
January 26, 2005 14:42 Proceedings Trim Size: 9in x 6in simaws

BLOOD FLOW THROUGH A CURVED ARTERY

G. PONTRELLI

IAC-CNR,
Viale del Policlinico, 137

00161 Roma, Italy
E-mail: g.pontrelli@iac.cnr.it

A. TATONE

DISAT, Facolt�a di Ingegneria
University of L'Aquila

67040 Monteluco di Roio (AQ), Italy
E-mail: tatone@ing.univaq.it

Blood ow in a curved artery is described as the motion of a viscous uid through
a curved thin-walled elastic tube. Under the hypothesis of small curvature, an
asymptotic analysis is carried out to solve the governing unsteady 3D equations.
The model results an extension of the Womersley's theory for the straight elastic
tube. A numerical solution is found for the �rst order approximation and com-
putational results are �nally presented, demonstrating the role of curvature in the
wave propagation and in the development of a secondary ow.

1. Introduction

The unsteady ow of a viscous uid in curved conduits is relevant for several

applications, particularly in vascular uid dynamics. Most of the arteries

are moderately curved and blood ow through them is a�ected by centrifu-

gal forces which tend to set up secondary ows, recirculating uid vortices

and cause a non symmetric distribution of the pressure and of the wall shear

stress1;2. However, little attention has been given to address the e�ect of

the curvature on all the components of the ow velocity and on the pres-

sure �eld. Another relevant aspect of the curvature is the inuence on wall

shear stresses in relation to atherosclerotic diseases and the examination of

time varying ow rates3.

The steady ow in a toroidal rigid tube has been the object of a thorough

investigation by Dean4. Most of the literature on ows in curved tubes refer

to such a basic work and concern various extensions to the unsteady case,
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but all are con�ned to rigid wall conduits5;6;7. On the other hand, when

considering physiological applications, wall compliance and its interaction

with the uid constitute essential aspects that cannot be disregarded. The

classical works of Womersley8 shed light on the ow through an elastic

straight tube and opened a series of following studies on the characteris-

tics of the wave propagation in arteries9;10;11;12;13;14. The present work

extends the theory of Womersley, recasting the ow in a curved tube as a

small correction of that in a straight one. The formulation is based on the

principles of uid and solid mechanics and, under general and realistic as-

sumptions, a formal complete procedure is described to get the �nal form of

the uid-wall interaction model equations. In a wave propagation context,

the dependence of the model on four independent parameters is outlined:

the pressure amplitude, the pulse frequency, the elasticity modulus and the

curvature ratio. In particular, through a number of numerical experiments,

the role of the latter is highlighted, and the character of the secondary ow

addressed15.

2. Fluid-structure interaction

The motion of blood in a bended vessel is modelled by the ow of a vis-

cous uid in a curved elastic tube, with the geometry of a torus. This is

assumed to have a planar axis, a circular cross section of radius a and a

constant radius of curvature R. An incompressible newtonian uid of vis-

cosity � and density � is owing within. The dynamics induced by the wall

deformability modi�es the uid domain and its boundary conditions, and

conversely, the ow �eld, through the stress exerted on the wall, induces

the wall deformation (uid-structure interaction). Let us �rst model both

the uid and the solid continuum systems with the mechanical conservation

laws.

The uid motion is given by the Navier-Stokes equation:

�

�
@v

@t
+ v � rv

�
= �rp+ ��v (1)

with v the velocity and p the transmural pressure. The uid incompressi-

bility reads as:

div v = 0 (2)

To model the vessel wall motion, we shall assume this is made of a thin

shell of a small thickness h � a and the theory of membranes is used to
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Figure 1. Cross section of the tube (inner wall at the left, outer wall at the right) and
toroidal coordinates (r;  ; �).

approximate it. For an elastic solid subject to external forces, the balance

equation is16:

divS = p � n� 2�D � n� �t�u (3)

where S is the membrane stress tensor, D is the deformation gradient,

u the wall displacement and �t the wall density. Owing to the small wall

deformations, the membrane stress tensor S is expressed as a linear function

of the strain tensor E:

S =

0
@hB(��� + ��  ) 2hG �� 

2hG �� hB(�  + ����)

1
A (4)

where E is the modulus of elasticity, � is Poisson's ratio, B =
E

1� �2
and

G =
E

2(1 + �)
the shear modulus16.

