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Abstract
Endothelial cell (EC) migration is crucial for a wide range of processes including vascular wound healing, tumor angiogen-
esis, and the development of viable endovascular implants. We have previously demonstrated that ECs cultured on 15-μm 
wide adhesive line patterns exhibit three distinct migration phenotypes: (a) “running” cells that are polarized and migrate 
continuously and persistently on the adhesive lines with possible spontaneous directional changes, (b) “undecided” cells 
that are highly elongated and exhibit periodic changes in the direction of their polarization while maintaining minimal net 
migration, and (c) “tumbling-like” cells that migrate persistently for a certain amount of time but then stop and round up for 
a few hours before spreading again and resuming migration. Importantly, the three migration patterns are associated with 
distinct profiles of cell length. Because of the impact of adenosine triphosphate (ATP) on cytoskeletal organization and cell 
polarization, we hypothesize that the observed differences in EC length among the three different migration phenotypes are 
driven by differences in intracellular ATP levels. In the present work, we develop a mathematical model that incorporates 
the interactions between cell length, cytoskeletal (F-actin) organization, and intracellular ATP concentration. An optimiza-
tion procedure is used to obtain the model parameter values that best fit the experimental data on EC lengths. The results 
indicate that a minimalist model based on differences in intracellular ATP levels is capable of capturing the different cell 
length profiles observed experimentally.
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1 Introduction

Endothelial cell (EC) migration, whether individual or col-
lective, is critical for several physiological and pathological 
processes. During embryogenesis, the coordinated move-
ment of ECs gives rise to a primitive circulatory system that 

subsequently develops into a functional vascular system. In 
adult organisms, vascular wound healing is modulated by the 
movement of ECs toward the injured areas, where they play 
a central role in repairing the damaged tissues. In addition, 
pathologies such as tumor development and atherosclero-
sis involve several facets of EC movement (Folkman 1971, 
2002). Thus, investigating the migratory behavior of ECs is 
fundamental for understanding tissue healing and disease 
development.

By virtue of their position as the inner cellular lining of 
blood vessels, ECs are in direct contact with blood and cir-
culating cells. Blood flow-derived mechanical stresses are 
crucial for determining EC shape and orientation, which in 
turn impact cellular function (Berk et al. 2001; Hahn and 
Schwartz 2009). In medium and large arteries, ECs are 
generally elongated and aligned in the direction of the flow 
field; however, in the proximity of branches and bifurcations, 
where atherosclerotic lesions preferentially develop, ECs are 
typically cuboidal and do not exhibit any preferred orienta-
tion (Davies et al. 1986).
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In the past several years, cell shape and orientation 
have been shown to also be modulated by lateral walls that 
physically constrain cellular spreading (Roca-Cusachs et al. 
2008; Versaevel et al. 2012) as well as by biophysical cues 
exerted on the cells’ basal surfaces via substrate patterns that 
impose directional bias to the cells’ focal adhesion (FA) sites 
(Lafaurie-Janvore et al. 2016; Natale et al. 2014; Liliensiek 
et al. 2010; Ray et al. 2017). The capability of controlling 
EC morphology and orientation by substrate engineering, 
combined with an understanding of form-function relation-
ships, provides exciting opportunities for optimizing the 
design of vascular grafts and endovascular devices to ensure 
improved hemocompatibility and anti-thrombotic outcomes.

A strategy of substrate patterning for regulating EC shape 
and function is the implementation of planar patterned sur-
faces with selectively-defined motifs of adhesive and non-
adhesive zones where cells are selectively confined (Azi-
oune et al. 2010; Lafaurie-Janvore et al. 2016). This method 
allows the creation of a system where cell migration is one-
dimensional along the length of the adhesive line pattern, 
thus providing a tool where migration is more controlled 
and simplified.

Using time-lapse imaging, we have recently shown that 
ECs cultured on line patterns where cellular adhesion is lim-
ited to 15-μm-wide lines that physically confine the cells 
exhibit very different migration behavior from cells on con-
trol unpatterned surfaces (Gusseva 2017). While ECs on 
unpatterned surfaces exhibit random motion in the absence 
of flow, cells on line patterns exhibit three distinct migra-
tion phenotypes: (a) “running” ECs (RECs) that are polar-
ized and migrate continuously and persistently on the adhe-
sive lines with possible spontaneous directional changes, 
(b) “undecided” ECs (UECs) that are highly elongated and 
exhibit periodic changes in the direction of their polarization 
while at the same time exhibiting minimal net migration, and 
(c) “tumbling-like” ECs (TECs) that migrate persistently for 
a certain amount of time but then stop and round up for a 
few hours before spreading again and resuming migration. 
Importantly, each of these three phenotypes is associated 
with a different average cell length profile. In particular, 
RECs and UECs exhibit broadly uniform lengths in time, 
but the latter are considerably more elongated than the for-
mer. TECs, on the other hand, have a similar length to that 
of RECs during their migration phase; however, during the 
tumbling phase, they take on a round shape and thus have 
lengths that are considerably smaller than those of RECs.

Why adhesive line patterns promote the occurrence 
of the three EC phenotypes described above remains 
unknown, but the physical confinement conferred by the 
line patterns likely plays a major role. In confined envi-
ronments, cells dynamically coordinate intracellular 
machinery to generate forces and remodel their cytoskel-
eton, leading to cellular elongation (Wyckoff et al. 2006; 

Wolf and Friedl 2011). All of these processes are energy-
demanding (Bursac et al. 2005; Balaban 1990) and hence 
require adequate levels of intracellular adenosine triphos-
phate (ATP). There is evidence that cells adjust their ATP 
production rates to meet their energetic demands (Epstein 
et al. 2017). ATP can also be released by cells in response 
to external stimuli. In ECs, for instance, fluid dynamic 
shear stress has been shown to elicit ATP release (Bodin 
et al. 1991; John and Barakat 2001). In a number of other 
cell types, membrane strain and cellular elongation are 
associated with ATP release (Grygorczyk et  al. 2013; 
Takahara et al. 2014; Takahashi et al. 2017). Thus, for 
ECs on line patterns, the confinement-induced membrane 
strain and resulting cellular elongation are likely to pro-
mote ATP release.

We hypothesize that the different EC length profiles 
associated with the different migration phenotypes on line 
patterns reflect differences in intracellular ATP dynamics. 
We propose that RECs have sufficiently high intracellular 
ATP concentrations at all times in order to elongate, polar-
ize, and migrate. In contrast, we posit that UECs have 
an intermediate level of ATP concentration that is suf-
ficiently high for cell spreading and elongation but not for 
sustained polarization and migration. Finally, TECs are 
thought to have low levels of intracellular ATP during the 
rounding-up (tumbling) phase but manage to “recharge 
their batteries” so that ATP levels recover sufficiently for 
the cells to eventually elongate, polarize, and migrate dur-
ing their running phase. This notion is supported by the 
observation that when intracellular ATP concentration 
is low, cells shorten (Wysolmerski and Lagunoff 1988; 
Atkinson et al. 2004; Poncet et al. 2006; Hinshaw et al. 
1991) and stop growing until sufficient ATP is produced 
(Park et al. 2018).

