; t) the Eulerian counterparts of the Lagrangian
coordinates of a particle of the a membrane (see previous section). The uid{
membrane equilibrium equations in x and r directions are provided [14]:

R0(T1 � T2) +RT 0

1 = �RR0
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�R00

(1 +R02)
3

2

T1 +
1

R(1 +R02)
1

2

T2 = p (3.5)

where � is the shear stress exerted by the viscous uid on the wall (cfr. (3.3)),
nondimensional T1 and T2 are de�ned as in (2.3) with:

�1 =

s
1 +R02

S 02
�2 =

R

Ru

the principal strains (the prime denotes x-derivative).
The following boundary conditions are provided at the ends of the tube:

R (0; t) = 1 S (0; t) = 0

R (L; t) = 1 S (L; t) = Lu

where Lu is the length of the undeformed membrane. Following the experimen-
tal set up, only the values of p(0; t) and p(L; t) are given at both boundaries.
In the inviscid case, this leads to some indeterminacy in the value of u, which
depends on the initial data. This approach is di�erent from that in [13], where
the value of ow rate is assigned at one of the boundaries together with the
value of the pressure. In particular, in order to study the transient to the
equilibrium con�guration, the same constant value of the pressure is assigned
at both ends:

p (0; t) = pref p (L; t) = pref (3.6)

As a second test case, an oscillating forcing pressure is given at the right end:

p(L; t) = pref + �sin(2� St t) (3.7)

where � < pref and St are the nondimensional amplitude and the Strouhal
number of the excitation, respectively.
The initial condition is chosen by considering a �nite perturbed con�gura-
tion of the steady Poiseuille ow, corresponding to a viscous uid (Re = 1),
a purely elastic wall and a non zero pressure gradient. Then the system is
left evolving towards its equilibrium con�guration (see (3.6)) or forced by an
oscillating pressure (see (3.7)). For further details, see [15].

4 Numerical method and results

The equations of evolution of the uid (3.1) and (3.4), the equations of the
equilibrium of membrane (3.5) with the constitutive equations (2.3) model the
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Fig. 1. Evolution of the arterial deformation R(1; �) for 2 values of the elasticity
parameter c with the same initial data. Thin line corresponds to  = 2, thick line
to  = 8. Note the di�erent scale.

nonlinear interaction between the blood and the arterial wall. They are solved
numerically by a second order �nite di�erence method centered in space. Let
us consider a sequence of n+1 equispaced grid points with x0 = 0 and xn = L.
The spatial discretization is obtained by evaluating membrane stresses, strains,

and their time derivatives (see eqns. (2.3)) at n inner points �i =
xi + xi+1

2
of a staggered grid by considering averaged neighbouring quantities. On the
other hand, equilibrium equations (3.5) and uid equations (3.1), (3.4) are
computed at the n � 1 inner points xi. The time discretization is based on
the trapezoidal formula, in such a way the global scheme is of second order in
space and time. The resulting nonlinear system is solved by a globally conver-
gent Newton type method.
Nonlinear models turn out to be very sensitive to the many material parame-
ters which characterize the speci�c ow problem. The value of the reference
pressure is �xed as pref = 10, c1 = 11:82, c3 = 1:18 [7], and the other pa-
rameters have been chosen around some typical values to obtain results of
physiological interest and varied in a typical range to test the sensitivity of
the system to their perturbation.
The problem is studied in the interval: 5 � c � 1000: it turns out that for
a larger value of c the wall increases its sti�ness and the numerical problem
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Fig. 2. Dependence of the frequency S�

t and of the maximum arterial deformation
R(1;%) on the elasticity parameter c. Both are independent of the viscosity coe�-
cient . Starred points are results from simulations, continuous curve is obtained by
a cubic spline interpolation.

becomes harder. On the other hand, for c < 5 the system undergoes an un-
realistic large deformation and the present model is not physically admissible.
In all the experiments we selected L = 2, �x = 10�2 and �t = 10�3. These
values guarantee the numerical stability of the system for the set of parame-
ters considered. The accuracy of the solution is controlled since the solution
corresponding to a �ner grid does not reveal a di�erent structure or unresolved
patterns. Since in wave propagation phenomena the dissipative e�ect of the
blood is a minor e�ect [4], in the following simulations, an inviscid uid is
considered (f � 0 in (3.1) and � = 0 in (3.5.1)).
Firstly the system, subject to an initial deformation, is left evolving towards
the equilibrium con�guration obtained by imposing the same value of the
pressure at the two extrema (see boundary conditions (3.6)). After an ini-
tial transient, all the variables reach asymptotically a steady state value with
damped oscillations (natural oscillations) having exponential decay and with a
c-dependent frequency S�

t (natural frequency), computed by spectral analysis.
Due to the elasticity of the wall, a positive deformation R and a positive ow
rate u at the �nal state at both ends is found equal. The inuence of the mem-
brane viscosity is investigated by varying the value of . It turns out that the
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Fig. 3. Amplitude of the pressure p(1; �) and the arterial deformation R(1; �) when
a forcing oscillatory pressure is assigned at the right end (� = 1; St = S�

t ) as a
function of the elasticity coe�cient c.

attenuation factor increases with  but is independent of c (see �g. 1). Results
show, for any c, the existence of a critical value for , below which di�culties
in convergence arise. In this case the low viscosity of the wall is unable to
attenuate the natural oscillations and the steady state is never reached [15].
As a matter of fact, no stable steady solution has been found as  ! 0. This
behaviour persists either by re�ning the computational mesh and by changing
the initial data.
On the other hand, the steady state values of the deformation decrease with
c, and are independent of  and of the initial data. Similarly, the natural fre-
quency S�

t increases with c but stays unchanged with  (�g. 2) and with the
initial data. The e�ect of the viscosity coe�cient  is to dissipate energy, to
damp the oscillations (but not to modify their frequency) and is observed only
in the transient regime. The longitudinal deformation S exhibits very small
changes compared to the radial one and is not discussed.
By considering the importance of a pulsatile forcing, an oscillating pressure
having Strouhal number St and amplitude � = 1 (10% of pref = 10) has
been imposed at the right boundary - see boundary conditions (3.7). Even
if the Strouhal number of the forcing oscillation in the physiological ow is
extremely small, in this work it has been selected to be comparable with the
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natural frequency S�

t of the membrane. In this case, the ow is not damped
anymore, but the persistence of steady oscillations of sinusoidal type occurs
with the same input frequency. The oscillations are about the same value as
that corresponding to steady state with pref = 10 and their amplitudes attain
a maximum when St = S�

t (resonance phenomenon). The dependence of the
oscillations amplitude on c is shown in �g. 3. The analysis of the radial veloc-
ity of the wall proves that the propagation features correspond to transverse
waves which do not propagate along the tube and are due to the boundary
conditions that generate reections. The phenomenon is similar to that of a
stretched string of a �nite length with one extreme �xed and the other oscil-
lating. Results do not di�er if the excitation at the right boundary is replaced
by one at the left boundary. Results agree qualitatively with those presented
in [10] and show that the nonlinear character of the strain-stress function is
responsible for minor changes with respect to the linear case. This is because
of the small strains of the arterial motion (in the range of parameter consid-
ered: max

x;t
�1 = 1:02 and max

x;t
�2 = 1:13).

A wider analysis of the problem has been developed and more results can be
found in [15].
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