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We present a mechanistic model of drug release from a multiple emulsion into an external surrounding fluid.
We consider a single multilayer droplet where the drug kinetics are described by a pure diffusive process through
different liquid shells. The multilayer problem is described by a system of diffusion equations coupled via
interlayer conditions imposing continuity of drug concentration and flux. Mass resistance is imposed at the outer
boundary through the application of a surfactant at the external surface of the droplet. The two-dimensional
problem is solved numerically by finite volume discretization. Concentration profiles and drug release curves are
presented for three typical round-shaped (circle, ellipse, and bullet) droplets and the dependency of the solution
on the mass transfer coefficient at the surface analyzed. The main result shows a reduced release time for an
increased elongation of the droplets.
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I. INTRODUCTION

Multiple emulsions consist of a dispersion of immiscible
spherical fluid droplets, of diameter ranging from 1 to 50 μm,
in a larger fluid drop, of size up to 100 μm [1–4]. The simplest
low-ordered realization is the double emulsion, where, for
instance, a water core is surrounded by a thin concentric
oil layer. If the double emulsion is immersed in water, it
is often termed a water-oil-water emulsion. More complex
examples include collections of polydisperse droplets placed
in a larger drop or multilayer distinct cores of fluid [4,5]. Their
stability is generally guaranteed by a surfactant (adsorbed
onto the external interface) which prevents coalescence of the
droplets [2,3,6,7]. Such emulsions are conventionally manu-
factured by means of microfluidic devices, which, alongside
a large production rate, ensure a high degree of reproducibil-
ity [4]. Due to their compartmental structure, these systems
are extensively used to encapsulate and transport active com-
ponents in a number of technological applications, including
food processing [8,9], cosmetics [10,11], and syntheses of
microspheres and microcapsules [2,12–14], to name a few.

Multilayered emulsions are particularly suited as drug
carriers of pharmaceutical and biological compounds, due to
their capability to combine an efficient mechanical stability to
a controlled release of the cargo within the range of the ther-
apeutic window [15,16]. Indeed, unlike a layer-free emulsion,
the multilayer assembly ensures protection of the active agent
against external chemical aggression as well as an enhanced
control of the transfer rate by the thin oil barrier [17,18]. These
features drastically diminish the premature degradation of the
compound and broaden the sustainability of the emulsion. A
further benefit stems from its inherent soft structure, which
can be selectively hardened or gelled by tuning the viscosity
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of the middle fluid layer [19,20]. In contrast to rigid capsules,
this allows, for instance, for migration through narrow inter-
stices where large shape deformations are expected to occur.

Although many efforts have been dedicated to the ex-
perimental realization of optimized drug delivery via mul-
tiple emulsions, much less is known about the underlying
mechanism governing the drug release in these systems. In
pharmaceutical applications, the drug is usually stored within
the internal water droplet and then, after diffusing through the
surrounding oil shell, is subsequently released in the external
medium. Among several physico-chemical processes, such as
osmosis and drug dissolution, diffusion is by far the dominant
mechanism controlling drug kinetics and release [21]. This
process is crucially influenced by the medium properties as
well as by the ultrathin surfactant layer confined at the droplet
interface. Indeed, the latter may partially hinder the mass
flux of the drug towards the external medium and, hence,
potentially compromise its efficacy [16].

In many practical situations, such as a capsule migrating
in a blood vessel, emulsions are dragged by the surrounding
fluid. Even under weak shears (those typical of a laminar
regime in a microfluidic channel), the flow is known to
produce relevant shape deformations that may potentially
alter the functioning of the multicore emulsion as a drug
carrier [22–26]. Under a mild steady extensional flow, for
instance, a spherical-shaped double emulsion may turn into an
ellipsoid [22–24], whereas bean or bullet-like shapes emerge
when the emulsion is subject to a Poiseuille flow [27–29],
leaving the shape of the inner core essentially unaffected.
More complex effects are observed in the presence of more
intense flows, such as an hyper-stretching of the core in
tandem with the outer drop leading to their breakup and
formation of two daughter cores [24,30]. Hence, it is of
particular relevance to understand how the geometry of the
emulsion can influence the drug transport. In this respect,
the development of semiempirical and mechanistic models
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FIG. 1. Schematic representation of the cross section of the
droplet comprising an internal circular core �0 and an enveloping
denser fluid shell �1. A thin membrane (shown in blue) is present at
the surface modeling the surfactant finite resistance.

