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**DIMEG, Università dell’Aquila, 67040 Roio Poggio (AQ), E-mail: demonte@ing.univaq.it

ABSTRACT
A mathematical model describing delivery of therapeutic agents from polymeric coatings into coronary arteries after stenting
procedures is developed. A metabolic term denoting a drug consumption and a volume-averaged filtration velocity of the plasma
over an arterial cross section are included. Also, an infinite mass transfer coefficient at the adventitial boundary surface is
considered and a non-uniform initial concentration in the coating is assumed. Such a model can be used to study the effect of
different coating parameters and configurations on the drug release. Transformation and separation-of-variables method lead to
a 1D Sturm-Liouville problem with discontinuous coefficients and an exact analytical solution for local concentrations is found.
Drug concentration profiles are given and the influence on the physico-chemical parameters is discussed.

INTRODUCTION

Application of endovascular drug-eluting stent (DES) for
prevention and cure of restenosis is an emerging technology
which combines mechanical support of restricted lumen with
local drug delivery [1]. Although different configurations exist,
a typical DES consists of one or more biocompatible polymeric
layers coating the metallic strut and containing the therapeutic
agent to be delivered. Drug release depends on many factors,
such as the coating geometry and physico-chemical properties
and drug characteristic such as diffusivity and solubility.

Because only a limited amount of drug can be loaded onto
an eluting stent, it is crucial to optimize the pharmacokinetics,
in terms of concentration and residence time. In particular the
concentration should lie within a therapeutic range and its action
prolonged in time [2].

Due to the involvement of so many factors, prediction of drug
release appears as a formidable task and mathematical models
constitute a predictive tool for designing coating and stent plat-
form for drug delivery. The first step in modelling is to identify
all the relevant ingredients entering into the drug dynamics in
the arterial wall. For example, when released into the arterial
tissue, the drug is metabolized by living cells and its concentra-
tion decays in time. The fraction consumed with biochemical
processes depends on the drug type, on the biological site and
on individual factors. Another important effect is due to the
convective flow due to a pressure drop across the arterial wall.
In some circumstances such effects are deemed important, and
a comprehensive model to guarantee generality is worth to be
defined [3; 4]

In a recent study a purely diffusive model has been presented
[5]. With such an approach the concentration is expressed in an
analytical form as finite sum of eigenfunctions. This work ex-
tends that model by adding the convection and metabolic terms
in the wall layer. Through a change of variable the problem is
amened to a pure diffusion problem. Finally, the concentration
solution is expressed in the form of a Fourier series.

Compared to a fully numerical method, the analytical ap-
proach provides a greater insight into the physical sense of the
drug delivery process. As a matter of fact, the present one-
dimensional model is shown to catch most of the relevant as-
pects of the drug dynamics. By showing relationships among
the variables and material parameters, it can be used to identify
simple indexes or clinical indicators of biomechanical signifi-
cance.

The model enables the effect of important factors such as
drug diffusivity, cell metabolism, coating thickness, and mem-
brane permeability to be analyzed. Tuned in optimal way, they
can be used to design novel release mechanisms, as well as to
improve drug delivery protocols used in therapy and diagnos-
tics.

THE MATHEMATICAL MODEL

A drug-eluting stent (DES) consists of a metallic stent plat-
form (strut) coated with a polymeric layer that encapsulates a
therapeutic drug (Fig. 1). Such a coating is made of a drug
loaded polymeric matrix covered with a rate-limiting barrier
(membrane) that provides a more controlled and sustained drug
release. Such a drug is aimed at minimizing the occurrence of
clinically adverse events such as restenosis after stent implanta-
tion. In the present work we are interested only in the mecha-
nism of drug elution into the arterial tissue.

Figure 2 shows a cross-section of a stent strut coated by a
thin layer (of thickness L1) of gel containing a drug and embed-
ded into the arterial wall (of thickness L2). The complex multi-
layered structure of the arterial wall has been disregarded and a
homogeneous material with averaged properties has been con-
sidered for simplicity (fluid-wall model) as in Refs. [6; 7]. Both
the coating and the arterial wall are treated as porous media.
Because most of the mass transport process occurs along the di-
rection normal to the two layers (radial direction), we restrict
our study to a simplified 1D model. In particular, we consider a
radial line crossing the metallic strut, the coating and the arterial



Figure 1. Sketch of a stented artery.

wall and pointing outwards and, being the wall thickness very
small with respect to the arterial radius, a cartesian coordinate
system x is used along it (Fig. 2).