The aim of the present work is to develop a minimalist 
mathematical model that describes the coupling between 
intracellular ATP levels and cellular elongation and to use 
this model to test the hypothesis described above. We specif-
ically wish to explore if changes in intracellular ATP alone 
are sufficient to produce the experimentally observed differ-
ent length profiles associated with the three EC migration 
phenotypes on line patterns. While we and other groups have 
previously described models of the effect of shear stress on 
ATP levels at the EC surface (John and Barakat 2001; Gau-
tam et al. 2006; Comerford et al. 2008; Choi and Barakat 
2009; Di Costanzo et al. 2018), no models exist to describe 
the interplay between intracellular ATP levels and cellular 
elongation.
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2  Materials and methods

2.1  Experiments

2.1.1  Line patterning

Planar micropatterned substrates containing alternat-
ing 15-μm-wide adhesive and 50-μm-wide non-adhesive 
stripes were produced using the deep UV light method 
(Azioune et al. 2010). Briefly, rectangular and circular 
glass coverslips were first activated by exposure to air 
plasma (Harrick Plasma) for 45 s (Fig. 1A). Subsequently, 
they were incubated for 1 h in 0.1 mg/mL poly-L-lysine-
gpoly(ethyleneglycol) (PLL(20)-g[3.5]-PEG(2), SuSoS) 
in 10 mL HEPES at pH 7.3 for passivation (Fig. 1B). 
After washing with distilled water, the treated surface was 
illuminated with deep UV light (UVO-Cleaner, Jelight) 
through a chromium synthetic quartz photomask (Toppan, 
TX, USA) for 3 min (Fig. 1C). Unpatterned glass cover-
slips served as controls. Prior to cell seeding, all patterned 
and control substrates were incubated for 1 h with 50 
μg∕mL fibronectin solution (Sigma Aldrich Merck KGaA, 
Darmstadt, Germany) at room temperature (Fig. 1D).

2.1.2  Cell culture

Bovine aortic endothelial cells (BAECs, Cell Applica-
tions, San Diego, CA, USA; passages 4-8) were cultured 
in complete Bovine Endothelial Cell Growth Medium 
(Cell Applications). The cells were incubated at 37◦ in a 
humidified atmosphere and 5 % CO2 . At confluence, cells 
were detached with trypsin ( TrypLETM Express Enzyme 
(1X), Gibco, Thermo Fisher Scientific - US) and seeded 
on patterned and control substrates at a density of 2 × 103 
cells/cm2.

2.1.3  Time lapse imaging and image analysis

Image acquisition started 4 h after cell seeding. Time-lapse 
phase contrast imaging was performed using an inverted 
microscope (Nikon Eclipse Ti-U, Japan) equipped with 
a CCD camera (Orca Flash 4.0, Hamamatsu, Shizuoka, 
Japan), a motorized x − y stage, and “perfect focus” con-
trol. The microscope stage was enclosed in an incubator 
(Okolab, Naples, Italy) allowing control of temperature 
and pH. At least six representative regions per substrate 
were imaged with a 10x objective using the NIS-Elements 
Advanced Research software (Nikon). Image acquisition was 
performed at two different frequencies: every 2 min for 24 h 
to capture rapid fluctuations in cell length and every 10 min 
for 12 h to capture global changes in cell length over time.

Cell length measurements over time were performed in 
FIJI-ImageJ and MATLAB. In each case, 721 frames corre-
sponding to 24 h of migration were used. Colliding cells and 
cells changing phenotype during the course of a recording 
were excluded from the analysis. Each of the remaining cells 
was classified as either a REC, UEC, or TEC, and its length 
was manually measured at each time point. The analysis was 
performed on 12 RECs, 13 UECs, and 17 TECs.

2.2  Mathematical modeling

2.2.1  Model conceptualization and governing equations

We wish to develop a model that captures the coupling 
between intracellular ATP levels and EC length dynamics. 
Conceptually, cellular elongation on line patterns requires 
ATP and would thus favor ATP production to attain the nec-
essary concentrations. Conversely, the membrane strain that 
results from cell elongation is expected to elicit ATP release 
to the extracellular space, thereby reducing intracellular 
ATP levels. An additional important consideration is that 
cell elongation requires extensive cytoskeletal remodeling, 
which requires ATP. For cytoskeletal dynamics, we focus 
exclusively on filamentous actin (F-actin) because of the 

Fig. 1  Micropattern fabrication process using the deep UV light 
method. (1) Glass substrate plasma treatment; (2) PEG coating; (3) 
UV light treatment; (4) Fibronectin coating. Adapted from Azioune 
et al. (2010)
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implication of actin filaments and stress fibers in the regula-
tion of EC shape.

While cell length remains essentially constant in time 
for both RECs and UECs and thus the model would need 
to predict a unique steady state, the situation of TECs is 
more complex. As depicted schematically in Fig. 2, TECs 
alternate periodically between elongated (running phase) 
and round (tumbling phase) states; therefore, the model 
needs to be able to capture this bistable behavior. To this 
end, a hysteresis function, dependent on the intracellular 
ATP level, is used in an analogous manner to what has been 
done elsewhere (Visintin 1988). As will be detailed below, 
this hysteresis function posits that an increase in intracellular 
ATP concentration promotes elongation of the cell, while 
a decrease in ATP leads to cell shortening. Therefore, cell 
length will depend on changes in intracellular ATP levels. 
The model governing equations are described next.

2.2.1.1 F‑actin dynamics: The dynamics of F-actin are 
assumed to be governed by the following equation and ini-
tial condition:

where a and c denote the F-actin and intracellular ATP con-
centrations, respectively. The first term on the right hand 
side of Eq. (1) represents the rate of F-actin regulation 
(assembly and disassembly) around the homeostatic F-actin 
concentration ah ; this regulation is assumed to occur with a 

(1)

{
da

dt
= k(ah − a) − aK(c),

a(0) = ain,

uniform rate constant k. The second term aK(c) is intended 
to provide a switch from one F-actin equilibrium state to 
another, depending on intracellular ATP levels. This formu-
lation is particularly important for the case of TECs where 
low ATP levels associated with the rounding (tumbling) 
phase correspond to a reduction in F-actin concentration, 
whereas high ATP levels associated with the recovery (run-
ning) phase correspond to an increase in F-actin concentra-
tion. To model K(c), the equilibria of Eq. (1) for a given 
value of c were first computed as:

In Eq. (2), we can then replace the function K(c) by one of 
the two constant values k1 and k2 , with k1 > k2 , to obtain the 
minimum and maximum possible values of the intracellular 
F-actin concentration as:

and

Based on the notion that F-actin production and elimina-
tion are ATP-dependent, the K(c) function was formulated 
as follows:

where ch represents the homeostatic intracellular ATP con-
centration. With such a formulation, the K(c) function allows 
the transition from amin to amax as ATP increases. More spe-
cifically, when c ≥ ch , K(c) coincides with the constant k2 
and so F-actin attains its maximum amax . Conversely, as c 
falls below ch , K(c) grows rapidly until it reaches the con-
stant value k1 , and F-actin attains its minimum amin . The 
slope of the K(c) function is modulated by the coefficient 
M2 : the higher the value of M2 , the more similar to a Heavi-
side function K(c) becomes.

2.2.1.2 Dynamics of cell length: The formulation for mod-
eling the dynamics of EC length is inspired by the work of 
Stéphanou et  al. (2004) and postulates that cell length is 
governed by a balance between the effects of cell protrusion 
due to lamellipodia and filopodia that drive cell extension 
and intracellular contractility which mediates cellular short-
ening. Thus, cell length is assumed to be governed by the 
following equation:

(2)a =
kah

k + K(c)
.

