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Blood flow through an axisymmetric stenosis

G Pontrelli
Istituto per le Applicazioni del Calcolo–CNR, Viale del Policlinico, 137, 00161 Roma, Italy

Abstract: This paper studies a steady axisymmetric flow in a constricted rigid tube. A shear-thinning
fluid modelling the deformation-dependent viscosity of the blood is proposed. The motion equation
is written in vorticity–streamfunction formulation and is solved numerically by a finite difference
scheme. The flow pattern with the distributions of pressure and shear stress at the wall are computed.
The dependence of the flow on the dimensionless parameters has been investigated and differences
from the Newtonian case are discussed.
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NOTATION formed, the blood flow is significantly altered and fluid
dynamic factors play an important role as the stenosis
continues to develop. Nevertheless, the specific role ofA1 rate of deformation tensor
these factors is not yet well understood. In recent years,I identity matrix
interest in haemodynamic studies has grown since itK Keulegan–Carpenter number
seems that many cardiovascular diseases are related top pressure
the flow conditions in blood vessels [1, 2].Q flowrate

Stenoses have a complex influence on the haemo-R radius of the tube
dynamics through and beyond the narrowed arterial seg-R0 radius of the undeformed tube
ment. Atherosclerotic disease tends to be localized inT period of the imposed flow
regions of geometric irregularity such as vessel branch,T Cauchy tensor stress
curved and tapered arteries, and stenotic sites. In theU0 averaged velocity over the section of
latter case, the flow is disturbed and separation ofradius R0 streamlines, with the formation of eddies, is likely tov velocity vector=(u, w)
occur. The fluid mechanical and biochemical effects(x, r, h) cylindrical coordinates system
associated with stenoses have been reported in many

a Womersley number studies [3–5].
ċ shear rate Whereas on the one hand the flow disturbances associ-
d, s geometrical parameters ated with a medium degree of stenosis can be detected
g0, g2 asymptotic apparent viscosities through the use of non-invasive means such as the
l viscosity ratio Doppler ultrasound technique, on the other hand a
L material parameter method to detect minor arterial stenosis has not been
m viscosity of the fluid found. The ability to describe the flow through stenosed
r density of the fluid vessels would provide the possibility of diagnosing the
x non-dimensional viscosity disease in its earlier stages, even before the stenosis
y streamfunction became clinically relevant, and is the basis for surgical
v vorticity=V×v intervention. Unfortunately existing measurements and

experimental results of blood flows are either incomplete
or are not representative of the actual arterial flow.

1 INTRODUCTION Computational fluid dynamics has revealed a useful,
non-invasive tool to evaluate the behaviour of the blood
flowing in natural arteries, in surgically reconstructedThe partial occlusion of arteries due to stenotic obstruc-
vessels or through artificial devices. Sometimes, it pro-tion is one of the most frequent anomalies in blood circu-
vides much more information than that available fromlation. It is well known that, once such obstruction is
experiments.

Several studies of fluid dynamics through stenosesThe MS was received on 29 February 2000 and was accepted after
revision for publication on 21 June 2000. have been carried out to evaluate the flow pattern and
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the shear stresses at the walls under steady and pulsatile 2 A MATHEMATICAL MODEL FOR BLOOD
flow conditions. Some attempts to study experimentally
steady and unsteady flows across a stenosis can be found While the Newtonian approximation for blood is accept-
in references [6–8 ]. Other numerical studies deal with able in modelling flow in large arteries and in the propa-
blood as a Newtonian fluid [9, 10 ]. gation of a pressure pulse, a non-linear constitutive

