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AbstractÐThe unsteady ¯ow of blood in a straight, long, rigid pipe, driven by an oscillatory pressure
gradient is studied. Three di�erent non±newtonian models for blood are considered and compared. One
of them turns out to o�er the best ®t of experimental data, when the rheological parameters are suit-
ably ®xed. Numerical results are obtained by a spectral collocation method in space and the implicit
trapezoidal ®nite di�erence method in time. # 1998 Elsevier Science Ltd. All rights reserved

1 . INTRODUCTION

The desire to understand the ¯ow of blood through the cardiovascular system and prosthetic

devices has stimulated a lot of research activity in hemodynamics. Such studies are of particular

importance because there is indirect evidence that the cause and the developments of many car-

diovascular diseases are, to a great extent, related to the characteristics of blood ¯ow, such as

the high values of the shear stress at the wall or its variation [1±4].

The study of the rheological properties of blood can allow a better understanding of blood

circulation. The latter depends on numerous factors such as the driving force of the heart, the

shape, as well as mechanical and physiological behaviour of the vascular walls [1,5±8].

Blood is a suspension of di�erent cells in a liquid, the plasma: the red cells are by far the

most numerous and it is generally assumed that their in¯uence in blood rheology is predomi-

nant: although plasma is constituted by 90% water, it is commonly accepted that blood is a

non-newtonian ¯uid because the elastic and deformable structure of red cells gives to it a shear

dependent viscosity and a viscoelastic nature [7,9±15].

In this work, however, the liquid blood is considered as a continuum medium. Such an

approach allows the use of physical principles of conservation of mass and momentum to be

applied to the bulk ¯uid and gives meaning to such measured variables as pressure, velocity,

wall shear stress and so on. In the continuum approach, phenomena of interest are governed by

large distances and times compared to the dimension of a red cell or its characteristic rotation

time. The constitutive equation of blood is determined essentially by the plasma viscosity, the

¯exibility of red cells, and the characteristics of this interaction. Due to the complex nature of

blood, a theoretical universal reliable model in the mechanics of continuum is still lacking.

Many di�erent factors may in¯uence the behaviour of blood ¯ow and make this attempt di�-

cult: for example, properties of blood strongly depend upon the hematocrit, a parameter which

di�ers between people and can change in an individual by a signi®cant amount, even due to

e�ects of illness and of temperature [10,11,16,17].

Nevertheless, many mathematical models for describing rheological behaviour of blood have

been extensively developed in recent years [6,9,10,13,18,19].

Though a great e�ort has been invested in steady ¯ows [14,17], very little is known, however,

anout blood rheology in unsteady ¯ows. Actually in a living body the heart generates a pulsatile

¯ow and its ¯uctuations are progressively damped owing to the elasticity of the major arteries;

however, the periodic nature of the blood ¯ow is observed in smaller vessels and arterioles

where the distensibility of the walls is much less and the in¯uence of pulsation frequency

becomes more important. Walls of such vessels can be considered su�ciently rigid and the ¯ow

will be solely determined by the pressure gradient. Knowledge of the magnitude and variation
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of the wall shear stress in an arterial segment is useful in understanding the disease of blood
vessels, and constitutes an important hemodynamic factor [3,16,20].

Because of the limitation of experimental methods in oscillatory ¯ows, mathematical models
and numerical simulation play a crucial role in the analysis of the ¯ow and may give useful ad-
ditional information, particularly when the geometry is complicated such as in the arterial ¯ow.

The purpose of this work is to compare the behaviour of three mathematical models for
blood: the ®rst two of them are able to capture some of the physical properties of blood in pul-
satile ¯ow and the third one, recently proposed in [21,22], is a combination of them. Actually,
although it has been well established that blood is both a viscoelastic and a shear-thinning ¯uid,
the meaning and the magnitude of the rheological parameters have not been yet clari®ed. Due
to the high nonlinear behaviour of these non±newtonian models, some appropriate simpli®ca-
tion on the ¯ow is necessary. Here we considered the one-dimensional laminar ¯ow in a pipe of
in®nite length, in the axisymmetric approximation, with a known, pulsatile pressure gradient.
Although this ¯ow appears to be oversimpli®ed and unrealistic to describe the blood circulation,
nevertheless, as a prototype, it is extremely useful to set up the model and to understand its
main characteristic features, in view of more complex applications.