(3)amin =
kah

k + k1

(4)amax =
kah

k + k2
.

(5)K(c) =

{
(k1 − k2)e

−
c

M2(ch−c) + k2, if c < ch,

k2, if c ≥ ch,

Fig. 2  Proposed ATP-driven cyclic tumbling mechanism. Cell elon-
gation elicits ATP release, which decreases intracellular ATP concen-
tration below the level required for cellular elongation, thus leading 
to cell rounding. Cell rounding reduces ATP release and hence allows 
ATP production to replenish intracellular ATP to sufficiently high lev-
els to enable cellular elongation, thereby re-initiating the cycle
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where vp is the cell protrusion velocity, which is assumed to 
be constant, and � denotes the friction coefficient between 
the cell and the substrate. The term �(a)L represents cell 
contractility as previously formulated by Stéphanou et al. 
(2004), with �(a) a nonlinear function of the F-actin con-
centration that has the following form:

The function � models the fact that the contractility follows 
a quasi-quadratic dependence on F-actin concentration 
until a saturation concentration 2asat after which an effect 
of compaction of the network occurs and leads to an expo-
nential decrease in contractility. The parameters � and asat , 
represent the contractility constant and the actin saturation 
concentration, respectively, and they are not directly related 
to experiments, but characterize the nonlinear contractility 
function (7) (Stéphanou et al. 2004). Finally, the last term on 
the right hand side of Eq. (6) represents a stochastic compo-
nent that describes small-scale fluctuations in cell length that 
are observed experimentally and that are superimposed on 
the large-scale changes in cell length due to protrusion and 
contractility. In this stochastic term, the coefficient � repre-
sents the standard deviation of cell length which multiplies 
a Gaussian white noise �(t) . Note that the intracellular ATP 
concentration c does not appear explicitly in Eq. (6). Rather, 
its effect on cell length is transmitted through its coupling to 
the F-actin concentration a (see Eq. 1).

Eq. (6) can be written in the differential form

where dW(t) = �(t)dt denotes the differential form of the 
Brownian motion and L(t) is a one-dimensional Gaussian 
Ornstein-Uhlenbeck (OU) process (Øksendal 2003).

Equation (8) can be written as:

where

indicates how strongly the system reacts to perturbations and

(6)

⎧
⎪⎨⎪⎩

dL

dt
=

vp − �(a)L

�
+ ��(t),

L(0) = Lin,

(7)�(a) = �a2e−a∕asat .

(8)dL(t) =
vp − �(a)L(t)

�
dt + �dW(t),

(9)dL(t) = �(� − L(t))dt + �dW(t),

(10)� =
�(a)

�
,

� =
vp

�(a)
,

denotes the asymptotic mean of the process. The OU pro-
cess is mean reverting, meaning that L(t) reverts to the 
mean � exponentially at rate � with a magnitude propor-
tional to the distance between the current value of L(t) and 
� . Such a property is important because according to how 
the parameter � is modulated, different solution profiles can 
be obtained.

The minimum cell length Lmin and the maximum cell 
length Lmax are obtained from the experiments, and they 
are imposed as constraints on the equilibria of Eq. (6). To 
do so, since the Brownian motion is a zero mean process 
( �(�) = 0 ), the contribution of the stochastic part can be 
neglected and the equilibria can be defined through the sim-
ple relation:

From Eq. (11), it follows that L assumes its minimum value 
Lmin when �(a) is at its maximum, i.e., when it is evaluated 
at amin = 2asat . Imposing this value, it follows that

and � =
vp

Lmina
2

min
e−2

 . Since amin maximizes �(a) , ∀a ≠ amin , 

it follows that:

Therefore, once the maximum F-actin concentration amax 
is identified, the maximum length is readily found through:

2.2.1.3 Dynamics of  intracellular ATP concentration: The 
intracellular ATP concentration is assumed to be governed 
by a balance between ATP internal regulation, i.e., net ATP 
production or elimination, and ATP release into the extra-
cellular space as a result of cellular elongation. Thus,

where the first term on the right hand side describes homeo-
static ATP regulation with production/elimination rate � . 
The second term on the right hand side represents elonga-
tion-induced ATP release where Smax is the ATP release rate 
and R(L) and H(c) are two nonlinear functions whose combi-
nation describes the mechanism of ATP release. R(L) models 

(11)L =
vp

�(a)
.

(12)Lmin =
vp

�(amin)
=

vp

�a2
min

e−2

(13)Lmin < L =
vp

𝜎(a)
.

Lmax =
vp

�(amax)
.

(14)

{
dc

dt
= �(ch − c) − SmaxR(L)H(c),

c(0) = cin,
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ATP release due to cell stretching and is assumed to have a 
sigmoidal behavior as follows:

where M1 is a coefficient that regulates the shape of the func-
tion and � is a Wiener (stochastic) component. Incorporat-
ing a stochastic component into the R(L) function is needed 
due to the fact that when solving the overall coupled system 
of equations, the solution L brings stochasticity that needs 
to be compensated for in order to avoid instabilities in the 
solution. We note that the function R(L) used to represent 
ATP release resembles those commonly used to describe 
the opening and closing of ion channels (Augustine et al. 
1985; Dodge and Rahamimoff 1967; Hubbard et al. 1968), 
and a sigmoidal behavior has previously been shown to be 
effective in modeling shear stress-induced ATP release from 
ECs (John and Barakat 2001).

H(c) represents a hysteresis function that can be explained 
by considering the different EC phenotypes that we wish to 
model. As experimentally observed, RECs and UECs main-
tain a uniform length in time with only small fluctuations. 
TECs, on the other hand, exhibit two different equilibria, 
one associated with the tumbling phase during which the 
cell is round and remains still and one associated with the 
recovery phase during which the cell elongates and migrates. 
In most observations, such episodes repeat in time with a 
certain periodicity. As already described, we hypothesize 
that the transition from one equilibrium to the other is driven 
by changes in intracellular ATP levels. Elevated ATP lev-
els correspond to an elongation of the cell, while low val-
ues correspond to cell shortening. In the transition from 
one state to the other, the system does not trace its steps 
in reverse; therefore, a hysteresis loop is formed. This is 
indeed typical of biological systems governed by nonlinear 
bi-stable processes, where incorporating hysteresis provides 
an effective strategy for describing the behavior. Examples 
include switches in protein-DNA interactions (Chatterjee 
et al. 2008), microscopic cellular signaling pathways with 
bi-stable molecular cascades (Angeli et al. 2004; Qiao et al. 
2007), cell division, differentiation, cancer onset and apop-
tosis (Eissing et al. 2004; Kim et al. 2007; Wilhelm 2009), 
protein folding (Andrews et al. 2013), purinergic neuron 
astrocyte interactions in the brain (Noori 2011), biomechan-
ics of the cornea (Congdon et al. 2006), and lung defor-
mations (Escolar and Escolar 2004). For the current work, 
hysteresis was formulated in a manner similar to previous 
work that modeled the growth of concentric rings of bacteria 
(Hoppensteadt and Jäger 1980; Jäger 1981; Hoppensteadt 
et al. 1984). These models are based on the notion that for-
ward transitions only occur after a threshold level of the 

