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1. Introduction

Blood is a concentrated suspension of biological micro/nano bodies, including red

blood cells (RBCs or erythrocytes), white blood cells (WBCs or leukocytes) and

platelets (thrombocytes). These cellular elements are suspended in a low-viscosity

aqueous polymeric and ionic solution, the plasma, containing electrolytes and or-

ganic molecules such as metabolites, hormones, enzymes, antibodies and other pro-

teins. These elements are produced in the bone marrow and represent approximately

45% by volume of the normal human blood.1

The study of blood flow in the vascular system is complicated in many re-

spects and thus simplifying assumptions are often made.2 Plasma behaves as a

Newtonian fluid, but whole blood exhibits marked non-Newtonian properties, like

shear-thinning viscosity, thixotropy, viscoelasticity and possibly a yield stress. This

is mostly due to erythrocyte behavior, mainly their ability to aggregate into three-

dimensional microstructures (rouleaux ) at low shear rates, their deformability (or

breakup) and their tendency to align with the flow field at high shear rates.3 In

particular, at rest or at low shear rates (below 1 s−1) blood seems to exhibit a

high apparent viscosity, while at high shear rates there is a reduction in the blood’s

viscosity. Attempts to explain the shear-thinning nature of blood were initiated by

Chien et al.4 in the 1960s. Empirical models like the power-law, Cross, Carreau or

W-S generalized Newtonian fluid models have been obtained, by fitting experimen-

tal data in one-dimensional flows.5,6

Non-Newtonian homogeneous continuum models are very significant in hemo-

dynamics and hemorheology. However, it should be emphasized that blood flow is

Newtonian in most parts of the arterial system and attention should be focused on

flow regimes and physiological conditions where non-Newtonian effects are likely

to be observed. These include, for normal blood, regions of stable recirculation like

in the venous system and parts of the arterial vasculature where geometry has

been altered and RBC aggregates become more stable, like downstream at stenosis,

inside a saccular aneurysm or in some cerebral anastomoses. In addition, several

pathologies are accompanied by significant changes in the mechanical properties of

blood and this results in alterations in blood viscosity and viscoelastic properties,

as reported in a recent review article.7

One of the most frequent abnormalities of the vascular system is the partial

occlusion of blood vessels due to stenotic obstruction related to atherosclerosis.

There is strong evidence that hemodynamical factors such as flow separation, flow

recirculation, low and oscillatory wall shear stress play a major role in the devel-

opment and progression of atherosclerotic plaques and other arterial lesions,8 but

their specific role is not completely understood. The mathematical and numerical

study of meaningful constitutive models, that can accurately capture the rheological

response of blood over a range of physiological flow conditions, is recognized as an

invaluable tool for the interpretation and analysis of the circulatory system func-

tionality, in both physiological and pathological situations.9 In the present work
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blood is considered as an inelastic shear-thinning fluid modeled by the Carreau

non-Newtonian law of viscosity.

Due to the geometrical complexity of the vascular system, even relatively coarse

meshes of the regions under analysis can feature millions of elements, leading to very

demanding simulations. For this reason, any improvements in the numerical schemes

used in flow computations can give access to the solution of problems that were

before out-of-reach or enable a faster solution of problems that can nowadays take

many hours. In this paper, we will explore the possibility of using an unstructured

variant of the lattice Boltzmann method to solve relevant problems in small-scale

hemodynamics.

In the last decade lattice Boltzmann (LB) methods have undergone a major

progress as an alternative to the discretization of the Navier–Stokes equations for

the numerical solution of hemodynamical problems.10 The standard LB draws much

of its conceptual simplicity and computational efficiency from the fact of being for-

mulated in a uniform Cartesian mesh. However, uniform Cartesian grids also rep-

resent a severe limitation for many practical engineering and biomedical problems

involving real-life complex geometries. Therefore, in the recent years, much research

has been directed to the goal of enhancing the geometrical flexibility of the LB

method. Indeed, starting from the earliest finite-volume formulations more than a

decade ago,11 today many options are available to deal with realistically complex

geometries.12–14 An interesting development is represented by finite-volume formu-

lations on fully unstructured grids (ULBE).15 Here the methodology is extended

to a more general class of fluids with a shear rate-dependent viscosity, such as the

shear-thinning flows.