is crucial for predicting the release performances in multiple
emulsions and for improving their design. Besides providing
a systematic approach to solve these tasks, mathematical
modeling can also serve as a tool to answer practical issues,
such as the identification of the parameters to tune in order
to achieve a predetermined delivery rate or the development
of physico-chemical markers capturing main transport pro-
cesses [31,32]. While previous studies have been focused on
modeling drug release in multilayered rigid spherical micro-
capsules [18,33,34], in this work we extend the mechanistic
approach to soft multiple emulsions focusing on the shapes
shown in Fig. 1, which are geometries observed at equilibrium
or with a very weak flow (a), and under extensional or shear
flow (b), and Poiseuille flow (c), in the laminar regime (i.e.,
when the Reynolds number remains below 1).

We describe the drug kinetics from a double emulsion by
means of a system of diffusion equations coupled via suitable
boundary and interlayer conditions. We simulate the transport
of the drug initially confined within the inner spherical core
and compute its release time, by varying the diffusivity of the
shell and the permeability of the external membrane due to a
surfactant. Our results show how the geometry of the double
emulsion does have an influence on the drug delivery and,
in particular, how elongated droplets exhibit a faster release.
Once the parameters are identified, the proposed methodology
provides a simple tool that can be used to quantitatively
characterize the drug transport, improve the technological
performance, and optimize the release rate for therapeutic
purposes. The remaining sections of this paper are structured
as follows. In Sec. II we describe the equations governing the
kinetics of the drug in a core-shell emulsion geometry, and
in Sec. III we illustrate the details of the numerical model
involving a finite volume discretization over an unstructured
mesh. Section IV is devoted to the presentation and discussion
of numerical results of a drug releasing round-shaped droplet,
under different flow conditions.

II. DRUG DIFFUSION FROM A MULTILAYER DROPLET

In the most general case, a composite emulsion-based
droplet comprising n enveloping concentric liquid shells. This
multilayer droplet is immersed in an external release medium
(or bulk fluid) that, for the purposes of this work, is assumed
stable and steady. Without loss of generality and with refer-
ence to Fig. 2, we restrict our analysis to a single vesicle,

FIG. 2. A snapshot of a typical double emulsion (from Ref. [5]).

utilizing the superposition principle for the release from a
number of identical droplets. Among several possible double
emulsion configurations [5], we consider here a droplet �

constituted of two concentric layers of fluid, a circular core �0

(layer 0) and an enveloping shell �1 (layer 1). As the emulsion
is fabricated through a confined fluid flow, the external layer
is typically deformed in the flow direction. Neglecting droplet
microfluidics and deformation, we restrict our attention to
the drug delivery and the characteristics of the release for
a fixed shape. In actual fact, with the superimposed flow at
steady state, droplets assume and maintain a variety of typical
shapes, from the round and oblate spheroid, to an ellipsoid or
bullet-like geometry, with the spherical shape of the internal
core preserved (see Fig. 1). In this study we consider a
two-dimensional (2D) cross section of the droplet aligned
with the superimposed 2D fluid flow. Generally a surfactant is
added to the surface of the vesicle to prevent coalescence [16],
and this results in a additional resistance to the drug re-
lease. To include this effect, a thin membrane is assumed
at the surface of the droplet with a surface mass transfer
coefficient P (m/s) expressing the surfactant finite resistance
(Fig. 1) [33,34].