(15)R(L) =

(
1 − e

−M1

(
L

Lmin
−�

))3

,

stimulus is reached, while reverse transitions are not initi-
ated below this threshold but rather below a different (lower) 
threshold. Using this idea, the hysteresis function H(c) was 
formulated as follows:

where the H(c) function splits in two branches, one (the f1(c) 
branch) traversed when the ATP concentration is increasing 
and the other (the f2(c) branch) when the ATP concentration 
is falling. These two branches are associated with the appro-
priate ATP concentration thresholds cL which represents the 
lowest acceptable value for ATP to be in the homeostatic 
concentration range, and ceq which is an equilibrium ATP 
concentration that lies between cL and ch . Specifically, (16) 
and (17) are defined as follows:

 
Some additional comments about the two functions f1 and 

f2 are warranted:

• Function f1 : When the cell rounds up, which is a conse-
quence of a drop in intracellular ATP level below the 
equilibrium threshold ceq , it needs to “recharge” its ATP, 
and since in this particular case there is no ATP release 
(because there is no membrane stretching), Eq. (14) 
assumes the simple form: dc

dt
= �(ch − c) . Thus, the cell 

is allowed to recover its homeostatic ATP concentration 
levels. At the same time, with the growth of ATP concen-
tration, cell length also increases. Once the ATP reaches 
the equilibrium value, the cell starts undergoing mem-
brane stretching, so the function f1 turns from being a 
zero to a nonzero function, signaling the presence of 
membrane strain. This means that both terms on the right 
hand side of Eq. (14) are now nonzero.

• Function f2 : When the cell is elongated, it releases ATP, 
and the release is maximum when f2 = 1 as long as the 
ATP concentration is higher than ceq . Below this value, 
f2 starts decreasing exponentially until it becomes null 

H(c) =

⎧
⎪⎪⎨⎪⎪⎩

f1(c), if
dc

dt
> 0 (16)

f2(c), if
dc

dt
< 0, (17)

(18)f1(c) =

⎧
⎪⎨⎪⎩

0, if c ≤ ceq,

e
−

(ch−c)

M3 (c−ceq)
2
, if ceq < c < ch,

1, if c ≥ ch.

(19)f2(c) =

⎧
⎪⎨⎪⎩

0, if c ≤ cL,

e
−

(ceq−c)

M3 (c−cL )
2
, if cL < c < ceq,

1, if c ≥ ceq.
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when it reaches the minimum admissible ATP threshold 
cL . From that moment onward, the ATP is allowed to 
grow again because the sink term has disappeared, and a 
new hysteresis cycle is established.

When the cell is fully stretched, L = Lmax and the ATP is 
high so that H = 1 (meaning f1 = f2 = 1 ). From the moment 
the cell reaches the full elongation onward, the intracellular 
ATP decreases to cL . For this reason, from Eq. 14, we can 
compute:

In conclusion, Eqs. (1), (8), and (14) constitute a system 
of coupled stochastic differential equations (SDEs) whose 
solution provides the dynamics of F-actin, intracellular ATP 
concentration, and cell length.

2.2.2  Solution methodologies

The governing Eqs. (1), (8), and (14) were solved numeri-
cally using a one step IMEX method (Constantinescu and 
Sandu 2010), which consists of discretizing all terms of the 
equations implicitly, with the exception of the functions K(c) 
and H(c), which were computed using an explicit approach. 
In addition, for the OU process and for the ATP release 
function, which contain stochasticity, the approximation of 
the Brownian motion as provided by the Euler Maruyama 
method was applied (Higham 2001). The numerical simula-
tions were performed in MATLAB with time step Δt = 10−3.

2.2.3  Parameter values and optimization

The system given by equations (1), (8), and (14) contains 
several parameters, each of which plays a specific role in 
determining the dynamics of the three cell states. Some 
parameter values are obtained either directly or by extrapo-
lation from the literature and are listed in Table 1, while 

(20)� =
SmaxR(Lmax)

ch − cL
. others require the combination of modeling and experiments 

to be determined. Although most of the unknown values 
can be found this way, there are still some that remain unde-
termined. To overcome this problem, the Particle Swarm 
Optimization (PSO) algorithm (Kennedy and Eberhart 1995) 
was applied to the system of equations. This algorithm is a 
metaheuristic global optimization paradigm, which means 
that it requires few or no assumptions about the problem 
being optimized, and it can search very large spaces of can-
didate solutions. The use of classical optimization methods 
such as the gradient or Newton algorithms encounter dif-
ficulties when the problem contains a hysteresis as is the 
case here. The presence of loops with possible large gradi-
ent changes can pose an obstacle to the proper functioning 
of those methods. Due to its stochastic nature, the swarm 
optimization technique is able to explore search spaces and 
to find an optimal solution without the need for assuming 
global differentiability of the problem.

3  Results

3.1  Experimental results

As shown in Fig. 3 (left), BAECs cultured on a control 
unpatterned substrate take on many different shapes, are 
not particularly elongated, and are randomly oriented. An 
example of the adhesive line patterned surfaces produced 

Table 1  Baseline model parameter values from literature

Symbol Value Units Meaning Reference

a 0.05 − 0.2 mL F-actin Concentration Alberts et al. (2002)
ah 0.2 mL F-actin homeostatic value Alberts et al. (2002)
cL 1 mM Minimum ATP Concentration Lodish et al. (2008)
ch 10 mM Homeostatic ATP Concentration Lodish et al. (2008)
vp 25 μms−1 Protrusion Velocity  Mogilner and Edelstein-Keshet 

(2002)
� 3 ×  10−2 Dimensionless Friction Coefficient  Angelini et al. (2012)
k 347 s−1 F-actin Polymerization Rate  Pollard (1986), Mogilner and 

Edelstein-Keshet (2002)

Fig. 3  Phase contrast images of BAECs on unpatterned surface (left), 
pattern coated with fluorescent fibronectin (center) and BAECs on 
patterned surface (right). Patterning of 15 μm adhesive lines spaced 
with 50 μm non adhesive lines. Scale bar 100 μm
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using the deep UV patterning protocol described in Meth-
ods is shown in Fig. 3 (center), together with an example 
of BAECs cultured on a patterned surface (right). Cells on 
the patterned surfaces remain confined to the 15 μm-wide 
adhesive lines, are often highly elongated, and are uniformly 
oriented in the direction of the pattern.

Time-lapse imaging allowed visualization of the three EC 
migration phenotypes described previously, namely RECs, 
UECs, and TECs. Of particular interest here, these differ-
ent phenotypes were associated with different cell length 
profiles. As illustrated in Fig. 4 (left), the lengths of RECs 
and UECs remained fairly constant throughout the 12 h 
recording period with fairly small fluctuations and with 
UECs being considerably more elongated than RECs. TECs 
exhibited an entirely different behavior with periodic phases 
of rounding and elongation. During the elongated phase, 
TECs had lengths that were comparable to those of RECs.