A preliminary objective of this paper is to validate the fully-developed veloc-

ity profile obtained numerically as described in Sec. 3, using benchmark solutions

that are available for this simplified problem16,17 and that will be introduced in

Sec. 4. Besides comparisons with analytical solutions, we also present results on

an idealized stenosed vessel, and validate ULBE against a finite element solution

(Sec. 5).

2. Flow of Shear-Thinning Fluids

We consider the mass and momentum conservation equations for the isothermal

flow of an incompressible fluid in a bounded region Ω ⊂ R
2:







ρ

(

∂u

∂t
+ u · ∇u

)

= div σ(u, p) in Ω, ∀ t ∈ I

div u = 0 in Ω, ∀ t ∈ I

, (2.1)

where I = (0, T ] is the time interval, ρ is the fluid density, and (u, p) are the

unknown velocity and pressure. Here σ is the Cauchy stress tensor, described

through a constitutive relation intended to capture the rheological behavior of

blood. In the simplest case, the Newtonian fluid, this constitutive relation is given
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by σ = −pI+µ(∇u+∇uT ), where µ, assumed constant, is the dynamical viscosity

of blood.

While this linear relation between stress and strain expressed by the Navier–

Stokes equations is acceptable for modeling blood flow in large arteries, at least

away from the walls, the rheological behavior of blood, induced by the aggregation

and deformability of RBCs, becomes more important at low shear rates (<100 s−1)

or in smaller vessels, where flows cannot be well-described by a simplistic linear

constitutive equation.4

In the microcirculation, both the Reynolds and Womersley numbers are small

because of the small size of the vessels and the low flow velocities. Moreover, near

the center of the large vessels, or in separated regions of recirculating flow, the aver-

age value of shear rate is generally small. In all these cases, the viscosity cannot be

considered as a constant, but must be treated as a decreasing function of the rate of

shear γ̇. In the recent years, many constitutive models have been proposed to cap-

ture the material properties blood, in particular models describing the dependence

of viscosity on the strain rate.18 Due to the complex structure of blood and to the

variability of flow conditions across the circulatory system, no model seems to be

completely satisfactory. Different models must be considered, according to the flow

characteristics in the region of interest. Experimental evidence shows that, while

the plasma can be considered a Newtonian fluid, when red cells are present the vis-

cosity of the whole mixture increases considerably at low shear rate (shear-thinning

fluid).19 Actually, the RBCs tend to aggregate when the shear stress is small and,

as a consequence, the apparent viscosity raises. As the shear rate increases, the

aggregates are broken and red blood cells become individualized, resulting in a

decrease of the apparent viscosity. At very high shear rates, the stresses are suffi-

cient to deform the cells extensively, aligning with the main flow and reducing the

dissipation of energy, which results in a further decrease of the viscosity.

From the modeling point of view, the shear-thinning viscosity of blood is in-

troduced through a constitutive relation where viscosity depends on shear rate γ̇,

more precisely, the Cauchy stress tensor is given by σ = −pI + µ(γ̇)(∇u + ∇uT ).

The viscosity function µ(·) is prescribed a priori by curve fitting from experimental

data. Many viscosity models were proposed in the literature7 but, as long as they

provide a good fit to experimental viscosity data, there is no reason to prefer one

over the other. These models generally take the form

µ(γ̇) = µ∞ + (µ0 − µ∞)F (γ̇) ,

where µ0 and µ∞ are the asymptotic viscosities at zero and infinity shear rates, and

F (γ̇) is a smooth function making the transition between the asymptotic viscosities.