At the initial time (t = 0), the drug is contained only in the
coating and it is distributed with maximum, possibly nonuni-
form, concentration C1 f (x) and, subsequently, it is released
into the wall. Here, and throughout this paper, a mass volume-
averaged concentration c(x,t) (mg/ml) is considered. Since the
metallic strut is impermeable to the drug, no mass flux passes
through the boundary surface x =−L1. Moreover, it is assumed
that the plasma does not penetrate the surface of the stent coat-
ing. Thus, the dynamics of the drug in the coating (1 st layer) is
described by the following 1D averaged diffusion equation, and
related boundary initial conditions:

∂c1

∂t
+

∂
∂x

(
−D1

∂c1

∂x

)
= 0 in [−L1,0]

−D1
∂c1

∂x
= 0 at x = −L1

c1 = C1 f (x) at t = 0 (1)

where D1 (cm2/s) is the drug diffusivity in the porous coating
and 0 ≤ f (x) ≤ 1.

Similarly, in the second layer, the drug dynamics is de-
scribed by the following advection-diffusion equation and re-
lated boundary-initial conditions:

∂c2

∂t
+

∂
∂x

(
−D2

∂c2

∂x
+ 2δ2c2

)
+ β2c2 = 0 in [0,L2]

c2 = 0 at x = L2

c2 = 0 at t = 0 (2)

where D2 (cm2/s) is the diffusivity of drug inside the arterial
wall. The quantity 2δ2 (cm/s) accounts for a constant convec-
tion parameter due to the filtration velocity of the plasma (see
[8] for the meaning of the physical quantities). The last term on
the l.h.s. of Eq. (2.1) represents the drug reaction rate on the
surface of smooth muscle cells (SMCs) inside the media layer
of the arterial wall. Here, it is approximated by a linear reac-
tion having β2 > 0 (s−1) as an effective first-order reaction rate
coefficient.

To close the previous system of Eqs. (1)-(2), the conditions
at the interface x = 0 (the so-called inner boundary conditions)
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Figure 2. Cross-section of a stented artery with a zoomed area near

the wall that shows the metallic mesh and the two-layer medium at the

adventitial side described by the model (1)-(2): (a) stent strut, (b) coat-

ing, (c) topcoat, (d) arterial wall. Due to an initial difference of concen-

tration, drug is eluting from (b) to (d) through the permeable membrane

(c). An analogous two-layer pattern is present on the opposite side of

the strut, referring to the drug release towards the lumen (lumenal side).

have to be assigned. One of them is obtained by imposing con-
tinuity of the mass flux:

D1
∂c1

∂x
= D2

∂c2

∂x
at x = 0 (3)

The permeable membrane (called topcoat) of permeability P
(cm/s) is located at the interface (x = 0) between the coating
and the arterial wall. A continuous mass flux passes through it
orthogonally to the coating film with a possible concentration
jump. In the present case, the mass transfer through the topcoat
can be described using the second Kedem-Katchalsky equation
[9]. Thus, the continuous flux of mass passing across the mem-
brane normally to the coating is expressed by:

−D1
∂c1

∂x
= P(c′1 − c′2) at x = 0 (4)

In Eq. (4) the fluid-phase concentration c ′ is used. This is re-
lated to the volume-averaged concentration c through the for-

mula c′ =
c
kε

(with k partition coefficient, ε porosity).



Variable transformation

Let us define the following nondimensional variables and
constants:

x̄ =
x
L2

t̄ =
D2

L2
2

t c̄1 =
c1

C1
c̄2 =

c2

C1

γ =
D1

D2
L =

L1

L2
φ =

PL2

D2k2ε2
σ =

k1ε1

k2ε2

δ =
δ2L2

D2
β =

β2L2
2

D2
(5)

By setting:

x̄ → x t̄ → t c̄1 → c1 c̄2 → c2

the two differential problems (1) – (2) with B.C.’s (3) and (4)
may be rewritten in a dimensionless form as:

∂c1

∂t
= γ

∂2c1

∂x2 in [−L,0]

∂c1

∂x
= 0 at x = −L

γ
∂c1

∂x
=

∂c2

∂x
at x = 0

c1 = f (x) at t = 0 (6)

∂c2

∂t
=

∂2c2

∂x2 −2δ
∂c2

∂x
−βc2 in [0,1]

− γ
∂c1

∂x
= φ

(c1

σ
− c2

)
at x = 0

c2 = 0 at x = 1

c2 = 0 at t = 0 (7)

In the second layer, with the following variable transforma-
tion [10]:

c2(x, t) = w2(x,t)eδx−(δ2+β)t (8)

the problem (6)–(7) becomes:

∂c1

∂t
= γ

∂2c1

∂x2 in [−L,0]