In contrast, it has been observed from experiments equation has to be used to describe flow in small vessels
that blood behaves as a non-Newtonian fluid at low or at low shear rates ( less than 100 s−1). Since the aver-
shear rates and in vessels of small diameter [5, 11, 12 ], age shear rate at the wall of arteries is larger than this
and exhibits marked shear thinning and significant value, it is generally assumed that blood is a Newtonian
viscoelastic properties in pulsatile flows [13, 14]. Since fluid in that region. Nevertheless, near the centre of the
the shear rate is low on the downstream side of a vessel, or in separated regions of recirculating flow such
stenosis, a correct analysis of the flow pattern should as the downstream side of a stenosis, the average shear
include the shear-thinning characteristics of the blood. rate value will be small. Non-Newtonian models take
More recent results on the flow in stenosed vessels into account the effect of a shear-rate-dependent vis-
with non-Newtonian models are available in references cosity in some ranges and reduce to a Navier–Stokes
[15–18 ]. fluid in some other ranges.

An important factor to be investigated in haemo- While the plasma is a fluid with no significant depar-
dynamics is the wall shear stress, a quantity not easily ture from Newtonian behaviour, when red cells are con-
measurable in vivo because of the difficulties arising sidered, the viscosity of the whole mixture increases
with the moving wall. Many authors suggested that noticeably. Marked non-Newtonian properties are evi-
high shear stress is a factor in the development of denced for concentrations greater than 10 per cent [11 ].
atherosclerotic lesions and endothelial damage [19]. It has been shown experimentally that the blood appar-
On the other hand, the low shear stresses downstream ent viscosity decreases as shear rate increases. In past
from a stenosis are believed to be responsible for years, many constitutive equations have been proposed
adhesion and the deposition of lipids. The constitutive for the blood to model this shear-thinning property
non-linearity of the fluid gives rise to a different mech- [12–14 ]. Some of the equations depend on a large
anism of vorticity diffusion by the contribution of number of parameters, while some others are not com-
extra terms in the equations with respect to the pletely satisfactory in all deformation ranges and for all
Newtonian case; both these aspects deserve a more flows. Most of such models are based on the following
complete understanding. stress–strain rate relationship:

Some research work on pulsatile flows in complex geo-
T=−pI+m(ċ)A1 (1)metries has been carried out in the last decade [20–22].

The oscillatory flow over an axisymmetric expansion has where
been investigated in reference [23 ], where the mechanism A1=grad v+(grad v)T
of generation and propagation of the vorticity and the

is the rate of deformation tensor anddynamics of the boundary layer separation have been
studied in detail. ċ= [1

2
tr(A21)]1/2

Yeleswarapu [24] presents and discusses a generalized
is the magnitude (i.e. the shear rate).Newtonian model used mainly for blood. The model

In references [24] and [25 ], the following expressionincludes a shear-rate-dependent viscosity and has been
for the blood viscosity function m(ċ) is suggested:proved effective for describing blood flows in the typical

range of shear rates. The model is first presented in refer-
m(ċ)=g

2
+(g0−g

2
) C1+ loge(1+Lċ)

1+Lċ D (2)ence [25 ], where a range of values of the material con-
stants is determined. Starting from those issues, the
pulsatile and the impulsive flows in straight small vessels where g0 and g

2
(g0�g

2
) are the asymptotic apparent

viscosities as ċ�0 and 2 respectively, and L�0 is ahas been studied for this model [26, 27].
The present work is a numerical two-dimensional material constant with the dimension of time rep-

resenting the degree of shear thinning [for g0=g
2

, m(ċ)study of the axisymmetric blood flow over a stenosis of
a medium degree of contraction; because of the com- is a constant and the model reduces to the Newtonian

one].plexity of the constitutive equation, only a steady state
case is considered in this paper. A constant flowrate is The complex nature of blood is approximated here

with a three-parameter shear-thinning model, where theimposed and the wall deformability is disregarded. The
flow dependence on the rheological parameters as well apparent viscosity, m, is expressed as a decreasing func-

tion of the shear rate, ċ. Note that, at low shear rates,as on the geometry of the stenosis is investigated care-
fully. Good agreement is obtained with the numerical the apparent viscosity increases considerably. The

asymptotic values g0 and g
2

are common in many othersolution for steady flow in a long and straight pipe and
with other results in the Newtonian case. inelastic shear-thinning models and they are calibrated
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by best fitting experimental data, while the value of L azimuthal component of v vanishes. The pipe has a circu-
lar cross-section whose radius is R0 everywhere exceptis found by non-linear regression analysis of viscometric

data [24, 25] (see Fig. 1). in a small region centered at x=0 with a mild smooth
axisymmetric contraction (stenosis), as described by the
following function:

R(x)
R0

=1−d e−sx2 (4)
3 THE EQUATIONS OF MOTION

where R(x) is the radius of the tube, 0∏d<1 is a meas-
Blood is assumed to be an isotropic, homogeneous and ure of the degree of contraction, s, of its length. The
incompressible continuum, having constant density, r, value of s should be taken to be quite small to guarantee
and the vessel walls are considered rigid and imper- a slowly varying boundary profile. As an example, the
meable. Its viscosity is given by equation (2). cylindrical pipe case is recovered for d=0.

The equation of motion is The vector equation (3) can be written in scalar form
as

r Aqv
qt

+vΩVvB=div T (3)
r Aqu

qt
+u

qu

qr
+w

qu

qxB
where v is the velocity vector and the body forces are
presumed to be negligible. =−

qp

qr
+m(ċ) Aq2uqr2

+
1

r

qu

qr
+

q2u
qx2

−
u

r2BConsider a cylindrical coordinate system (x, r, h)
having the x axis coincident with the pipe axis. Since an
axisymmetric two-dimensional solution is sought, all +2

qm
qr

qu

qr
+

qm
qx Aqu

qx
+

qw

qrB (5)
variables are assumed to be independent of h and the

Fig. 1 The shear-rate-dependent viscosity function [equation (2)] for fixed g0 and g2 and three values of L
(in seconds)
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where
r Aqw

qt
+u

qw

qr
+w

qw

qxB
x(ċ)=1+(l−1)

1+ loge(1+Lċ)
1+Lċ

=−
qp

qx
+m(ċ) Aq2wqr2

+
1
r

qw

qr
+

q2w
qx2B and

+
qm
qr Aqu

qx
+

qw

qrB+2
qm
qx

qw

qx
(6) ċ2=

4

r2 C 1

r2 AqyqxB2+A q2y
qr qxB2− 1

r

qy
qx

q2y
qr qxD

where (u, w) are the components of v in the r and x +
1
r2 Aq2yqr2

−
1
r

qy
qr

−
q2y
qx2B2directions respectively.

A set of non-dimensional variables is now introduced:
are the dimensionless generalized viscosity and the
squared shear rate respectively.

It is worth noting that the right-hand side of equa-
tion (8) is made up of many terms of different physical
significance due to the variable viscosity and expresses a

x�
x

R0
, r�

r

R0
, t�

tU0
R0

u�
u

U0
, w�

w

U0
, p�

p

rU20

L�
LU0
R0

, l=
g0
g2

transport and diffusion of vorticity from the boundary
to the main stream. The combined non-linear effect of
these components alters the dynamics of the vorticity
and is important for understanding the formation, the
development and the separation of the boundary layer.

where U0 is the velocity averaged over the section of
Note that in a fluid with constant viscosity, all the terms

radius R0 . Moreover, two characteristic non-dimen- within the square brackets, except the first one,
sional numbers

disappear.
Vorticity and streamfunction are related by the

Poisson equationa=R0S r

g
2

T
and K=

U0T
R0

(7)

−vr=
q2y
qx2

+
q2y
qr2

−
1

r

qy
qr

(9)are introduced in unsteady flows and are defined as
the Womersley and the Keulegan–Carpenter numbers