In a steady and stable double emulsion, we assume the
drug kinetics are governed by a purely diffusive two-layer
model, where the evolution of the concentrations, c0(x, t ) and
c1(x, t ), in the core and shell respectively, are governed by a
set of 2D linear diffusion equations [33,34]:

∂c0

∂t
= ∇ · (D0∇c0), x ∈ �0, (2.1)

∂c1

∂t
= ∇ · (D1∇c1), x ∈ �1, (2.2)

paired with the following interlayer, boundary, and initial
conditions:

c0 = c1, D0∇c0 · n� = D1∇c1 · n�, x ∈ �, (2.3)

D1∇c1 · n� = −Pc1, x ∈ ∂�, (2.4)

c0(x, 0) = C0, x ∈ �0, (2.5)

c1(x, 0) = C1, x ∈ �1, (2.6)

where C0,C1 > 0 are constants, � is the interface between �0

and �1, n� is a unit normal to �, and n� is the unit normal

023114-2



MODELING DRUG DELIVERY FROM MULTIPLE EMULSIONS PHYSICAL REVIEW E 102, 023114 (2020)

xk

σ

nk,σ

Element

Finite Volume (Vk)

FIG. 3. Notation used in the finite volume discretization. De-
picted is the finite volume (Vk) corresponding to an arbitrary internal
node k with the boundary of the finite volume shown using a dashed
line. The blue dot locates the midpoint of edge σ (xσ ) and the length
of the red edge, labeled σ , is Lσ .

to ∂� directed outwards from �. In the above equations, the
parameters D0, D1 are the drug diffusion coefficients of the
two layers and P is the specified mass transfer coefficient at
the surface [33,34]. In the limit P → 0, we have an imperme-
able membrane, and when P → ∞ we recover a perfect sink
condition (no resistance).

All the variables, the parameters, and the equations are
scaled by means of the change of variables:

x → x
χ

, t → Dmax

χ2
t, ci → ci

Cmax
, i = 0, 1, (2.7)

and by redefining the nondimensional constants:

Di → Di

Dmax
, Ci → Ci

Cmax
, P → P χ

Dmax
, i = 0, 1,

(2.8)

where χ is a characteristic length scale of �1, Cmax =
max(C0,C1) and Dmax = max(D0, D1).

Note that, due to internal recirculation, the tangential com-
ponent of the fluid velocity u is dominant with respect to
the radial one [26]. As release occurs essentially along n�,
the effect of the fluid advection term u · ∇c is weak, and
microfluidics can be safely neglected.

III. NUMERICAL METHOD

A. Solving for the drug concentration

The nondimensionalized analog of the diffusion
model (2.1)–(2.6) is solved numerically by discretizing
in space using a finite volume method on an unstructured
mesh (see, e.g., Ref. [35]). To perform the meshing, we
use the mesh generator GMSH [36] to construct meshes
consisting of a set triangular elements (T�). Each element is
located entirely within either �0 or �1 (i.e., elements adjacent
to the interface, �, have an edge that aligns with the interface)
with T�0 and T�1 used to denote the set of elements located in
�0 and �1, respectively.

We employ a vertex-centered strategy, where finite vol-
umes are constructed around each node by connecting the
centroid of each triangular element to the midpoint of its edges
(Fig. 3). Spatial discretization is applied to the following

equivalent form of (2.1)–(2.2):

∂c

∂t
= ∇ · (D(x)∇c), x ∈ �,

where

c(x, t ) =
{

c0(x, t ), if x ∈ �0,

c1(x, t ), if x ∈ �1,

D(x) =
{

D0, if x ∈ �0,

D1, if x ∈ �1.

Let N be the number of nodes in the mesh, c̃k := c̃k (t ) be
the numerical approximation to c(xk, t ), and Vk be the finite
volume surrounding node k for all k = 1, . . . , N (Fig. 3). The
finite volume discretization yields the following system of
spatially discrete equations:

dc̃k

dt
= 1

|Vk|
∑
σ∈Ek

Fk,σ , k = 1, . . . , N, (3.1)

where Ek is the set of edges comprising the boundary of Vk ,
|Vk| is the area of Vk , and Fk,σ is a numerical approximation
to the (negative) flux

∫
σ

D(x)∇c · nk,σ dx with nk,σ denoting
the unit vector normal to edge σ directed outward from Vk

(Fig. 3). The value of Fk,σ depends on whether the edge σ is
located in the interior of the droplet (�) or along the boundary
(∂�):