For all three phenotypes, the range of length variation 
was determined, identifying the maximum and minimum 
lengths (denoted as Lmax and Lmin , respectively). For RECs 
and UECs, which exhibited largely uniform lengths during 
the entire recording period, the average length Lmean and its 
standard deviation were determined. Lmean , in combination 
with the corresponding Lmax and Lmin , was used to design 
a “statistical” or prototype cell whose average length was 
given by Lmean and whose length fluctuations were random 
and bounded by Lmin and Lmax (Fig. 5 (right) A2 and B2), 
whereas the standard deviation of the mean length repre-
sented the quantity � used in the stochastic term in Eq. (8). In 
the case of TECs, the average duration of the tumbling phase 
TP as well as the average time between consecutive tumbling 
episodes TI were also computed. We note that a TEC was 
assumed to be in a tumbling phase when its length fell below 
20 μm. This threshold was deemed adequate based on visual 

inspection of a large number of tumbling episodes. Thus, for 
TECs, Lmin , Lmax , TI , and TP were combined to generate a 
prototype length profile as depicted in Fig. 5 (right) C2. The 
results of the length parameters used to define the prototype 
cells for all three phenotypes are shown in Table 2.

Figure 5 (right) depicts a representative 12 h recording 
of a cell from each phenotype along with the correspond-
ing prototype length profile (statistical cell) that the com-
putational model aims to reproduce. While the statistical 
lengths for RECs and UECs were constant (at 50.1 μm and 
185.5 μm, respectively; see Table 2), the behavior of TECs 
is approximated by means of a square wave with the char-
acteristics given in Table 2. These prototype lengths were 
employed as classifiers for each phenotype and were used 
subsequently when applying the optimizer.

3.2  Numerical results

3.2.1  Parameter estimation from experiments 
and modeling

We wish to determine the parameter values specific for each 
of the three cell phenotypes that when inserted in the system 
of equations, provide numerical solutions that are as close 
as possible to the experimental measurements of cell length 
profiles. To this end, we have considered the non-stochastic 
version of Eqs. (8) and (14).

Equation (1) contains the parameters k1 and k2 that need 
to be determined. These quantities are, respectively, the rates 
at which F-actin tends to amin and to amax (Eqs. 3 and 4), and 
they are estimated by combining the modeling with data 
from literature and experiments (see Appendix). In order to 
obtain a value for k1 , Eq. (3) is used imposing the F-actin 
range (Alberts et al. 2002) as a constraint. From the resulting 

Fig. 4  Representative images 
acquired during cell migration 
on line patterns. Three catego-
ries have been identified: REC 
(left), UEC (center) and TEC 
(right). Scale bar 100 μm
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relation, it follows that k1 = 1.04 × 103 s−1 . As for k2 , Eq. 
(11) for cell length equilibria is employed. Substituting in 
this equation the value of amin , which is assumed to be the 
same for all three migration phenotypes, Lmin , which has a 
different value for each phenotype, Lmax for TECs and Lmean 
for RECs and UECs, different k2 values for the different phe-
notypes are obtained. The full list of computed data is shown 
in Table 3. It is important to note that while some param-
eters assume the same values for all phenotypes, others are 
phenotype-specific, indicating that a first classification of 
the three types of behavior has been achieved. More details 
about these computations are provided in the Appendix.

3.2.2  Optimization procedure and results

The PSO algorithm was employed with the aim of obtaining 
the missing parameter values for the system. These are M1 , 
M2 , M3 , � , and ceq . The first three are critical for the defini-
tion of the slope of the nonlinear functions R(L), K(c) and 
H(c), while � represents the rate of ATP production and ceq 
is an equilibrium concentration for ATP.

The model calibration is based on the solution of the 
following minimization problem:

where � is the vector of the unknown parameters and J(�) is 
defined as the difference between the numerical solution for 

(21)min
�∈Θ

J(�),

Fig. 5  Example of RECs (A), UECs (B) and TECs (C) over a time interval of duration T = 12 h. Top) Cell lengths as measured from the mov-
ies. Measurements are taken every 2 minutes for a total time of 12 hours. Bottom) Statistical lengths obtained from the data processing

Table 2  Experimental data for 
RECs, UECs and TECs

Cell Type Number of Maximum Minimum Mean Tumbling Tum-
bling

Standard

Cells Length Length Length Phase Interval Deviation

(Nc) (Lmax) (Lmin) (Lmean) (TP) (TI) (�)

RECs 12 70.5 μm 31.4 μm 50.1 μm 1.6 μm s−1∕2

UECs 13 314.6 μm 101.9 μm 185.5 μm 2.2 μm s−1∕2

TECs 17 64.1 μm 13.1 μm 1 h 14′ 2 h 33′ 2.1 μm s−1∕2
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the non-stochastic cell length L(�) and the statistical length 
Ls:

With the PSO we search the parameter values � that allow 
the generation of numerical solutions that are as close as 
possible to the target values. More specifically, the desired 
solutions are the constant statistical lengths for RECs 
and UECs and the square wave for TECs, as described in 
Sect. 3.1.

An important aspect to emphasize is that the search for 
parameter values was conducted in specific ranges in order 
to avoid unphysical values. Before performing the optimiza-
tion, a systematic sensitivity analysis was carried out with 
the aim of finding the most appropriate intervals of values 
where the optimal parameters would be expected to lie. 
We also note that the optimization was performed on the 
non-stochastic version of the problem, while the numerical 
simulations were subsequently performed on the stochastic 
system. This was possible because of the zero mean property 
of the Brownian motion. 

3.2.2.1 TECs: In the case of TECs, the PSO was applied 
with the aim of determining M1 , M2 , � , and ceq , while M3 
was fixed a priori at 10−5 . This choice was made after having 
observed that the desired oscillations arise for sufficiently 
low values of M3 . With the use of the optimizer, the fol-
lowing values were obtained: M∗

1
= 7.4 × 104 , M∗

2
= 6.4 , 

c∗
eq
= 2.26 , and �∗ = 8.75 × 10−4 . Solving the system of 

equations using these optimized values produces realistic 
outcomes whereby the desired amplitude of oscillations, 
the average tumbling phases, and the lengths of the tum-
bling intervals are all accurately reproduced. As illustrated 
in Fig. 6, the drop in cell length is accompanied by reduc-
tion in F-actin and ATP concentration, while an increase in 
ATP levels is associated with cell elongation and F-actin 
augmentation. These results are consistent with the postu-

(22)J(�) = ‖‖L(�) − Ls
‖‖.

lated coupling between intracellular ATP levels and changes 
in cell elongation. The optimized parameters with the cor-
responding units are listed in Table 3.

The numerical results obtained with the calibration pro-
cedure described above do indeed reproduce the behavior of 
the “statistical” TECs in terms of maximum and minimum 
lengths, tumbling phase, and length of tumbling interval. 
It should be noted, however, that the experimental lengths 
exhibit a non-periodic behavior. In fact, experimental data 
show that cells can exhibit different tumbling phase dura-
tions ranging from as short as 10 min to as long as 4 hours. 
A possible approach to account for this non-periodic behav-
ior in the current model is to “break” the hysteresis which 
is responsible for the periodicity of the solution. Efforts 
in this direction showed that non-periodic solutions were 
indeed attainable; however, they required the use of unreal-
istic parameter values and were consequently not used. It is 
anticipated, however, that with additional experimental data, 
a more refined formulation of the equations can allow us to 
obtain more realistic non-periodic results. In conclusion, the 
results obtained for TECs (Fig. 6) reproduce cell statistics 
and provide a first classification of the parameters; however, 
additional work is needed in order to provide a more com-
plete description of the tumbling phenomenon.

3.2.2.2 RECs and  UECs: For RECs and UECs, the PSO 
was applied in order to find the best fit for M1,M2,M3 , and 
ceq , while � was set to the same value as that obtained for 
TECs. The optimized values generated by the calibration 
procedure for both RECs and UECs are shown in Table 3. 
In both cases, the algorithm identified the best fit for the 
listed parameters in order to reproduce the statistical length, 
namely the average lengths shown in Fig. 5 (right) A2 and 
B2.