Other mathematical models for unsteady pipe ¯ows with pressure gradients of di�erent type
have been developed and solved analytically or numerically [13,18,23±28].

For all the models presented, the motion equations express a nonlinear coupling between
stress and velocity ®elds and have to be solved numerically. The spatial operator is ®rst linear-
ized and then solved by a collocation spectral method over the Legendre Gauss±Lobatto points.

The linear time operator is solved by a trapezoidal ®nite di�erence method. The ¯ow depen-
dence on the dimensionless parameters has been investigated carefully. The numerical results
obtained by integrating the momentum equations have been compared ®rst with the analytical
solution available for the newtonian ¯uid [29] or for the Maxwell ¯uid [25], and then with other
numerical studies in literature: similarities have been pointed out and di�erences discussed.

2. MATHEMATICAL MODELS

It is generally accepted that the newtonian assumption for the constitutive nature of blood is
adequate only for ¯ow in larger vessels. However, at low shear rates (<100 sÿ1) as well as in
¯ows in smaller vessels, blood ¯ow is not well described by the Navier±Stokes model [7,16,17].
Actually the average shear rate at the wall of arteries is greater than this, and we shall assume
blood to be newtonian in that region. Nevertheless, near the center of the vessel, or in separated
regions of recirculating ¯ow, the average value of shear rate will be small. Furthermore, in pul-
satile ¯ows, the wall shear stress vanishes twice per cycle, and there are instants where it is con-
siderably small.

In the last decades, many mathematical models have been studied to set a reliable constitutive
equation for blood, in the attempt to model either the nonlinear dependence of the viscosity on
the strain rate, and the viscoelastic e�ects such as stress relaxation [6,13,19,31,32]. Due to the
variable behaviour and the complex chemical structure of this liquid, none of the constitutive
equations studied so far seems to be completely satisfactory for all kinds of ¯ow regimes.
Recently, a new model is being developed for blood [21,22]: in the following we study separately
the two components it has been built up, each of them being able to predict some particular
properties, in order to understand the role of the di�erent concurrent forces on the ¯ow.

The Cauchy stress tensor T is split into an isotropic part due to the pressure p and an extra-
stress S:

T � ÿpI� S �1�
While the plasma is a ¯uid with no signi®cant departure from newtonian behaviour, when red
cells are present in plasma the viscosity of the whole mixture increases considerably. Marked
non-newtonian properties are evidenced for concentrations >10% [16]. When the value of hem-
atocrit is held ®xed and shear stress is plotted vs shear rate it turns out that the viscosity is not
a constant, but a decreasing function as depicted in Fig. 1. This leads to the following:
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2.1. Generalized newtonian model (GN)

S � m�A1�A1 �2�

with:

A1 � L� LT L � grad v

and

m�A1� � Z1 � �Z0 ÿ Z1�
1� log�1� L _g�

1� L _g

� �
_g � 1

2
tr�A2

1�
� �1

2

�3�

Z0, Z1 are the asymptotic apparent viscosity as gÇ40 and 1 respectively, (Z0>Z1), and Le0 a
material constant with the dimension of time representing the degree of shear-thinning [for
L = 0 m(A1) = Z0=const. and the model reduce to the newtonian one]. The complex nature of
blood is approximated here with a three-parameter shear-thinning model, where the apparent
viscosity is expressed as a decreasing function of the shear rate. At low shear rates, the apparent
viscosity increases considerably. The asymptotic values Z0 and Z1 are common in many other
inelastic shear-thinning models [18,19,24] and their values have set up through experiments (see
Fig. 1) [7]. This is a ®rst attempt to modify the newtonian model for blood with the introduc-
tion of a shear rate dependent viscosity.