∂c1

∂x
= 0 at x = −L

γ
∂c1

∂x
=

(
∂w2

∂x
+ δw2

)
e−(δ2+β)t at x = 0

c1 = f (x) at t = 0 (9)

∂w2

∂t
=

∂2w2

∂x2 in [0,1]

− γ
∂c1

∂x
= φ

(c1

σ
−w2e−(δ2+β)t

)
at x = 0

w2 = 0 at x = 1

w2 = 0 at t = 0 (10)

THE EIGENVALUE PROBLEM

By separation of variables:

c1(x, t) = X1(x)G1(t) w2(x, t) = X2(x)G2(t)

Eqs. (9)–(10) yield the ODE’s:

1
γ

G′
1

G1
= −λ2

1
G′

2

G2
= −λ2

2

having as solution:

G1(t) = e−γλ2
1t G2(t) = e−λ2

2t (11)

By imposing: G1 = G2e−(δ2+β)t [11], we have the following
relationship:

λ1 =

√
λ2

2 + δ2 + β
γ

(12)

The spatial part leads to the Sturm-Liouville eigenvalue sys-
tem:

X ′′
1 = −λ2

1X1 in [−L,0] (13)

X ′
1 = 0 at x = −L (14)

γX ′
1 = X ′

2 + δX2 at x = 0 (15)

X ′′
2 = −λ2

2X2 in [0,1] (16)

X2 = 0 at x = 1 (17)

γX ′
1 +

φ
σ

X1 = φX2 at x = 0 (18)

The general solution of the ordinary differential Eqs. (13)
and (16) is:

X1(x) = a1 cos(λ1x)+b1 sin(λ1x)
X2(x) = a2 cos(λ2x)+b2 sin(λ2x) (19)

where the eigenvalues λi and the unknown coefficients ai and
bi may be computed by imposing the outer and inner boundary
conditions as follows. From Eqs. (14) and (17), we have:

sin(λ1L)a1 + cos(λ1L)b1 = 0 (20)

a2 cos(λ2)+b2 sin(λ2) = 0 (21)

From the interface conditions (15) and (18), it follows:

γλ1 b1 − δa2 −λ2 b2 = 0 (22)
φ
σ

a1 + γλ1 b1 −φa2 = 0 (23)

Eqs. (20)–(23) form a system of four homogeneous linear al-
gebraic equations with unknowns a1,b1,a2 and b2 . To get a



solution different from the trivial one (0,0,0,0), it is needed
that the determinant of the coefficient matrix associated with
the above system be equal to zero, that is:

σγλ1 tan(λ1L) [λ2 +(φ− δ) tanλ2]−φ(λ2 − δ tanλ2) = 0 (24)

where λ1 is related to λ2 by virtue of Eq. (12).
Solving Eq. (24), the coefficients are evaluated in cascade as:

a2 = (− tanλ2)b2 = ã2 b2 (25)

b1 =
(

λ2 + δã2

γλ1

)
b2 = b̃1 b2 (26)

a1 =
(
− b̃1

tan(λ1L)

)
b2 = ã1 b2 (27)

where the multiplicative constant b2 will be determined through
the initial condition (see below).

In general, the nonlinear system of Eqs. (12) and (24) admits
as solution an infinite number of couples λ1m,λ2m, m = 1,2, ....
Subsequently, the constants ã2m, b̃1m and ã1m are obtained from
Eqs. (25), (26) and (27) respectively, and thus the corresponding
eigenfunctions X1m and X2m defined in Eq. (19) may be written
as [11]:

X1m = b2m
[
ã1m cos(λ1mx)+ b̃1m sin(λ1mx)

]
= b2mX̃1m

X2m = b2m [ã2m cos(λ2mx)+ sin(λ2mx)] = b2mX̃2m (28)

Concentration solution

Once the eigenvalues λ1m and λ2m are computed, the corre-
sponding time-variable functions G1m and G2m defined by Eqs.
(11) are obtained as:

G1m = e−γλ2
1mt G2m = e−λ2

2mt

Thus, the general solution of the problem (9)–(10) is given by
a linear superposition of the fundamental solutions (28) in the
form:

c1(x, t) =
∞

∑
m=1

AmX̃1m(x) e−γλ2
1mt

w2(x, t) =
∞

∑
m=1

AmX̃2m(x) e−λ2
2mt (29)

where Am := b2m are computed by applying the initial condition.
By evaluating Eq. (29.1) at t = 0 and multiplying it by X̃1n, after
integration we get:

0Z

−L

∑AmX̃1mX̃1n dx =
0Z

−L

f (x)X̃1n dx n = 1,2, .... (30)

Similarly in the interval [0,1], we have:

1Z

0

∑AmX̃2mX̃2n dx = 0 n = 1,2, .... (31)
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Figure 3. Wall concentration profiles for three values of δ at t = 1
(above) and normalized mass (below).