Matching between uid and wall velocities is imposed as interface uid-

wall condition:

v = _u (5)

Because of the geometry of the problem, it is convenient to express the

uid and wall equation in a toroidal coordinate system (r; �;  ) (see �g. 1).
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We denote by v = (u; v; w) the radial (r), the tangential ( ) and the axial

(�) components of the uid velocity, and by u = (�; �; �) the correspondent

components of the wall displacement.

3. Wave solution

The steady ow in a curved rigid tube has been analyzed by Dean who

found an analytical solution4. He used a perturbation approach based on

the curvature parameter " =
a

R
, which is supposed to be small, such that

the solution up to the �rst order is �� = ��0 + "��1 , being ��0 the steady

state solution in a straight rigid tube (Hagen-Poiseuille ow), and ��1 is

the correction due to the curvaturea. It is well known that the vascular

ow can be decomposed in a steady dominant part and, due to the wall

compliance, in a small oscillatory component over it3. As a consequence, it

is reasonable to look for a solution made up of a wave (unsteady component)

superimposed on the previous steady solution, namely:

� = ��(r;  ) + ~�(r;  )ei(!t�kz) (6)

where ! is the circular frequency, k the wave number (consequently c =
!

Re(k)
is the wave speed) and z = R� a curvilinear axial coordinate.

To simplify the mathematical problem, let us assume the unsteady so-

lution is small enough such that the the response of the system can be

linearized, with respect to the wave amplitudes, over the steady state solu-

tion. By means of some additional hypothesis on the wave characteristics, a

further simpli�cation concerning the relative magnitudes of some di�usive

terms is made13. The �nal equations are:

Continuity equation:

@u

@r
+
u

r
+

1

r

@v

@ 
+

u sin 

R+ r sin 
+

v cos 

R + r sin 
+

R

R + r sin 

@w

@z
= 0 (7)

Flow equations:

�

�
@u

@t
�

2 �ww sin 

R+ r sin 

�
= �

@p

@r
+ �

�
@2u

@r2
+
1

r

@u

@r
+

1

r2
@2u

@ 2
+

sin 

R+ r sin 

@u

@r

+
cos 

r (R+ r sin )

@u

@ 
�

u

r2
�

2

r2
@v

@ 
�

vR cos 

r (R+ r sin )2
�

2R sin 

(R+ r sin )2
@w

@z

�

u sin2  

(R+ r sin )2
�

2v sin cos 

(R+ r sin )2

�
(8)

a� denotes the global solution of the uid-structure interaction problem.
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r2
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+

2
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+
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+

cos 

r (R+ r sin )

@v

@ 
�

v

r2

�
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(9)

�
@w

@t
= �

R

R+ r sin 

@p

@z
+ �

�
@2w

@r2
+
1

r

@w

@r
+

1

r2
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+

sin 
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w

(R+ r sin )2

�
(10)

Wall equations:

�th
@2�

@t2
=

�
p� 2�

@u

@r

�
r=a

� hB

2
664
� +

@�

@ 

a2
+

sin 

�
� sin + � cos +R

@�

@z

�
(R+ a sin )2

3
775

��hB

2
664
sin 

�
2� +

@�

@ 

�
+ � cos +R

@�

@z

a(R+ a sin )

3
775 (11)
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Interface conditions:

@�

@t
= u

����
r=a

@�

@t
= v

����
r=a

@�

@t
= w

����
r=a

(14)

4. Asymptotic analysis

A perturbation method is used to study the inuence of a moderate curva-

ture with respect to the straight case. First of all, the governing equations

are written in terms of a normalized radial variable y =
r

a
(0 � y � 1). As

the curvature parameter " =
a

R
is assumed to be small (� 1), the tilded

quantities ~� (amplitudes) in Eqs. (6) are expanded as a power series of "

over an axisymmetric solution �0(y). By omitting �sign at the right hand

side, we have:

~�(y;  ) = �0(y) + "�1(y;  ) + "2�2(y;  ) + ::: (15)

The series Eq. (15) is substituted in the uid and wall governing equations,

and terms of the same power of ", up to the �rst order, are equated.