The velocity field, automatically satisfying the continuityrespectively (typically, the characteristic time, T, is the
equation, can be computed from the streamfunction (seeperiod of an imposed flowrate)*.
reference [28 ]). The boundary conditions at the wall canFollowing reference [23 ], by cross-differentiating and
be expressed easily by choosing a system of coordinatesby subtracting the non-dimensional counterparts of
where the wall coincides with a constant coordinateequations (5) and (6), the vorticity–streamfunction for-
curve. Therefore, a shearing coordinate transformationmulation is obtained (with v the azimuthal vorticity and
is applied (see reference [29]), replacing the r coordinatey the Stokes streamfunction†) as follows:
with a new z coordinate defined by

qv
qt

+
1
r

qy
qr

qv
qx

−
1
r

qy
qx

qv
qr

+
v

r2
qy
qx z(x, r)=

r

R(x)

The Poisson equation (9) and the motion equation (8)=
1

a2 Cx Aq2vqx2
+

q2v
qr2

+
1

r

qv
qr

−
v

r2B+2
qx
qx

qv
qx

+
qx
qr can be expressed in terms of the new coordinates (x, z)

respectively, as follows:
×A2

qv
qr

+
v

rB+2
q2x
qr qx A 1

r2
qy
qx

−
2
r

q2y
qr qxB

−vr=
q2y
qx2

+CAqz

qxB2+Aqz

qrB2D q2y
qz2

+Aq2xqx2
−

q2x
qr2B A1

r

q2y
qr2

−
1
r

q2y
qx2

−
1
r2

qy
qrBD

+2
qz

qx

q2y
qx qz

+Aq2zqx2
−

1
r

qz

qrB qy
qz

(10)
(8)

and

* In the steady case, T is the unit time R0/U0 and a2=rR0U0/g2
is qv

qt
=−J(v, y)−K(v, y)+D(v, y) (11)

the Reynolds number.
† The following relations between velocity components, vorticity and
streamfunction hold: where the operators J, K and D represent the Jacobian

term, the additional non-linear term given by the axisym-
v=

qu

qx
−

qw

qr
, u=−

1
r

qy
qx

, w=
1
r

qy
qr metry and the diffusive terms in the new coordinate
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system (x, z) respectively. The boundary conditions (−1, 1)× [0, 1] domain. Near to the boundaries, first-
order approximations are used, and the truncation errorassociated with the physical problem are
is controlled by the grid refinement. The non-linear
Jacobian term J(v, y) of the equation of motion is
treated using the Arakawa scheme which reduces aliasing

y=KQ at z=1

v=−
1

R3 C1+AdR

dxB2D q2y
qx2

=0 at z=1

v=y=0 at z=0

errors and guarantees the conservation of some physical
quantities [30 ]. The motion equation (11) is integrated
in time using the low-storage third-order Runge–Kutta

(12) scheme [31], the time step chosen is small enough that
the stability conditions on the convective and diffusivewhere Q>0 is a constant non-dimensional assigned
terms are preserved [32]. Note that the non-Newtonianflowrate. At each time and at considerable distance
case studied here has a more severe diffusive stabilityupstream and downstream from the stenosis (formally
condition than the Newtonian case.at x�±2), a uniform flow consistent with equa-

The discretization of the Poisson equation leads, threetion (12) is imposed.
times per time step, to a (N

x
×N

r
)2 linear system, whereThough a steady case is considered here, the solution

N
x

and N
r

are the number of grid points in the x andis obtained as the limit of the evolution problem [equa-
r directions respectively. The solution of this nine-tion (11)]. An initial condition consistent with the above
diagonal, diagonally dominant, non-symmetric linear sys-boundary conditions has to be chosen; as a reference
tem is obtained by the biconjugate gradient-stabilizedcase, the Hagen–Poiseuille flow at t=0 was chosen. Its
method [33 ], preconditioned by an incomplete LU fac-effect disappears after a short transient when the steady
torization [34 ]. The method, though still expensive, issolution is developed.
computationally efficient and accurate.