By combining Eqs. (30) and (31) and by using the orthogo-
nality property of X̃1m, X̃2m [8], we have, for f (x) = 1:

Am =
ã1m sin(λ1mL)+ b̃1m (cos(λ1mL)−1)

Ñmλ1m
=

− b̃1m

Ñmλ1m
m = 1,2, ....

Finally, using the inverse of the transformation (8), the complete
solution for concentration reads:

c1(x, t) =
∞

∑
m=1

AmX̃1m(x) e−γλ2
1mt

c2(x, t) =
∞

∑
m=1

Am

[
X̃2m(x) eδx

]
e−(λ2

2m+δ2+β)t

The analytical form of the last Eqs. allows an easy compu-
tation of the dimensionless drug mass (per unit of area) in both
coating and wall layers as function of time as:

M1(t) =
0Z

−L

c1(x, t)dx M2(t) =
1Z

0

c2(x,t)dx

A relevant quantity is the normalized mass:

M̂2(t) =
M2(t)

M1(0)+M2(0)

that indicates the drug fraction left in the wall at time t compared
with the initial total mass.

NUMERICAL RESULTS AND DISCUSSION

The physical problem depends on a large number of param-
eters, each of them may vary in a finite range, and there is a
variety of different limiting cases. As a matter of fact, they can-
not be chosen independently from each other, but they are re-
lated by some compatibility condition to give rise a well-posed
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model. The physical parameters considered for the simulations
are the following:

L1 = 5 ·10−4cm L2 = 10−2cm P = 10−6cm/s

D1 = 10−10cm2/s D2 = 7 ·10−8cm2/s

k1 = 1 k2 = 1 ε1 = 0.1 ε2 = 0.61 (32)

These have been chosen according to a physical basis and in
agreement with the typical scales in DES and data in literature
for the arterial wall and heparin drug in the coating layer [1].
Actually, it has been shown that the problem depends only on
the six nondimensional operational parameters defined by Eq.
(5). The four ratios φ,σ,L,γ are derived from Eq. (32) as:

φ = 0.234 σ = 0.164 L = 0.05 γ = 0.0014

and their effect and sensitivity on the solution have been ana-
lyzed in a recent work [5]. Here, these values are left unchanged
as reference parameters. We are interested to investigate the ef-
fect of δ,β only, aimed to understand the relative importance
on the convection and on the drug reaction rate inside the wall.
Starting from the reference values:

δ = 0 β = 0

we let them vary in a convenient range consistent with physical
quantities.

Results prove that drug is eluting from coating to the wall,
with wall concentration decaying in time. Normalized drug
mass M̂2 is first raising up to a peak value and then extinguishes
in a finite time.

To show the influence of filtration velocity on the drug re-
lease, a value of δ2 � 10−4cm/s [6] is considered. Simulations
for three values of δ in a range compatible with those are carried
out to show the trend of the solution with the filtration velocity.
Results show that a non zero advection coefficient keeps the
concentration higher and prolongs the residence time (Fig. 3).
The importance of the reaction term depends on the drug used,

on the specific tissue and on individual factors. Typical val-
ues of β2 are of order of magnitude 10−4s−1 [3]. Consequently
β� 0.5 and the trend of the concentration and wall mass at three
increasing values of β is shown in Fig. 4. Raise of β accelerates
the drug consumption, diminishes the concentration and reduce
the residence time. A negligible variation with δ and β is re-
ported at small times. The sensitivity with δ is larger than with
β. The reader is referred to [8] for further details.

CONCLUSIONS

A mathematical model able to predict the evolution of drug
concentration in a cross-section of the wall after stenting im-
plantation has been presented. The model considers the basic
mechanisms responsible for the drug release due to a combined
effect of diffusion and convection. Though limited to an ide-
alized 1D configuration, the present methodology includes the
relevant aspects and points out the role of the many concurrent
factors in mass transport. It can be used to analyze the effect
of stent-based therapeutic agent release and opens new perspec-
tives in drug delivery stent design aimed at a better treatment of
atherosclerosis and restenosis.
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[10] M.N. Özişik, Heat conduction, J. Wiley & Sons, 1993.
[11] C.W. Tittle, Boundary value problems in composite me-

dia: quasi orthogonal functions, J. Appl. Phys., vol. 36, 4,
pp. 1486-1488, 1965.