In this study, we use the Carreau model9 given by

µ(γ̇) = µ∞ + (µ0 − µ∞)(1 + (λγ̇)2)(n−1)/2 . (2.2)

As mentioned before, the parameters are estimated from experimental data,

using a nonlinear least-squares technique. The most sensitive parameters are µ0
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Fig. 1. The shear-thinning viscosity curves for three values of λ.

and λ. They are in fact extrapolated from data because of technical difficulties in

measuring viscosity at low shear rates (less than 1 s−1). The parameter λ, with

dimensions of time (sometimes abusively referred to as a relaxation time), controls

the transition region where the viscosity drop occurs and can significantly affect

the numerical results (see Fig. 1). It is found that λ varies considerably with the

population datasets (gender, age, race, etc. . . .) and small errors in blood viscosity

measurements can affect its numerical value. In the following, we will use a basic

set of parameters taken from Ref. 20 and analyze the sensitivity of the model to

variations of the parameter λ.

3. The Lattice Boltzmann Equation on Unstructured Grids

The lattice Boltzmann method (LBM) has become an established numerical ap-

proach in computational fluid dynamics for solving a wide range of complex fluids

and flows, including non-Newtonian and blood flows.21 The LBM is based on a

minimal kinetic Boltzmann equation in which representative particles evolve on a

regular Cartesian grid according to simple streaming and collision rules, designed

in such a way as to preserve the conservation laws of fluid dynamics. This method

features a number of advantages over conventional CFD methods, i.e. simplicity,

amenability to parallel computing, ease in handling complex flows, but the use of

constant particle speeds in space necessarily imposes a spatially uniform Cartesian

grid. This represents a severe limitation for many practical applications, particu-

larly for complex geometries where a selective distribution of the computational

degrees of freedom in the “hot” regions is necessary. Among the various options to

enhance geometrical flexibility,10,13 an interesting one is represented by the finite
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volume formulation on unstructured grids.11,15,22 The Unstructured Lattice Boltz-

mann Scheme (ULBE for short) solves the differential form of the lattice Boltzmann

equation:

∂tfi + ci · ∇fi = −
(fi − f eq

i )

τ
(3.1)

where the velocity-space is discretized into a finite number of particle states i. The

variable fi(x, t) ≡ f(x,v = ci, t) (density distribution function or population) is

the probability of finding a particle at site x, at time t and moving along the lattice

direction defined by the discrete speed ci. The right-hand side of the above equation

is the Bhatnagar–Gross–Krook (BGK) collision operator, which represents particle

interactions via a single-time relaxation towards local equilibrium f eq
i on a single

timescale τ . This relaxation timescale fixes the kinematic viscosity of the LB fluid,

according to ν = c2
s(τ − ∆t/2). The local equilibrium distribution is given by the

Maxwell–Boltzmann distribution expanded in Taylor series of the fluid speed up to

second-order:

f eq
i = ρwi

[

1 + βui +
1

2
(β2u2

i − βu2)

]

(3.2)

where ui = u · ci, β = 1/c2
s, cs being the lattice sound speed, ρ the fluid density,

u the fluid speed and wi the associated weight coefficients. Through a Chapman–

Enskog analysis, the LBM is proved to reproduce the Navier–Stokes equations near

the incompressibility limit. The fluid macroscopic variables are calculated as mass

density ρ =
∑

i fi, velocity u =
∑

i cifi/ρ and pressure p = ρc2
s. In order to recover

the correct fluid dynamic equations in the macroscopic limit, the discretization

of the velocity space must be performed in such a way as to conserve mass and

momentum, as well as rotational symmetry. In this work, the two-dimensional nine-

speed model (known as D2Q9) is used23:

c0 = (0, 0) , c1 = (1, 0) , c2 = (0, 1) ,

c3 = (−1, 0) , c4 = (0,−1) , c5 = (1, 1) ,

c6 = (−1, 1) , c7 = (−1,−1) , c8 = (1,−1) ,

with weights w0 = 4/9, w1−4 = 1/9, w5−8 = 1/36 in Eq. (3.2). In the ULBE

approach, the lattice Boltzmann equation within BGK approximation is solved by

means of a cell-vertex finite-volume scheme applied to fully unstructured grids. The

computational domain is subdivided into control volumes of polygonal shape, that

permit to adapt the local grid resolution to boundaries of virtually arbitrary shape.