2.2. Oldroyd-B model (OB)

S� l1� _Sÿ LSÿ SLT� � m�A1 � l2� _A1 ÿ LA1 ÿ A1L
T�� �4�

with m is a constant viscosity, l1 and l2 two constants having the dimension of time, referred to
as relaxation and retardation time respectively.{

Fig. 1. The shear rate dependent viscosity function [Equation (3)].

{The dot over a variable f (scalar, vector or tensor) denotes the material derivative as in: _f=(@f)/(@t) + v grad f.
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The constitutive Equation (4) includes the stress relaxation, the creep and the normal stress
e�ects exhibited by blood, but a constant viscosity. Experimental results show that, mostly in
unsteady ¯ows, blood possesses signi®cant viscoelastic properties [9±11].

Since models GN and OB are representative for two di�erent and independent properties of
the blood, the idea to put them together is in the following:

2.3. Generalized Oldroyd-B model (GOB)

S� l1� _Sÿ LSÿ SLT� � m�A1�A1 � Z0l2� _A1 ÿ LA1 ÿ A1L
T� �5�

where m(A1) is given by Equation (3). Since it is the combination of the GN and OB models, it
captures the characteristics of both and it is expected to give the best ®t of experimental data.

All the models reduce to the newtonian one for some values of the material parameters. The
use of these mathematical models turns out to be very sensitive to the choice of the material
parameters. This is a delicate task and deserves a further investigation in a following study.

3 . FLOW EQUATIONS

Let us consider the ¯ow of blood in a straight long{ pipe of circular cross section having radius R.
Blood is assumed to be an isotropic, homogeneous and incompressible continuum, having constant
density{ r, and the vessel walls are considered rigid and impermeable (see Introduction).

The motion equation is:

r
@v

@t
� v � rv � divT �6�

where v = (u, v, w) is the velocity vector and the external forces are supposed negligible.
Let us now consider a cylindrical coordinate system (r, y, z) having the z-axis coincident with

the pipe axis. In the hypothesis of laminar ¯ow, the only nonzero component of velocity is w.
Moreover, since the ¯ow is assumed to be axisymmetric, the ¯uid dynamical variables do
depend on r only, except for the pressure which depends on z only. In such hypothesis the con-
vective term in Equation (6) vanishes.

In the cardiovascular system, the motion of the blood is driven by a local pressure gradient
along the longitudinal direction of the vessel, which in turn is determined by the propagation of
the heart pressure pulse. It is worth noting that the pressure, being essentially periodic, can be
subjected to Fourier series analysis. Therefore, for the sake of simplicity, it is assumed that the
pressure gradient is known as a function of time:

ÿ 1

r
@p

@z
� A cos�ot� 0E tET �7�

Any other complex periodic function, such as the arterial pulse, can be represented in terms of
Equation (7) by a Fourier series.

In case of GN, the constitutive Equation (2), substituted in Equation (1) and in the motion
Equation (6), gives:

r
@w

@t
� ÿ @p

@z
� Z1 � �Z0 ÿ Z1�

1� log s
s

� �
1

r

@w

@r
� Z1 � �Z0 ÿ Z1�

1� log s
s

ÿ
L
���� @w@r ����log s

s2

0BB@
1CCA

2664
3775 @2w@r2
�8�

{Here long means of length large enough compared with the radius of the pipe.
{Blood cannot be regarded as a homogeneous ¯uid in the smallest blood vessels, because the diameters and spacing

of red cells are comparable with the capillary diameter. However, in vessels with diameter >100 mm, it can be e�ec-
tively considered as a homogeneous ¯uid, because the scale of the microstructure is much smaller than that of the
¯ow.
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where:

s � 1� L
���� @w@r

����
In case OB, the motion equation is coupled with the constitutive equation components:

r
@w

@t
� ÿ @p

@z
� @Srz

@r
� Srz

r

Srz � l1
@Srz

@t
� m

@w

@r
� l2

@2w

@r@t

� �

Szz � l1
@Szz

@t
ÿ s

@w

@r
Srz

� �
� ÿ2ml2 @w

@r

� �2

�9�

Similarly, in the case of GOB, we get the following set of nonlinear equations:

r
@w

@t
� ÿ @p

@z
� @Srz

@r
� Srz

r

Srz � l1
@Srz

@t
� Z1 � �Z0 ÿ Z1�

1� log s
s

� �
@w

@r
� Z0l2

@2w

@r@t

Szz � l1
@Szz

@t
ÿ 2

@w

@r
Srz

� �
� ÿ2Z0l2

@w

@r

� �2

�10�

The boundary conditions associated to the physical problem are given by:

w � 0 at r � R �11�

(no slip velocity at the wall) and

dw

dr
� 0 at r � 0 �12�

(axisymmetry). Any initial condition consistent with Equations (11) and (12) does not a�ect the

solution, apart from a short transient.

Though Equations (10) reduces to Equations (9) for L = 0, and to Equation (8) for

l1=l2=0, each of the three models has its own characteristics and may require a special treat-

ment. For example, GN formally exhibits a lesser number of variables but, as a counterpart, a

spatial derivative one order greater than OB and GOB, and has to be solved separately.

By introducing the following change of variables:

r4
r

R
z4

z

R
t4

Wt

R

p4
p

rW2
w4

w

W
Srz4

Srz

rW2
Szz4

Szz

rW2

with W a characteristic velocity and by de®ning the following dimensionless constants:

Re � RW

�
g � Z1

Z0
A� � AR

W2
T� � TW

R

l�1 �
l1W
R

l�2 �
l2W
R

L� � LW
R

o� � oR
W

with n = Z0/r (n = m/r in the OB case) the kinematic viscosity, the Equation (8), the systems (9)
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and (10) are nondimensionalized respectively as:

@w

@t
�ÿ @p

@z
� 1

Re
g� �1ÿ g� 1� log d

d

� �
1

r

@w

@r
� g� �1ÿ g� 1� log d

d
ÿ
L�
���� @w@r ����log d
d2

0BB@
1CCA

2664
3775 @2w@r2

8>><>>:
9>>=>>; �13�

where:

d � 1� L�
���� @w@r

����
@w

@t
� ÿ @p

@z
� @Srz

@r
� Srz

r
�14�

Srz � l�1
@Srz

@t
� 1

Re

@w

@r
� l�2

@2w

@r@t

� �
�15�

Szz � l�1
@Szz

@t
ÿ 2

@w

@r
Srz

� �
� ÿ2 l�2

Re

@w

@r

� �2

�16�

and

@w

@t
� ÿ @p

@z
� @Srz

@r
� Srz

r
�17�

Srz � l�1
@Srz

@t
� 1

Re
g� �1ÿ g� 1� log d

d

� �
@w

@r
� l�2

@2w

@r@t

� �
�18�

Szz � l�1
@Szz

@t
ÿ 2

@w

@r
Srz

� �
� ÿ2 l�2

Re

@w

@r

� �2

�19�

and

ÿ @p
@z
� A�cos�o�t� 0 � t � T� �20�

equations to be solved for 0ErE1.

3.0.1. Remark 1. When some parameters are set to zero, each model reduces to the newtonian

one and an analytical solution can be found [29]:

wn�r; t� � ÿi A
�

o�
eio

�t 1ÿ J0�r
�����������������ÿio�Re
p �

J0�
�����������������ÿio�Re
p �

� �
�21�

(nondimensional Womersley solution), where i is the imaginary unit and j0 denotes the Bessel

function of the ®rst kind, zero order and complex argument{
The constant

������������
o�Re
p

is a nondimensional parameter characterizing kinematic similarities in

oscillating ¯ows (Womersley number). For small values of it, as happens in the microcirculation,