In the asymptotic expansion Eq. (15), �0 corresponds to the axisymme-

tric solution in a straight elastic tube (Womersley solution)8. By equating

the 1st order terms in the governing Eqs. and separating the variables as

follows:

u1 = û1(y) sin v1 = v̂1(y) cos w1 = ŵ1(y) sin 

p1 = p̂1(y) sin �1 = �̂1 sin �1 = �̂1 cos �1 = �̂1 sin (16)
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the problem reduces to a system of linear ordinary di�erential equations

(by omitting the ^ sign):

du1
dy

+
u1
y
�

v1
y
� ikaw1 = �(ikayw0 + u0) (17)
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+
1

y
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�
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2
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�

a

�
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�
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1

y
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2
�
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�
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�
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1
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dy
�

�
1
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2
�
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B
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a
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B
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�
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with � = a

r
�!

�
the Womersley number. Because of the continuity of the

physical variables in y = 0, the following boundary conditions are imposed

in the origin:

u1(0) = v1(0) u01(0) = v01(0) = 0 p1(0) = w1(0) = 0 (24)

and the uid-wall matching velocity conditions are set at the wall (cfr. Eq.

(14)):

i!�1 = u1(1) i!�1 = v1(1) i!�1 = w1(1) (25)
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The uid-structure interaction �rst order problem is similar to the zero-

th order problem, but lack of geometrical symmetry makes the search of

analytical solutions hard. Therefore the non homogeneous system is solved

numerically. The ow Eqs. (17){(20) are discretized in [0; 1] by upwind

�nite di�erences17. Coupled with the ow equations, the wall motion Eqs.

(21){(23) are solved together with the boundary conditions (24) in y = 0

and with the interface conditions (25) in y = 1. The resulting algebraic

system is solved with an iterative procedure, using a preconditioner to

stabilize the ill-conditioned problem.

5. Numerical results and discussion

Once the 0th order solution is obtained analytically and 1st order solution

is computed, the full solution is then reassembled as:

� = ��+ ~�ei(!t�kz) = ��+ j~�j cos
�
!t� Re(k) z + �

�
exp(Im(k) z) (26)

with � = arg(~�) (see Eq. (6)). It follows that all the variables have an

oscillatory evolution in time, superimposed over the steady state solution,

with amplitude j~�j and a phase lead or a phase lag �. Both amplitude and

phase are independent of time, while the amplitude has a damping factor

given by exp(Im(k)z).

The physical problem depends on a large number of parameters, each

of them may vary in a quite wide range, and there is an enormous variety

of di�erent limiting cases. In the present work we will focus the attention

on the inuence of curvature { parametrized by " { letting all the others

�xed.

In the simulations, we take the following numerical parameters, referred

to the vascular ow in a medium sized arterial segment:

! = 2� s�1 a = 0:5 cm h = 0:05 cm E = 107 dyne=cm2

� = 0:04g cm�1 s�1 � = �t = 1 g=cm3 � = 0:5

A = 26000 dyne=cm2 d�p0
dz

= 7 dyne=cm3

The mesh size has been taken as �y = 0:02 cm.

A cross section of a curved tube with the inner wall at the left side is

considered (Fig. 1). Eq. (26) is used to plot the ow pattern, the pressure

distribution and wall deformations for a given time (t = 0) and a �xed axial

coordinate (z = 0).

The e�ect of the curvature is examined by letting " vary as " =

0; 0:05; 0:1, and the correspondent amplitudes of the unsteady solution
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Figure 2. Amplitude of the unsteady solution �0 + "�̂1 for " = 0 (continuous line),
" = 0:05 (dashed line) and " = 0:1 (dotted line) along [�1; 1].

�0 + "�̂1 are depicted in Fig. 2. Note that in a curved tube the solu-

tion becomes asymmetric and the degree of skewness increases with ". The

structure and the evolution of the secondary ow is shown in Fig. 3. For

the values of the parameters considered, a single vortex appears at most

times, but a second vortex detaches from the wall and develops at the end

of each half-cycle in the opposite direction. The strength of the secondary

motion is measured through the index � = max
r; 

p
(Re~u)2 + (Re~v)2 (maxi-

mum modulus of the cross section velocity). Axial velocity peak is shifted

alternately inwardly and outwardly, and a reversal ow takes place at some

instants.

The amplitudes of the two components of the wall shear stress are ob-

tained from the ow �eld as:

~� = ~�0 + "~�1 = "~�1 =
�"

a

�
û1 +

dv̂1
dy

� v̂1

�
y=1

cos (27)

~�z = ~�0z + "~�1z =
�

a

�
d ~w0

dy
+ "

�
dŵ1

dy
� ŵ0

�
sin 

�
y=1

(28)
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