The nine discrete populations fi(x, t) associated with each node P of the discrete

grid (Fig. 2) represent the unknowns of the problem. The finite volume over which

Eq. (3.1) is integrated, is defined by means of the set of K triangles sharing P as a

common vertex. Since the discrete grid is unstructured, each node is identified by

its coordinates and the connectivity (P , Pk, Pk +1 in Fig. 2) is free to change from

node to node. As shown in Fig. 2, the portion of the control volume [Ck, Ek , P, Ek+1]
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Fig. 2. The cell-vertex finite volume discretization around a grid point P.

that refers to the kth triangular element is built through the union of the two sub-

grid triangles Ω−

k = [P, Ek, Ck] and Ω+
k = [P, Ck , Ek+1], where Ck is the center

of the grid element and Ek and Ek+1 are the midpoints of the edges that share

P as a common vertex. Populations at off-grid points Ek and Ck are calculated

through standard linear interpolations. Application of the Gauss theorem to each

finite volume portion, yields the following set of ordinary differential equations:

∂tfi(P, t) =
1

ΩP

∑

k

(Φik − Ξik) (3.3)

where the sum k = 0, K runs over the control volume ΩP = ∪kΩk obtained

by joining the centers Ck with edge midpoints Ek. Finally, Φik denote the fluxes

associated with streaming operator and Ξik the integral of the collision operators

of the ith population at the kth node, respectively.22 The detailed expressions

of the streaming and collision matrices Sik and Cik = Ckδik , give the following

fundamental system update equation:

∂tfi(P, t) =

K
∑

k=0

Sikfi(Pk , t) −
1

τ

K
∑

k=0

Cik[fi(Pk, t) − f eq
i (Pk, t)] . (3.4)

By definition the following sum rules come out:

K
∑

k=0

Sik = 0 ,

K
∑

k=0

Cik = 1 , ∀ i .

The method has been found to yield the following viscosity:

ν = c2
sτ
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in contrast with standard LB, which features:

ν = c2
s

(

τ −
∆t

2

)

.

As pointed out in Ref. 15, the shift −∆t/2 has far-reaching consequences for the

computational efficiency of high-Reynolds flow simulations. For a NN fluid the

viscosity changes in function of the strain tensor. This means that for the ULBE

simulation the relaxation parameter is changed according to:

τ(t) =
ν(t)

c2
s

. (3.5)

The particle distribution functions at the boundaries are calculated by adding the

edge-streaming fluxes and imposing the macroscopic condition (i.e. u = 0 for no slip)

when computing the equilibrium distribution. The edge fluxes are explicitly evalu-

ated by using linear interpolation at the boundary edges. This boundary treatment

is called covolume method and works for the generic boundary geometries support-

ing relatively strong boundary gradients. The use of regular buffers at inlet/outlet

sections was found to improve the stability of ULBE computations for open flows.

3.1. Extension to NN flows and scaling

A useful property of the LBM is that the strain and the stress tensors are locally

available from second-order moments of the (non-equilibrium) distribution func-

tions:

Γαβ = −
1

2ρτc2
s

Παβ (3.6)

where

Παβ =
∑

i

(fi − f eq
i )ciαciβ (3.7)

and α, β run over spatial dimensions. However, this property is spoiled by standard

LBE, because the body surface does not generally lie on lattice sites (staircase

effects), so that interpolations are required to calculate the aerodynamic force.