the Bessel function can be expanded in series and retaining only the quadratic terms, we obtain:

wn�r; t� ' ÿi A
�

o�
eio

�t 1ÿ 1� io�Rer2

4

1� io�Re
4

" #

and, returning to the real part,

{Similarly, an exact solution if available for the Maxwell ¯uid (model OB with l*
2=0) [25].
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wn�r; t� ' A�Re�1ÿ r2�
4

cos�o�t�

The velocity is in phase with the pressure distribution, the amplitude being a quadratic function
of the radius as is in the steady case [30].
3.0.2. Remark 2. Note that Equations (16) and (19) have no spatial derivative in Szz and the

solution can be found numerically at each time step once the values for w and Srz are known.
3.0.3. Remark 3. In the GN case, we have:

Srz � 1

Re
g� �1ÿ g� 1� log d

d

� �
@w

@r
Szz � 0 �22�

4. NUMERICAL METHOD

Equation (13) or the systems of P.D.E.s (14) and (15) are rewritten as:

@f
@t
� L�f� �23�

where f denotes the generical dependent variable/s and L is the generical nonlinear di�erential
operator for spatial terms. The P.D.E. [Equation (23)] is thus split into two subsequent di�eren-
tial problems consisting ®rst in discretizing the spatial operator L with an accurate and e�cient
method, and then in integrating a system of O.D.E.s in time with a low order ®nite di�erence
scheme (method of lines or semi-discretization) [33,34]. Due to the stronger dependence on the
space variables, the higher order and the nonlinearities, the spatial operator L requires a di�er-
ent treatment with respect to the time operator.
4.0.1. Space discretization. A spectral collocation method has been used to discretize the

spatial operator L [33±37].
The unknown function f is approximated by a truncated series of polynomials pk$Pn, where

Pn is the space of polynomials of degree kEn:

f1p �
Xn
k�0

ckpk �24�

Let us denote with Zi, 1E iEnÿ 1 the zeroes of the derivative of the orthogonal Legendre poly-
nomial of degree n in [ÿ1, 1], and Z0=ÿ 1, Zn=1 the extrema points (Legendre Gauss±Lobatto
points). If a representation for p is used in the physical space [canonical Lagrange basis with
respect to the set of (Zi)i = 0, . . . ,n], we have:

p�x� �
Xn
k�0

p�Zi�lk�x� i � 0; . . . ; n �25�

where the basis (lk) is such that:

lk�Zi� � dki

Expressions for derivatives with respect to the same basis are easily obtainable by replacing
coe�cients in Equation (25) with other tabulated values [35].

Equation (23) is then replaced by rescaling the operator L in [ÿ1, 1] and by collocating f at
(Zi)i = 0, . . . ,n, that is:

@f
@t
�Zi� � L�f�Zi�� i � 0; . . . ; n �20�

and boundary conditions are imposed at Z0 and Zn.

Pulsatile blood ¯ow in a pipe 373



4.0.2. Time integration. Once an approximate solution is written down as Equation (24), the
problem is reduced to solving the system of ®rst order O.D.E.s:

dfi

dt
� L�fi�t�� with fi � f�Zi� i � 0; . . . ; n �27�

We choose the following implicit ®nite di�erence scheme for solving the system
[Equation (27)]:

fk�1
i ÿ fk

i � Dt�1ÿ y�L�fk
i � � DtyL�fk�1

i � i � 0; . . . ; n �28�
where the new solution is computed at time t = (k + 1)Dt and y is a parameter chosen to con-
trol the degree of implicitness and hence the stability of the scheme (y-method). It has been
proved that Equation (28) is unconditionally stable if 0.5E0E1 and is second order accurate
for y = 0.5 [33]. The accuracy reached by the spectral method is slightly reduced by the y-
method.