Fk,σ =
{

[D(xσ )(∇̃c)σ · nk,σ ]Lσ , if xσ ∈ �,

−Pc̃σ Lσ , if xσ ∈ ∂�,
(3.2)

with xσ and Lσ denoting the midpoint and length of edge
σ , respectively. The quantities c̃σ and (∇̃c)σ are numerical
approximations to c(xσ , t ) and ∇c(xσ , t ) computed or dis-
cretized by assuming the concentration varies linearly within
each triangular element. The discretized forms for c̃σ and
(∇̃c)σ are expressed in terms of c̃k for k ∈ Nσ , where Nσ is
the set of three nodes corresponding to the three vertices of
the triangular element in which σ is located. In summary, the
finite volume equations (3.1)–(3.2) define a system of linear
ordinary differential equations, expressible in matrix form as

dc
dt

= Ac, c(0) = c0, (3.3)

where c = (̃c1, . . . , c̃N )T , A is an N × N matrix and c0 is the
discretized form of the initial conditions (2.5) and (2.6) with
the kth entry of c0 equal to C0 if xk ∈ �0, C1 if xk ∈ �1 and the
weighted average (|Vk ∩ �0|C0 + |Vk ∩ �1|C1)/|Vk| if xk ∈ �.
The system (3.3) is solved using MATLAB’s built-in ode15s
solver with the default options and tolerances [37].

B. Computing the drug mass

The drug mass in the droplet layers (core and shell) and the
total drug mass are defined as follows:

M0(t ) =
∫

�0

c0(x, t ) dx,

M1(t ) =
∫

�1

c1(x, t ) dx,

MT (t ) = M0(t ) + M1(t ).
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FIG. 4. Schematic representation of the cross section of the droplet comprising an internal circular core �0 and an enveloping shell �1.
Three 2D shapes are considered for �1: circle, ellipse, and bullet, all with the same area. This two-layer emulsion-based vesicle is surrounded
by a surfactant layer (blue boundary) having a mass transfer coefficient P (m/s).

These quantities are calculated from the numerical solution
described in Sec. III A by integrating the piecewise linear
concentration across each element yielding the following
approximations:

M0(t ) ≈
∑

E∈T�0

mean{̃ck (t ) | k ∈ NE } · |E |, (3.4)

M1(t ) ≈
∑

E∈T�1

mean{̃ck (t ) | k ∈ NE } · |E |, (3.5)

MT (t ) ≈
∑
E∈T�

mean{̃ck (t ) | k ∈ NE } · |E |, (3.6)

where NE is the set of three nodes corresponding to the three
vertices of triangular element E and |E | is the area of element
E . With the masses in both layers calculated, the fractional
released mass, i.e., the fraction of the initial mass that has
been released at time t , is computed as

Mr (t ) = 1 − MT (t )

MT (0)
. (3.7)

Note that Mr (0) = 0 and limt→∞ Mr (t ) = 1 since
limt→∞ M0(t ) = limt→∞ M1(t ) = 0. The release time,
defined as the time t∗ at which Mr (t∗) ≈ 1, is specified
in the next section.

IV. RESULTS AND DISCUSSION

Among a variety of configurations, we want to analyze the
sensitivity of the release with respect to the properties of the
shell �1 for varying mass transfer coefficient P and diffusion
coefficient D1, when the core �0 and the initial drug mass
are kept unchanged. The parameters used are consistent with
typical values in the literature and listed in Table I.

To fix ideas, without loss of generality, we consider �0 as
a circle centered at the origin with radius R0 = 40 μm (see
Fig. 4). On the other hand, the shape of �1 becomes a key
factor of the release, and we analyze the dependence of the
drug delivery on the geometry of the shell. Three different
shapes are considered for �1, each centered at the origin and
of the same area (see Fig. 4):

Circle with radius R1;
Ellipse with horizontal semiaxis length γ R1 and vertical

semiaxis length R1/γ , where γ > 1;
Bullet-like shape with boundary described by the following

quartic (so-called bean) curve:

(R̂1 − x)4 + (R̂1 − x)2y2 + y4

− 2R̂1(R̂1 − x)[(R̂1 − x)2 + y2] = 0,

FIG. 5. Triangular meshes for the three droplet shapes of equal area: circle (left column) consisting of 1769 nodes and 3408 triangular
elements, an ellipse with e = 0.95 (middle column) consisting of 1797 nodes and 3432 triangular elements, and a bullet (right column)
consisting of 1785 nodes and 3438 triangular elements.
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FIG. 6. Concentration field at t = 1 min (top row), t = 6 min (middle row) and t = 1 h (bottom row) for the three droplet shapes of equal
area: circle (left column), an ellipse with e = 0.95 [γ = 1.8] (middle column), and a bullet (right column) (cfr. Fig. 7). Results are produced
using the meshes shown in Fig. 5 and the parameter values R0 = 40 μm, R1 = 80 μm, D1 = 10−13 m2/s, P = 2 × 10−4 m/s.