This advantage is instead fully realized by ULBE, since nodal unknowns can be

placed exactly on the body surface. By calculating the norm of the previous tensors

as follows:

γ̇ ≡ 2|Γ| = 2

√

∑

α,β

ΓαβΓαβ , σ ≡ |Π| =

√

∑

α,β

ΠαβΠαβ (3.8)

the strain-stress relation results into the following expression:

γ̇ =
σ

ρτ(γ̇)c2
s

(3.9)

and, being µ(γ̇) = ρν(γ̇), from Eq. (3.5) we have:

σ = µ(γ̇)γ̇ . (3.10)
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In principle γ̇ can be obtained by solving the above nonlinear Eq. (3.10) by iteration

at each lattice site. However, due to the slow variation of µ(γ̇)γ̇ on a timescale ∆t,

current practice shows that one can adjust τ along the time integration as follows:

τ(t + ∆t) =
µ[γ̇(t), t]

ρ(t)c2
s

. (3.11)

Note that Eq. (3.10) yields the standard scalar relation σ = µγ̇ in the Newtonian

case.

The LB (overbarred) variables are defined as scaled quantities such that their

combination matches the physical Reynolds number as:

ρUmax(2H)

µ0
= Rephys = ReLB =

ρ̄Ūmax(2H̄)

µ̄0

whence:

β =
µ̄0

µ0
=

µ̄∞

µ∞

=
ρ̄ŪmaxH̄

ρUmaxH
. (3.12)

β is an input parameter that fixes the two limiting LB viscosities and determines

the scaling of LB problem. Physical variables are related to the corresponding LB

variables by:

u =
ρ̄H̄

βρH
ū λ =

βρH2

ρ̄H̄2
λ̄ σ =

ρ̄H̄2

β2ρH2
σ̄

and similarly for the other variables.

4. Validation of ULBE Simulations for Shear-Thinning Flows

In idealized geometries and under particular flow conditions, it is possible to obtain

closed form solutions for some flow problems, such as the well-known Poiseuille

solution for Newtonian flows in a straight pipe.

4.1. Semi-analytical solutions

In order to validate the ULBE technique, we compare it against semi-analytical

solutions, recently introduced by Janela and Sequeira16 and later developed in

Ref. 17.

Under the specific geometry and flow conditions depicted in Fig. 3, the flow

equations simplify considerably. Searching for solutions with the velocity field of

the form u = (u(y), 0)T , yields

τ = µ(γ̇)

(

0 γ̇

γ̇ 0

)

, ∇p = (G, 0)T ,

where γ̇ = u′(y) and σ = −pI + τ . In this case the continuity equation is automat-

ically satisfied and the momentum equations reduce to:

∂τ11

∂x
+

∂τ12

∂y
=

∂p

∂x
⇔

d

dy

(

µ

(∣

∣

∣

∣

du

dy

∣

∣

∣

∣

)

du

dy

)

= G . (4.1)
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y = 0

y = H

y = −H

Fig. 3. 2D flow straight channel geometry.

Assuming regularity and boundedness of the stress tensor, the previous equation

can be integrated explicitly, to yield:

µ(|γ̇|)γ̇ = Gy . (4.2)

Since γ̇ appears in the viscosity function, Eq. (4.2) is in fact a differential equation

in the implicit form and must therefore be solved by an iterative procedure. More

precisely, γ̇(y) is computed from the following fixed point iteration:






γ̇(0)

γ̇(n+1) =
Gy

µ(γ̇(n))

. (4.3)

The convergence of this algorithm depends only on the pressure gradient and on

the properties of the viscosity function. Having in mind the Carreau viscosity law

(2.2), we focus on a class of viscosity functions which are bounded and decreasing

in [0, +∞). The following results are obtained for the Carreau model, but are in

fact more general.

Proposition 1. (Global convergence) If |µ′| ≤ µ2
∞

/(y|G|) then, for every γ̇(0) ∈

[−Gy/µ∞, Gy/µ∞], the fixed point iteration defined by (4.3) converges.