4 NUMERICAL METHOD 5 COMPUTATIONAL RESULTS

Although finite elements and finite volume methods are The many parameters that the problem is depending on
well suited to solving haemodynamical problems, in the have been ranged around some typical values to obtain
infinite strip transformed domain a finite difference results of biomechanical interest. They are chosen as
method is easily and cheaply employed. As physical equal for the Newtonian (N) and non-Newtonian (NN)
intuition suggests, a better resolution is required near flows to allow a comparison of the two cases. The follow-
the walls (z�1) and downstream from the contraction ing physical parameters are assigned [see definitions (7)]:
region (0<x<s). As a consequence, a stretching of the

K=1, Q=50, a2=10z axis by a new coordinate j was introduced; j is defined
by In the steady flow case studied here, the Reynolds

number Re=Ka2 is within the physiological range of
z=

tanh(aj)

tanh(a)
(13) blood flow in small vessels [5, 11]. The geometrical par-

ameters concerning the stenosis profile in equation (4)
where a is a stretching parameter. Similarly, a stretching are
of the x axis by a new coordinate g is introduced; g is

s=0.8, d=0.3defined by
corresponding to a degree of contraction of about 50

x=b tanh−1(g)+x0 (14)
per cent.

For the set of parameters considered, the number ofwhere b and x0 are stretching and shifting parameters
respectively (see Fig. 2). grid points along the stretched axes g and j are

N
x
=256 and Nr=64 respectively. This large numberIn the new system of coordinates (g, j), equations (10)

and (11) are discretized by using second-order finite of points is necessary in the NN case because of
the higher-order derivatives and the non-linearities,difference schemes over a uniformly spaced grid on the

Fig. 2 The computational grid
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Fig. 3 Streamlines for a 50 per cent stenosis. Comparison between N (top) and NN (bottom) cases

allowing a sufficient resolution near critical regions; the The parameters in equations (13) and (14) are fixed
assolution turns out to be convergent, since no significant

improvement has been found for a finer grid.
a=1.2, b=8, x0=3

The time step has been selected as small at Dt=10−6
in order to guarantee the convective and diffusive stab- The steady state solution is computed as a limit of the

time-dependent case. Simulations run until the conver-ility conditions in all cases [32]. Note that Dt should be
reduced when a2 is smaller or when K is larger. gence of the solution is achieved (i.e. the relative error
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between two subsequent values of max
x,z

|v(x, z) | is less Conversely, in the main stream the velocity is greater in
the Newtonian case.than 10−8). In NN simulations 50 000–70 000 time steps

are required.
Differences between N and NN flows become signifi-

5.3 Pressure losses and wall shear stresscant in most cases and are pointed out below. In the
examples presented here, the rheological parameters in In the presence of a narrowing, the flow exhibits a resist-
the NN case have the following values: ance and hence an increase in the shear stress (i.e. the

wall vorticity) and a pressure drop. These are quantitiesl=40, L=50
of physiological relevance. A zero pressure at the inlet

Other numerical experiments, made with other param- is assigned, since it is determined up to some constant.
eters, give the same qualitative results and provide A rapid fall in pressure is observed as the occlusion
similar conclusions. is approached, and the local minimum is attained in

correspondence with the separation point (Fig. 5).
Since there is no reliable method of determining wall

5.1 Streamlines shear stress experimentally near the regions of reversal
flow, the numerical experiments offer a sufficientFor the values of the parameters considered, the separa-
approximation of the fields. The shear stress increasestion of the streamlines from the wall can be observed,
sharply before the contraction and has a peak value nearwith the formation of a recirculation zone between the
the centre of the throat; downstream it decreases andforward flowing main stream and the boundary. The
reverses direction. The large zone of recirculation is evi-separation and the reattachment points are clearly
denced by the negative values of the shear stress (Fig. 5).visible, the latter is moved downstream with L (Fig. 3).
The values of the extrema are larger in the N case. As
for the streamlines, the vorticity contours are moved
further downstream in the NN case.5.2 Flow velocities

Because of the rigid wall assumption, the present
investigation has to be interpreted as a model study. TheThe velocity profiles are of some interest since they pro-

vide a detailed description of the flow field. The region results, however, are indicative of the importance of the
blood rheology and they are in qualitative agreementof reversal flow is evidenced in Fig. 4. In this region, the

components of velocity undergo a change in sign, and with those of other models existing in the literature
[15, 17, 18 ], and with experimental results [6 ].their magnitude is slightly larger in the NN case.