FIG. 7. Mass profiles for the three droplet shapes of equal area (cf. Fig. 6). Relative mass = M0(t )/MT (0) (Core), M1(t )/MT (0) (Shell),
MT (t )/MT (0) (Total), and Mr (t ) (Released) [cf. Eqs (3.4)–(3.7)]. Results are produced using the meshes shown in Fig. 5 and the parameter
values used in Fig. 6. Legend applies across all three figures.
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TABLE I. Nondimensional range and value of the parameters.

Model parameters Physical range Simulated values References

R0 (μm) 0.5–50 40 [2,4,16,38,39]
R1 (μm) 50–100 50, 80 [2,4,16,39,40]
D0 (m2/s) 10−9–10−10 10−10 [41]
D1 (m2/s) 10−11–10−13 10−12, 10−13 [41]
P (m/s) 0–1 10−7, 2 × 10−4 [40,42,43]

where choosing R̂1 =
√

3
√

3
7 R1 ≈ 0.8616R1 ensures the area

enclosed by the quartic curve is the same as the areas of the
circle and ellipse above.

For all three configurations, the size of �1 is characterized
by R1, so we choose χ = R1 in the nondimensionalization
(2.7) and (2.8). For the ellipse configuration, the eccentricity,
e, is defined, which is related to γ by the formula e =√

1 − 1/γ 4. At initial time, we assume all the drug is in the
internal core (C0 = 1) while the external shell is assumed
empty (C1 = 0).

First, we present results for the case of R1 = 80 μm
and γ = 1.8. The finite volume discretization outlined in
Sec. III A is performed using the unstructured meshes shown
in Fig. 5. Each of these meshes has an equivalent level of
refinement with the prescribed mesh element size at all points
used to describe the geometries in GMSH set to be equal [44].
Further refining of the mesh did not visually alter the concen-
tration fields (grid independence). Figure 6 shows the concen-
tration field in the case of the different droplet configurations
(left-right) at three times (top-down). It turns out that for
the above parameters, the sensitive values are in the range
10−8 � P � 10−3. In the limit, for P < 10−9, the surface acts
as an impermeable barrier (as P → 0) (release prevented);
for P > 10−1, the droplet surface results in perfect contact
with the surrounding external medium (as P → ∞) (fastest
release).

The effect of the combined multilayer diffusivity is similar
to that of other releasing systems [45]. Drug mass is trans-
ported from the core to the surrounding shell and thereafter
released to the external medium. Mass is monotonically de-
creasing in the core, but is first increasing up to some upper
bound and then decaying asymptotically in the shell layer
(Fig. 7). In the external release medium the mass progressively

TABLE II. Release time for a circular droplet for varying values
of R1 (μm), D1 (m2/s), and P (m/s). All other parameters are held
fixed: R0 = 40 μm and D0 = 10−10 m2/s.

R1 D1 P RT (hr) RT (HH:MM:SS)

50 10−12 2 × 10−4 0.41 00:24:38
50 10−12 1 × 10−7 0.87 00:51:57
80 10−12 2 × 10−4 1.95 01:56:57
80 10−12 1 × 10−7 2.59 02:35:36
50 10−13 2 × 10−4 4.08 04:04:34
50 10−13 1 × 10−7 4.51 04:30:42
80 10−13 2 × 10−4 19.47 19:28:20
80 10−13 1 × 10−7 20.08 20:04:42

TABLE III. Release time (4.1) from ellipsoidal droplets with
the same area as a function of eccentricity. The values of ec-
centricity (e) are rounded to two decimal places and correspond
to γ = 1, 1.2, . . . , 1.9. We also compare with the circular shape
(e = 0) and the bullet shape. All other parameters are held fixed:
R0 = 40 μm, R1 = 80 μm, D0 = 10−10 m2/s, D1 = 10−13 m2/s, and
P = 2 × 10−4 m/s.