Once the parameter values were established, subsequent 
simulations were conducted on the stochastic version of the 
system. In light of the mean reverting property of the OU 
process (see Sect. 2.2.1), different oscillations of cell length 

Fig. 6  Solution of the system of equations in the case of TECs. Time evolution over T = 12 h of cell length (left), F-actin concentration (center), 
intracellular ATP concentration (right)
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around the statistical length can be obtained by varying the 
parameter � . A comparison between the experimental length 
and the computed lengths in the REC case is shown in Fig. 7 
(A1 and A2). The different length profiles shown in Fig. 7 
A2 were computed by solving the stochastic equation for cell 
length using randomly generated normal distributions that 
all meet the requirement of a zero mean and standard devia-
tion equal to one. This allows the generation of a potentially 
infinite number of different length profiles.

The results presented in Fig. 7 A2 were obtained by 
increasing the � coefficient to 10. We recall that the optimi-
zation was performed on the non-stochastic version of the 
cell length equation, with the aim of reproducing a constant 
steady-state cell length (matching that obtained experimen-
tally). To do so, we used the reference value � = 3 × 10−2 . 

This constant steady-state length represents the average of 
the stochastic process. When the stochastic component is 
added, it is crucial to vary � in order to obtain length profiles 
far from the average that resemble those in Fig. 7A1. These 
results indicate that the current model formulation is capable 
of capturing different cell length profiles that resemble those 
obtained experimentally and that depending on the value of 
� , different variances for cell length can be obtained.

Figure 7A3 and A4 depicts the computed time evolu-
tion of F-actin and intracellular ATP for RECs. The F-actin 
level is constant in time, consistent with the fact that the cell 
length remains constant. Intracellular ATP concentration, 
on the other hand, exhibits an initial transient phase before 
attaining a constant steady state value. Figure 7 (B1–B4) 
depicts the model results for the case of UECs. Panel B2 

Fig. 7  Top) RECs. Comparison between experimental cell length 
(A1) and Numerical cell length (A2), intracellular F-actin concen-
tration (A3) and intracellular ATP concentration (A4) both numeri-
cally obtained. Bottom) UECs. Comparison between experimental 

cell length (B1) and Numerical cell length (B2), intracellular F-actin 
concentration (B3) and intracellular ATP concentration (B4) both 
numerically obtained. Computations performed over a time interval 
of duration T = 12 h

Table 3  List of computed and 
optimized values for the three 
cell categories. Parameters with 
asterisk are the optimized ones

Symbol TECs RECs UECs Units Meaning

amin 5 × 10−2 5 × 10−2 5 × 10−2 mM F-actin minimum concentration
asat 2.5 × 10−2 2.5 × 10−2 2.5 × 10−2 mM F-actin saturation concentration
k1 1.04 × 103 1.04 × 103 1.04 × 103 s−1 F-actin convergence rate to am
k2 142.2 404 351.8 s−1 F-actin convergence rate to aM
� 5.6 × 103 2.4 × 103 752 mM

−2
s−1 Contractility constant

M∗
1

7.4 × 104 2.15 × 102 2.15 × 102 Dimensionless Modulator of length-induced release
M∗

2
6.4 1.6 × 10−2 1.6 × 10−2 Dimensionless Modulator of F-actin equilibria

M∗
3

10−5 8.5 × 10−4 8.5 × 10−4 mM−1 Hysteresis slope modulator
�∗ 8.75 × 10−4 8.75 × 10−4 8.75 × 10−4 s−1 ATP production rate
c∗
eq

2.26 8.07 8.07 mM Equilibrium concentration for ATP
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illustrates numerically computed cell length profiles for 
three runs of the algorithm and for � = 10 in a manner simi-
lar to that used for RECs. Comparison with the experimental 
results (panel B1) shows that the model is capable of closely 
reproducing the experimental behavior.

The optimized parameter values for RECs and UECs are 
listed in Table 3. For both RECs and UECs, the initial con-
ditions for F-actin were chosen to be equal to the F-actin 
values associated with the corresponding k1 and k2 . The 
initial cell length was set to the statistical length, while an 
initial mean ATP concentration was imposed. In the case 
of TECs, the initial condition for F-actin was taken as the 
minimum concentration, while the initial condition for cell 
length was taken as Lmin . The initial condition for intracel-
lular ATP was taken as an intermediate value. An important 
observation in Fig. 7 is that the same F-actin and intracel-
lular ATP profiles can lead to different cell length profiles. 
This can be explained by the fact that for a certain range of 
model parameter values, the equation governing cell length 
(Eq. 8) becomes decoupled from the F-actin and ATP equa-
tions (Eqs. 1 and 14).

3.2.3  Sensitivity analysis

We have performed a detailed sensitivity analysis, in order 
to establish which parameters have the most influence on the 
model predictions. In the interest of brevity, the results of 
this analysis are only partially shown. Of particular interest 
in the sensitivity study is the determination of the param-
eters that govern a potential transition from one cell length 
phenotype to another. The approach used in the sensitivity 
analysis was to vary one parameter at a time over a large 
range while maintaining all the other parameters constant 
at their baseline values given in Table 3.

The results of the sensitivity analysis revealed that the 
transition between TECs, where cell length changes peri-
odically in time, and the other two phenotypes (RECs and 
UECs), where cell length remains constant, is governed 

principally by the three model parameters ceq , M2 , and M3 . 
More specifically, TECs are only observed for intermediate 
values of ceq (approximately 1 to 6 mM) combined with suf-
ficiently high values of M2 ( > 0.1 ) and relatively low values 
of M3 ( < 10−4 ). Furthermore, when tumbling occurs, its 
detailed characteristics, namely the tumbling frequency and 
the duration of each tumbling episode, are driven primarily 
by the parameters ceq , � , and M2.

Figure 8 summarizes some of these findings. Panel A 
depicts the dependence of cell length on ceq and demon-
strates that ceq is indeed a bifurcation parameter that allows 
transitioning between the tumbling and non-tumbling (con-
stant length) regimes. Within the tumbling regime, cell 
length oscillates between 13 and 65-μm, whereas outside 
this regime, cell length increases rapidly with ceq . Panels B 
and C show that for the tumbling regime, the tumbling fre-
quency increases with both ceq and � . Finally, panel D dem-
onstrates that the average time per tumbling cycle increases 
with M2 , whereas the average time interval between con-
secutive tumbles correspondingly decreases.

While ceq and M2 determine critical aspects of the tum-
bling behavior as shown above, the sensitivity analysis 
revealed that M1 and M3 have their principal impact on intra-
cellular ATP levels without necessarily affecting cell length. 
More specifically, increasing M3 (while holding all other 
parameter values constant) leads to lower steady-state intra-
cellular ATP levels (Fig. 9), whereas decreasing M1 induces 
intracellular ATP oscillations whose frequency decreases 
with M1 (Fig. 10). Nevertheless, these oscillations do not 
produce real tumbling phases.

Figure 11 provides a schematic “phase diagram” that 
identifies where in the parameter space the tumbling behav-
ior is predicted to occur. As already indicated, tumbling 
requires intermediate values of ceq in combination with suf-
ficiently large values of M2 and sufficiently low values of 
M3 . It is important to notice, that considering low and high 
values of ceq , RECs and UECs appear, but before reaching 
the constant steady state, they experience a transient phase. 