Fig. 4 Velocity profiles downstream from the stenotic region. Comparison between N (continuous line) and
NN (dashed line) cases
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Fig. 5 Shear stress (top) and pressure drop (bottom) at the wall. Comparison between N (continuous) and
NN (dashed) cases
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7 Young, D. F. and Tsai, F. Y. Flow characteristics in models6 CONCLUSIONS
of arterial stenoses–II. Unsteady flow. J. Biomechanics,
1973, 6, 547–559.Localized narrowing of an artery is a frequent effect or

8 Siouffi, M., Pelissier, R., Farahifar, D. and Rieu, R. The
a cause of vascular diseases. Such constriction disturbs effect of unsteadiness on the flow through stenoses and
normal blood flow through the vessel, and there is bifurcations. J. Biomechanics, 1984, 17(5), 299–315.
considerable evidence that fluid dynamic factors play a 9 Misra, J. C. and Chakravarty, S. Flow in arteries in the
significant role in the development and progression of presence of stenosis. J. Biomechanics, 1986, 19(11),
disease itself. Mathematical models and numerical simu- 907–918.

10 Tu, C., Deville, M., Dheur, L. and Vanderschuren, L. Finitelations offer an alternative and non-invasive tool for
element simulation of pulsatile flow through arterial sten-obtaining detailed and realistic descriptions of complex
osis. J. Biomechanics, 1992, 25(10), 1141–1152.arterial flows.

11 Chien, S., Usami, S. and Skalak, R. Blood flow in smallA simulation of the blood flow through a stenotic
tubes. In Handbook of Physiology, Sec. 2, Thearterial segment has been carried out. Though the
Cardiovascular System, Vol. 4 (Eds M. Renkins and C. C.important effect of unsteadiness is disregarded, this work
Michel ), 1984, pp. 217–249 (American Physiology Society,

shows the combined role played by the geometry and Bethesda, Maryland).
the material non-linearity on the flow field. 12 Mann, D. E. and Tarbell, J. M. Flow of non-Newtonian

The results demonstrate that the non-Newtonian blood analog fluids in rigid curved and straight artery
character of the blood, in some typical regimes, modifies models. Biorheology, 1990, 27, 711–733.
the flow pattern, even beyond the contracted region and 13 Phillips, W. M. and Deutsch, S. Toward a constitutive equa-

tion for blood. Biorheology, 1975, 12, 383–389.reduces the pressure drop and the shear stress at the wall
14 Oiknine, C. Rheology of the human blood. In Advances inacross the stenosis. Therefore the model presented is able

Cardiovascular Physics (Ed. T. Kenner), 1983, Vol. 5,to predict the main characteristics of the physiological
Part I, pp. 1–25 (Karger, Basel ).flows and be of some interest in biomedical applications.

15 Nakamura, M. and Sawada, T. Numerical study on theHowever, an estimate of the characteristic parameters
flow of a non-Newtonian fluid through an axisymmetricshould be addressed on the basis of existing measure-
stenosis. J. Biomech. Engng, 1988, 110, 137–143.ments. A time-dependent flow with an oscillatory forcing

16 Chakravarty, S. and Datta, A. Effects of stenosis on arterial
will be the object of a later work. rheology through a mathematical model. Math. Comput.

Modelling, 1989, 12(12), 1601–1612.
17 Misra, J. C., Patra, M. K. and Misra, S. C. A non-
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