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1. ABSTRACT  
 
The drug diffusion process through an arterial eluting stent is studied with a mathematical 
model. An exact analytical solution is given in the form of an infinite series expansion. The 
model addresses the role of four controlling parameters and provides qualitative 
considerations and a quantitative description for drug transport to evaluate feasibility of 
new drug delivery strategies, and to estimate dose response.  
 
 
2. INTRODUCTION 
 
The release of a substance in a living tissue for therapeutic purposes is becoming quite 
common in medicine nowadays, through drug delivery devices [1]. The mechanism  of 
release is quite complex and depends on many concurrent physical and biochemical 
factors.  As a matter of fact, to reach a desired target, the concentration of the drug in the 
tissue should lie within a given range and it is recognized that the time and quantity of 
release of the drug is crucial for the therapy [2]. The elution process is influenced by many 
factors, such as properties of the drug (hydrophily), coating (material structure) as well as 
the transport characteristics of the arterial wall.  Mathematical models predicting the 
dynamics of solute concentration and mass flux are of interest for biomedical engineers 
and clinicians, as they offer a simple tool  for optimizing the drug delivery design  and 
technology [3]. The present work provides a fundamental study of the mass transfer 
process of a substance across two homogeneous faced media and directly applies to the 
drug-eluting stent. The whole drug is initially in a polymeric matrix coating the metallic 
structure and is subsequently released into the arterial wall. Being interested in the 
pharmacokinetics only, the mechanical effects of the stent are neglected. 
   The time-space diffusion-transport equation for the drug dynamics is presented in the 
general case. Due to the prevalent flux direction, the problem is formulated in one 
dimensional case in terms of nondimensional variables. This results in  a coupled system of 
partial differential equations in two faced domains with a interface condition. The problem 
exhibits a strong analogy with the thermal process of heat conduction between two slab-
shaped regions with different thermal properties and a similar method for solving the 
differential problem is used [4]. A Sturm-Liouville system is set, the correspondent 
eigenvalue equation is solved and the solution is expressed in a long-time form.   
A number of numerical experiments is carried out over several configurations of typical 
stent design parameters. The results can be used to design novel drug  delivery systems, as 
well as to optimize a drug delivery protocol to be used in therapy and diagnostics. 
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3. THE MATHEMATICAL MODEL 
 
A drug-eluting stent is a metallic prosthesis implanted into the arterial wall and coated with 
a layer of biocompatible polymeric gel that encapsulates a therapeutic drug. Such a drug, 
released in a controlled manner, is aimed at healing the vascular tissues or to prevent a 
possible restenosis [1,2]. In the present work we are interested in the mechanism of drug 
elution into the arterial tissue.   
   Let us consider a stent coated by a thin layer (1) of drug and embedded into the arterial 
wall (layer 2) and let us indicate by  the (volume averaged, nondimensional) 
concentrations in the two layers (fig. 1).  Because the dominant flux and most of the 
diffusive process occur across the direction normal to the two-layer medium, we limit our 
study to a 1D model and we denote the space coordinate by x. To slow down the drug 
release rate, a permeable membrane (called topcoat) is located at the interface ( ) 
between the two layers. Using the second Kedem-Katchalsky equation [5] the mass flux is 
proportional to the concentration difference as:  
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with  diffusion coefficients, iD iε  medium porosities, and  partition coefficients (i=1,2) 
and P the permeability coefficient. Let us define the following nondimensional variables 
and constants:  
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with  (i=1,2) layer thickness. The diffusion process in the coating is described by the 
following dimensionless equations: 
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In the wall, the phenomenon is governed by a set of similar equations: 
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At the initial time ( ) the drug is contained only in the coating and it is uniformly 
distributed at maximum concentration (

0=t
11 =c , 02 =c ) and, at following times, it is 

released into the wall [6]. The two-layered diffusion problem (3)-(4) is analogous to the 
problem of transient heat conduction between two slab-shaped bodies of different thermal 
properties, when a temperature jump is initially present, except for the inner boundary 
condition (4.2) [4].  
 
 

 
 

Fig. 1:  Cross section of a stented artery with the sequence of layers for drug-dynamics: 
(a) stent strut, (b) coating, (c) topcoat, (d) arterial wall. 

 
 
4. ANALYTICAL SOLUTION 
 
The solution of the previous equations is obtained  by separation of variables: 
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Substitution in eqns. (3)-(4) yield the two ODE's: 
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The spatial problem is amenable to the Sturm-Liouville eigenvalue system: 
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The general solution of the ordinary differential eqns. (8) is: 
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where the eigenvalues iλ  and the coefficients  and are computed by imposing the 
outer and inner boundary conditions and solving a trascendental equation (eigencondition). 
After straightforward computations, the eigenfunctions  and  have the following 
expression:    
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Finally, the complete solution of the problem is given by a linear superposition of the 
fundamental solutions (10) in the form: 
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where  (m=1,2,….) are determined through the initial conditions. From eqns. (11) it is 
possible to compute the drug mass (per unit area) as function of time in both coating and 
wall layers as: 
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5. NUMERICAL  RESULTS  
 
The following physical parameters are considered for  computational experiments: 
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They are chosen on a physical basis and in agreement with the typical scales in drug-
eluting stents and  with data in literature for the arterial wall and for the heparin drug in the 
coating layer [1,2]. The physical problem apparently depends on a large number of 
parameters, each of them ranges in a finite interval, and there is a variety of different 
limiting cases. Actually the problem is shown to rely only on the four nondimensional 
controlling parameters: 
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and they are used as mean values for a set of numerical simulations.   
The concentration profiles for three value of time are displayed in  fig. 2: drug is eluting 
from coating to the wall, with concentration decaying in time, and going to zero at  
(absorption at the wall). A concentration jump occurs at the interface 

1=x
0=x . Both  and 

 are decreasing: at initial times they have a boundary layer near
1c

2c 0=x , at later times 
they vary almost linearly.  

 
Fig. 2: Drug concentration profiles in the coating  (above) and in the wall (below). 

 

Drug mass in the coating layer  is monotonically decreasing, while mass in the wall 
, first increasing to a maximum at time , decreases to zero with the same rate of 
 (fig. 3). Design parameters governing the rate of drug release can be screened by 

analyzing the solution dependence and the sensitivity on 

1M
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a limited realistic range one at a time around the mean values in eqn. (14), with the others 
fixed.  



 
Fig. 3: Drug mass in the coating, in the wall and total mass as function of time. 
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