Fig. 8  Sensitivity analysis for TECS. (A) In red the steady states 
assumed by cell length when increasing and decreasing ceq , in blue 
the up an down points delineate the amplitude of oscillations in the 

interval [1.1,  5.98]. (B) The frequency of the oscillations emerging 
when ceq ∈ [1.1, 5.98] . Sensitivity of parameter � (C) and M2 (D). 
The black squares indicate the optimized values
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For this reason in Fig. 11, the countours of these cells are 
in blue.

4  General remarks

Table 3 shows the results obtained using the PSO algo-
rithm. We can observe that M1 , M2 and M3 are the same 
for RECs and UECs, but different for TECs. According 
to the value of M2 , the K function can change its slope, 
modifying its concavity and as a consequence, the depend-
ence between F-actin and cell length. Specifically, small 
values of M2 produce a K curve that tends to the maximum 
equilibrium regardless of ATP variations, while greater 
values of M2 allow a switch from one equilibrium to the 
other, permitting generation of oscillations. This is the 
reason why TECs have a different M2 value. Parameter M3 
is related to the slope of the H function and its role needs 
to be contextualized in relation with M2.

Fig. 9  A1) Sensitivity analysis of the parameter M3 . Increasing values 
of M3 correspond to decreasing values for the ATP steady state. The 
blue point indicates the value assumed in correspondence of the opti-

mal parameter for RECs, while the black point the one for the optimal 
parameter for UECs. Hysteresis functions related to RECs (A2) and 
to UECs (A3)

Fig. 10  Sensitivity plots for the parameter M1 . RECs (Top), UECs 
(Bottom)

Fig. 11  Different cell states 
according to parameters vari-
ations. The cells with the blue 
contour indicate that, their 
lengths before reaching the 
steady states, experience a 
transient phase
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• If M2 is low, the constant state is achieved, because the 
equilibrium is immediately reached and different val-
ues of M3 might reflect different equilibria for the ATP 
solution. This behavior is the consequence on the one 
hand of the decoupling of the first two equations from 
the ATP equation (due to low M2 ) and on the other 
hand on the shape of the hysteresis function. Higher 
values of M3 , producing smooth hysteresis curves, 
allow ATP loss that lowers the ATP equilibria. In this 
case, we have made a distinction between RECs and 
UECs, assuming that lower ATP levels correspond to 
UECs, while the higher levels correspond to RECs.

• In the hypothesis that M2 is high, we might have two 
different situations: if M3 is low, oscillations emerge, 
while if M3 is high, ATP becomes constant. This last 
case is excluded from our discussion because F-actin, 
cell length and ATP reach an equilibrium value that 
corresponds to their absolute minimum and therefore 
this case is meaningless from the experimental point of 
view.

In conclusion, the parameters M2 and M3 have emerged as 
two principal discriminating parameters in cell behavior.

Another important parameter is ceq , which appears in 
the hysteresis function. We have observed that changes 
in ceq reflect in changes in the ATP steady state due to 
its effect on the H function. However, we have preferred 
to focus on the discrimination based on M3 , because 
our hypothesis is based on the idea that RECs maintain 
high ATP levels, without releasing much ATP, compared 
to UECs for which the ATP release is more consistent 
although the ATP levels are maintained in an intermediate 
range. This hypothesis is satisfied when changing M3 and 
not ceq . In addition,

• if the parameter M2 is low, the constant state is achieved, 
and in this context the parameter � serves only to control 
how fast the equilibrium is reached.

• When M2 is high, both equilibria are reached, the oscil-
lations appear and their frequency is determined by � : 
higher values of � , correspond to an increase in oscilla-
tions. Besides, the parameter M2 has the additional role 
of controlling the duration of the steady phases in the 
TEC case: larger values of M2 correspond to a longer 
tumbling phase. A thorough analysis of the effects of � 
and M2 is presented in Sect. 3.2.3. Two other important 
parameters are ceq and M3 , related to the shape of the 
hysteresis function.

Lastly, the parameter M1 does not appear to play a predomi-
nant role in cell behavior. We have only observed the appear-
ance of oscillations in ATP (not in F-actin and cell length) 
for RECs and UECs for some values of M1 . The parameters 

related to the ATP equation were found through optimiza-
tion. Analysis of these results is described in Sect. 3.2.3.

5  Discussion

The mathematical model described in the present work was 
intended to provide a possible explanation for the experi-
mental observation that ECs cultured on 15-μm-wide line 
patterns exhibit different migration phenotypes, referred to 
here as RECs, UECs, and TECs, that are associated with 
different cell length dynamics. The basic idea underpinning 
the model is that EC length is driven primarily by the cou-
pled effects of intracellular ATP levels and F-actin organiza-
tion. More specifically, we wanted to test the hypothesis that 
RECs and UECs were associated with fairly stable levels 
of intracellular ATP and F-actin levels, whereas the TEC 
phenotype was associated with oscillations in intracellular 
ATP that drive the periodic changes in EC shape observed 
experimentally.

The line patterns used here are intended to provide an 
idealized mimic of anisotropic contact guidance cues that 
direct cellular migration. In blood vessels in vivo, such cues 
would exist due to the anisotropic organization of the fibers 
of the extracellular matrix. In the context of vascular grafts, 
line patterns may represent anisotropies in the structural 
organization of these grafts. Because complete and rapid 
endothelial coverage of vascular grafts is essential for the 
success of grafting procedures, understanding EC migration 
on line patterns promises to provide insight into connections 
between graft surface architecture and the performance of 
these grafts in terms of the efficiency of endothelialization.

The model that was developed takes the form of a cou-
pled set of differential equations that describe the dynamics 
of intracellular ATP, F-actin, and cell length. Stochasticity 
is incorporated into the equation governing the dynamics 
of cell length in order to capture experimentally observed 
small-scale and high-frequency fluctuations in cell length. 
In this framework, it is also important to notice the non-
periodic nature of the tumbling interval in the case of TECs. 
However, the variations in tumbling interval length for any 
one cell are significantly larger than the small-scale varia-
tions in cell length captured by the stochastic term added 
to the governing equations. While we were able to estimate 
some of the model parameters either from our experiments 
or from the literature, a number of parameters remained 
unknown. To obtain best-estimate values for these param-
eters, we used the experimental results to establish the length 
dynamics of a “characteristic” EC for each of the three phe-
notypes, and we implemented an optimization scheme that 
provided best-fit values for these parameters. The results 
demonstrate that the proposed model is capable of gener-
ating profiles of cell length dynamics that closely match 
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those observed experimentally. Different ranges of model 
parameters lead to behavior that resembles that of the three 
observed EC phenotypes. Furthermore, a detailed sensitiv-
ity analysis revealed which model parameters dictate which 
features of the observed dynamics for each of the different 
phenotypes.