Shape e RT (hr) RT (HH:MM:SS)

Circle 0 19.47 19:28:21
Ellipse 0.56 19.01 19:00:53

0.72 17.79 17:47:14
0.81 16.16 16:09:23
0.86 14.33 14:19:46
0.90 12.46 12:27:23
0.92 10.62 10:37:00
0.94 8.86 08:51:18
0.95 7.18 07:10:36
0.96 5.55 05:32:52

Bullet N/A 17.86 17:51:28

accumulates at a time depending on the diffusive properties of
the two-layer droplet and the resistance P. In other words, due
to the absorbing condition (2.4), all drug mass is transferred
to the surrounding environment at a sufficiently long time, and
the total mass is preserved and equals the initial value.

A crucial indicator is the release time (RT), measured here
as

RT = min{t | Mr (t ) � 0.999}. (4.1)

Additional simulations demonstrate that the time and the
size of the mass peak in layer 1 is much more correlated
with the diffusivity and the size of the shell, and much
less controlled by the mass resistance of the surfactant P
(see Table II). A more sustained release occurs in the case
of a surfactant having a smaller mass transfer coefficient
(P = 10−7). In Table III and Fig. 8, we analyze the depen-
dence of the release time from the geometry (ellipses with

FIG. 8. Reduction of the release time [RT, Eq. (4.1)] for
the ellipsoidal-shaped droplet with increasing eccentricity (e) (cf.
Table III). All other parameters are held fixed: R0 = 40 μm, R1 =
80 μm, D0 = 10−10 m2/s, D1 = 10−13 m2/s, and P = 2 × 10−4 m/s.
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FIG. 9. Boundary flux J = −D1∇c1 · n� at x ∈ ∂� and total boundary flux
∫

∂�
J ds at t = 1 h for the three droplet shapes of equal area:

circle (left column), an ellipse with e = 0.95 [γ = 1.8] (middle column), and a bullet (right column) (cf. Fig. 6, bottom row). Results are
produced using the meshes shown in Fig. 5 and the parameter values used in Fig. 6.

different eccentricity and bullet-like shape) of the droplet,
when the area of the vehicles remains the same. It turns
out that the bullet-shaped droplet has a RT comparable with
that of the ellipse with e = 0.72 and shorter of that of the
circle. Figure 9 shows the increased flux J = −D1∇c1 · n�

(colored contour) at the surface due to the higher gradient of
concentration, in correspondence to points of lower curvature.
Moreover, the global flux

∫
∂�

Jds exhibits a faster release
rate for the ellipsoidal droplets. In summary, all these results
demonstrate that an oblate shape promotes a faster drug
delivery, while a round geometry guarantees a more sustained
release.

V. CONCLUSIONS

Multiple emulsions are highly structured fluids consisting
of drops that encapsulate smaller droplets inside. The avail-
ability of such multicompartment vesicles with controlled
size and structure has attracted much attention as robust
and versatile drug delivery systems, in equilibrium with the
external flow. In this work we analyze the structure of a double
emulsion in which each drop contains a single internal droplet,
thus developing a core-shell structure whose core diameter

and shell thickness and shape can be controlled. A two-layer
diffusion model for the drug release is developed and solved
numerically. Results show the importance of the parameters
on the drug kinetics, demonstrating how the oblate shape
exhibits a faster drug delivery, while a round geometry pro-
motes a more sustained release. Additional efforts are needed
to improve microfluidic platforms to generate and analyze
fluid droplets with higher stability and biocompatibility and
to achieve the successful translation of emulsion-based drug
delivery systems into clinical applications. Therefore, in a
future work, we plan to couple the present model with the
microfluidics allowing the investigation of the effects of inter-
action of underlying flow and drug release under conditions
mimicking the in vitro and in vivo systems. The predictive
capability of the model will provide important guidance in
fabricating double emulsions that can guarantee a controlled
drug delivery to the target sites at desired rates and time.
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