If the spatial operator is nonlinear, as in Equation (13), we replace it by a linear one accord-
ing to the following iterative scheme:

LD�f� � A�f�h 1

r

@f
@r

� �h�1
�B�f�h @2f

@r2

� �h�1

where A(f) h and B(f) h, computed explicitly, are the terms between square brackets in
Equation (13): the iteration proceeds until convergence is reached. Such linearization of L is
devised in such a way that only the terms corresponding to the laplacian operator LD have
been discretized implicitly at time k+ 1, so that the problem (27) is well posed [33].

In the case of linear system [Equations (14)±(16)], the ®rst two components of f are com-
puted simultaneously at each time step. Then, a value for Szz is obtained by solving
Equation (16).

Finally the nonlinear system [Equations (17)±(19)] is solved by linearized iterations, similarly
to Equation (13), with the term [g + (1ÿ g)(1 + log d)/d] computed explicitly.

An initial condition consistent with the boundary conditions has to be chosen: as a reference
case, we used the exact solution in the newtonian case [Equation (21)] at t= 0. The e�ect of it
disappears after a few (say three) cycles when the ¯ow periodicity is fully developed. Actually
the numerical experiments ran over three periods (more in GOB case) revealing a periodic sol-
ution after an initial transient{
The coe�cients p(Zi) in Equation (25) are then computed at each time step as a solution of

the algebraic linear system of order n+ 1:

�I ÿ DtyLD�fk�1
i � �I � Dt�1ÿ y�L�fk

i i � 0; . . . ; n �29�
This is the major time-consuming step in the integration procedure, because of the iteration
loop within each time step: the system has been solved by a LU factorization of the matrix of
the coe�cients with partial pivoting (routine F04AAF±NAG Library). Other more e�cient
ways to solve it are worth investigating.

Note that the same set of collocation points (Zi) is chosen at each time step and the solution
is computed by interpolation over a set of equidistributed points.

5 . RESULTS

Once the problem has been formulated in a nondimensional form and a numerical scheme
has been implemented as in the former section, the many parameters have been ®xed to some
likelihood to the blood ¯ow: some of them are typical of physiological measurements and are

{Note that if o* = 0cÿ @p/@z = A* = const in Equation (20), the solution tends asymptotically to a steady ¯ow
(Hagen±Poiseuille ¯ow in the newtonian caseÐsee Ref. [30]).
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chosen to obtain a velocity waveform with characteristic similar to the artery velocity pulses,

some others are taken from literature [1,5,17,38]:

r � 1:05 g cmÿ3 Z0 � 180 cP Z1 � 3:96 cP

L � 53:22 sec l1 � 0:8 sec l2 � 0:2 sec

The following physical parameters are assigned:

o � 8 secÿ1 R � 0:1 cm W � 1 cm secÿ1

A � 2600 cm secÿ2 T � 3
2p
o

sec ' 2:35 sec

The time step has been chosen as Dt = TW/2400R 21.Eÿ3 and the solution is computed over

n = 20 collocation points. With this set of parameters the values of the Reynolds and the

Fig. 2. Nondimensional velocity pro®les for model GN at times ta and tb.
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Womersley numbers are within the physiological range of blood ¯ow in small vessels [1,17]

(ReE3 and
������������
o�Re
p � 2).

The numerical solution obtained setting l1=l2=L= 0 is compared with the exact solution

[Equation (21)] in the case of Navier±Stokes ¯uid, to give some estimate on the accuracy and

stability of the numerical scheme. A good agreement is obtained (vvevv1E1.Eÿ4). Then, we allow

one parameter to change at a time to understand the ¯ow response and its sensitivity to the

variation on the physiological and rheological features.

Figures 2 and 3 show the nondimensional velocity pro®les in the last cycle (that is after the

solution has become periodic) at times ta � 11
12T and tb=T. In the pure shear-thinning ¯uid

there is a considerable increase of velocity with L at any time. Also the variation of l1 and

l2 increases the velocity (but with a di�erent order of magnitude or with di�erent sign), and

when the three parameters are changed at the same time, then the pro®le may appear

Fig. 3. Nondimensional velocity pro®les for model GOB at times ta and tb.
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reversed. Sometimes the shear-thinning e�ect ampli®es that of the viscoelasticity, other times
hinders it.