Although the present findings suggest that the hypothesis 
that the different EC phenotypes observed on line patterns 
are driven by different profiles of intracellular ATP and 
F-actin is plausible, they do not provide definitive evidence 
for this hypothesis. All that can be said at this point is that 
the results are consistent with this hypothesis. Validating the 
hypothesis awaits experimental measurements of the dynam-
ics of intracellular ATP levels in live ECs. Making such 
measurements is not a simple task. A recent study suggests 
that a Foerster resonance energy transfer-(FRET-) based bio-
sensor may provide sufficient sensitivity and dynamic range 
for such measurements (Morciano et al. 2019); however, it 
remains to be determined if this technique can be used for 
ECs cultured on line patterns. Naturally, there are other pos-
sible explanations for the occurrence of the tumbling-like 
behavior of ECs on line patterns. One particularly intrigu-
ing possibility is that the tumbling phase where the cells 
round up followed by spreading, polarization, and directed 
migration might represent a form of “frustrated division”. 
Cells typically round up prior to dividing (Ramkumar and 
Baum 2016), and the two daughter cells subsequently spread 
and polarize. It would be interesting to explore if the physi-
cal confinement conferred upon the cells by the line pattern 
prevents the process of cell division from completion. This 
hypothesis certainly merits future investigation.

The experimental results reported in the paper were for a 
15-μm-wide fibronectin-coated line pattern. To assess how 
general this result is, we have conducted limited experiments 
on additional line widths, namely 5, 10, and 30-μm. Pre-
liminary results suggest that reducing the line width does 
not significantly change the frequency of the TEC pheno-
type ( 18% TECs on 5-μm-wide lines vs. 21% on 15-μm-wide 
lines). However, increasing line width to 30-μm appears to 
significantly reduce the incidence of tumbling ( 3% TECs). 
We have also conducted limited experiments on Type I 
collagen-coated line patterns (15-μm-wide) and observed 
a moderate increase in the incidence of tumbling relative to 
15-μm-wide fibronectin-coated lines ( 32% vs. 21% during 
12-hr recordings). These findings need to be confirmed in 
additional future experiments.

6  Conclusions

We have developed a model that describes the evolution of cell 
length with time for EC’s cultured on narrow line patterns that 
confer physical confinement onto the cells. The model involves 

a system of three coupled stochastic differential equations that 
represent the time evolution of F-actin, cell length, and intra-
cellular ATP concentration. The model is shown to be able to 
capture the different types of behavior observed experimen-
tally, namely runner, undecided and tumbling-like ECs.

A limitation of the current model is the absence of experi-
mental data for F-actin or intracellular ATP concentration. 
While some parameters were obtained from literature, others 
were obtained from an optimization algorithm that provided 
the best fit with experimental data on the evolution of length 
in time. Thus, the current model is able to provide a clas-
sification of the three behaviors based on different param-
eter choices. Although a partial categorization of the cell 
phenotypes is possible, the biological mechanisms behind 
their occurrence remain unknown. Future work will focus 
on providing experimental evidence for the involvement of 
ATP as well as on extending the modeling to include cellular 
polarization and migration.

Appendix

Parameter estimation from experiments 
and modeling

Table 4 recapitulates the information provided in Tables 1, 
2 and 3 in the main text. The first parameters that need to 
be estimated are the rate constants k1 and k2 , which appear 
in the K(c) function of Eq. (1). These values are significant 
players in determining the equilibria of the F-actin equa-
tion and thus also the equilibria of the length equation. To 
determine values for these rate constants, the modeling 
can be used subject to constraints imposed by known data. 
According to Alberts et al. (2002), the intracellular F-actin 
concentration lies in the range of 0.05 mM to 0.2 mM. Thus, 
we impose that the F-actin concentration needs to be greater 
than 0.05 mM at all times. Consequently, using Eq. (3), it 
follows that:

and

Substituting ah = 0.2 mM, it follows that k1 ≤ 3k , where k is 
the estimated rate of F-actin production (Pollard,Mogilner 
and Oester 1986). For the numerical simulations, k1 was 
chosen to be equal to 3k = 1.04 × 103 s−1 , corresponding to 
amin = 0.05 mM. It is important to note that the choice of 
k1 is not single-valued since the relation (23) applies for all 
values smaller than 3k. Nonetheless, convenient assumptions 
had to be made in order to obtain consistent results.

amin =
kah

k + k1
≥ 0.05 mM,

(23)k1 ≤

(
ah − 0.05 mM

0.05 mM

)
k.
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With regards to the parameter k2 , the relation for the max-
imum F-actin (see 4) could not be used because it leads to a 
trivial result (we would find k2 ≥ 0 ). Thus, other constraints 
needed to be considered. In Sect. 2.2.1, we have seen that 
length equilibria are provided through the relation:

which applies for both the stochastic and the non-stochastic 
cases (because the process we are studying has a zero mean). 
From the definition of �(a) and from the previous choice of 
k1 , it follows that asat = amin∕2 = 0.025 mM. In addition, 
the minimum length for each cell phenotype which was esti-
mated from the experiments (Table 2) can be used in the 
following manner:

and � =
vp

Lmina
2

min
e−2

 is derived. An important observation 

is that � can change either due to changes in the value of 
amin , but in the current work amin was maintained constant at 
0.05 mM, or due to changes in the values of Lmin which 
depend on cell phenotype (24). Substituting � into relation 
(24), it follows that:

(24)L =
vp

�(a)
=

vp

�a2e−a∕asat
,

(25)Lmin =
vp

�a2
min

e−2
,

(26)L = Lmin

(
amin

a

)2

e−2+a∕asat ,

and this relation can be written as:

The previous relation is nonlinear and the roots can be easily 
computed for each of the three cell phenotypes. In particular, 
since the parameter k2 is related to the maximum attainable 
equilibrium for F-actin, when solving Eq. (27), L must be 
imposed to be equal to the maximum equilibrium that needs 
to be reached by cells. Specifically, for TECs L is imposed 
as the Lmax derived from the experiments, while for RECs 
and UECs, since the lengths that need to be reproduced do 
not coincide with the maximum value of the range but rather 
with the statistical length, L will be imposed to be equal to 
this latter quantity.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

(27)a2 =

(
Lmin

L

)
a2
min

e−2+a∕asat .

Table 4  List of parameter values for each cell category

Symbol TECs RECs UECs Units Meaning

ah 2 × 10−1 2 × 10−1 2 × 10−1 mM F-actin homeostatic value
amin 5 × 10−2 5 × 10−2 5 × 10−2 mM F-actin minimum concentration
asat 2.5 × 10−2 2.5 × 10−2 2.5 × 10−2 mM F-actin saturation concentration
k 347 347 347 s−1 F-actin Polymerization Rate
ch 10 10 10 mM ATP homeostatic value
cL 1 1 1 mM ATP minimum concentration
k1 1.04 × 103 1.04 × 103 1.04 × 103 s−1 F-actin convergence rate to am
vp 25 25 25 μms−1 Protrusion Velocity
� 8.75 × 10−4 8.75 × 10−4 8.75 × 10−4 s−1 ATP production Rate
k2 142.2 404 351.8 s−1 F-actin convergence rate to aM
ceq 2.26 8.07 8.07 mM ATP equilibrium concentration
� 3 × 10−2 10 10 Dimensionless Friction coefficient
M1 7.4 × 104 2.15 × 102 2.15 × 102 Dimensionless Modulator of length-induced release
M2 6.4 1.6 × 10−2 1.6 × 10−2 Dimensionless Modulator of F-actin equilibria
M3 10−5 8.5 × 10−4 8.5 × 10−4 mM

−1 Hysteresis slope modulator
� 5.6 × 103 2.4 × 103 752 mM

−2
s−1 Mathematical expedient/No physical meaning

http://creativecommons.org/licenses/by/4.0/
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