Since the magnitude and the variation of the shear stress at the wall is relevant for the localiz-
ation and prediction of diseases in blood vessels, the time history in the last three cycles is
plotted in Fig. 4. It has been shown that if the shear stress reaches a value >400 dyne cmÿ2 the
endothelial surface is irreversibly damaged, and this might be a factor in atherogenesis [1]. The
results obtained demonstrate a slight reduction in amplitude and a phase shift in the case L$0.
Moreover, in viscoelastic cases, the shear stress has a phase lead ( 21808) over that in the inelas-
tic cases, but its magnitude stays under thecritical value for all times. No di�erence is shown in
OB and GOB cases. Moreover the shear stress, as a function of r, can reverse its direction while
center line velocities do not.

While in GN ¯uid Szz=0 [cf. Equation (22)], in OB and GOB ¯uids the normal stress Szz is
not zero and can reach an order of magnitude larger than the shear stress and is the most sensi-
tive to the variation of parameters (see Fig. 5).

The ¯ow rate at each instant is computed as:

Q �
Z 1

0

2prwdr

In Figs 6 and 7 the time histories of Q are shown for many values of the parameters. An
increase of L causes a noticeable increase of the amplitude, while both amplitude and phase
change along l's and L. Note the di�erent scale for Q in GN and GOB ¯uids.

These results are in accordance with those in Ref. [21] where a ®rst analysis has been devel-
oped and a comparison with real data coming from measurements has been carried out.

6. CONCLUSIONS

Three non-newtonian models have been used to study the one dimensional ¯ow in a cylindri-
cal pipe, in order to simulate the blood ¯ow in a straight arterial segment. The deformability of
the vascular wall has been disregarded and hence, as a ®rst approximation, the arterial wall has

Fig. 4. Nondimensional wall shear stress as a function of time for model GN/GOB.
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been considered rigid. This is not the case of the real blood vessels, which are elastic and vary
their diameter during the cardiac cycle. However, if the relative change in the diameter is of the
order of 10%, the error of magnitude made by assuming a ®xed diameter is small.

Whereas on the one hand the problem studied may appear to be quite simpli®ed and strongly
idealized to model the ¯ow in the cardiovascular system, on the other hand it is a necessary
benchmark to analyze the capabilities of the presented models in the blood ¯ow without other
spurious e�ects. This has revealed to be extremely useful in having con®dence with the many
parameters which it depends on, in a better understanding of the mutual relation between the
forces concurrent to the motion and as a starting point for more realistic ¯ows. Non-newtonian
models in blood circulation have been revealed as extremely useful in small vessels as they pre-
dict peculiar features di�erent from the newtonian cases, reducing to the classical newtonian
model in larger vessels where the Reynolds number is higher.
The spectral method has been successfully used for solving a nonlinear system of P.D.E.s

after a suitable linearization. Velocity pro®les and shear stress along walls have been computed

Fig. 5. Nondimensional normal stress Szz for model GOB at times ta and tb.
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and plotted. For particular values of the parameters, the results match close to those predicted
by the Womersley theory in oscillatory ¯ows. The values of the three parameters characterizing
the models presented are derived both from rheological considerations and from other studies
and have to be carefully identi®ed in order to obtain the best ®tting with experimental data: this
provides insight on the reliability of each model.

Future work needs to be directed to study the ¯ow of blood in a vessel with a variable
(though axisymmetric) section, for example with a stenosis, a bifurcation, and to identify the
model parameters through comparison with actual experimental data: these studies can probably
give a better understanding of the relationship between ¯uid dynamics of a pulsatile blood ¯ow
and arterial disease.

Fig. 6. Nondimensional ¯ow rate as function of time for GN model.

Fig. 7. Nondimensional ¯ow rate as function of time for GOB model.
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