This sufficient condition for global convergence is too strong in many practical

cases (for instance in non-Newtonian blood flow simulations the parameter µ∞ is

of the order of 10−3) and also seems to indicate that convergence is more likely

to occur for small values of y, which is not the case observed numerically. As a

result, we shall derive a local convergence result that is valid over a wide range of

parameters.

Proposition 2. (Local convergence) Suppose that the initial approximation is suf-

ficiently close to the fixed point. Then, if |n − 1| < 1, the fixed point iteration

defined by (4.3) converges linearly.

After computing γ̇, the velocity profile can be recovered by any suitable adaptive

numerical quadrature using the formula

u(y) =

∫ y

−H

γ̇(s)ds . (4.4)
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Fig. 4. (a) Three velocity profiles in a cross-section in the non-Newtonian case, with λ = 0.01,
0.1, 3.313 s (dash-dotted, dotted and dashed lines, respectively) and the corresponding Newtonian
case (λ = 0, continuous line). Due to a larger value of the viscosity at low shear rates, the profile
flattens in the core region. (b) The shear rate viscosity profiles along the cross-section for the same
values of λ.

We observe that the primitive variable is in fact the stress, and that the velocity

is obtained by post-processing. Also the wall shear rate γ̇w and the wall shear stress

σw = µ(γ̇w)γ̇w can be computed directly as primitive variables. In Fig. 4, we exhibit

the velocity and viscosity profiles corresponding to the set of parameters, computed

to a prescribed precision of 10−12, to be used to benchmark the ULBE solutions

introduced in the next subsection.

4.2. Benchmarking of ULBE simulations

The method described in the previous subsection provides benchmark solutions to

the simplified problem outlined in Fig. 3. A parabolic velocity profile with maximum

velocity Umax is imposed at the inflow section and a zero traction condition is

imposed at the outlet. Being the fluid non-Newtonian, a finite entry length must be

covered before the flow becomes fully developed. To this aim, we consider a channel

of length L with a sufficiently high L/H ratio. The chosen geometry and flow

conditions are compatible with blood flow in an arteriole or small artery, namely

ρ = 1 g/cm3 Umax = 2.2 cm/s H = 0.02 cm

µ0 = 0.56 Poise µ0 = 0.0345 Poise
(4.5)

giving rise to Re0 = 0.157. The value of λ is set to vary around a physiological

range.1

A set of ULBE simulations has been carried out with the parameters in Eq. (4.5).

The computational domain has been normalized to the rectangle [−3, 3] × [−1, 1],

covered by a grid consisting of 4149 uniformly distributed nodes (with 27 nodes

at inlet and outlet), 8094 triangular elements, ∆t = 0.005, ρ̄ = 1, β = 0.05 to

cover a wide range of LB admissible viscosities (see Eq. (3.12)). To assess the grid
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resolution, the first simulation concerns the case of the Newtonian flow (µ = µ0 or

µ = µ∞): comparison of the ULBE solution with the Poiseuille velocity profile

u(y) = Umax

(

1 −
y2

H2

)

(4.6)

gives a maximum error E ' 10−5, whereas the discrepancy with the wall shear rate

and stress:

γ̇ =
2Umax

H
and σ =

2µUmax

H
(4.7)

results in E ' 10−4 (see Ref. 21).

In the non-Newtonian case, for λ = 3.31 s, the velocity Umax drops to a lower

value and the profile flattens, with respect to the Newtonian case, due to the vis-

cosity rise towards the channel’s centerline [see Fig. 4(a)].

To study additional flow regimes, the value of λ was varied over a wide range:

the solution goes from a Newtonian regime (λ small) with higher viscosity µ0 (for

all the shear rates experienced during the flow) to another Newtonian regime (λ

large) with a lower µ∞, almost everywhere except near the center where γ̇ → 0

and µ raises up to lim
y→0

µ(r) = µ0 in Fig. 1. Because we are imposing a parabolic

profile at the inflow section, these limiting solutions yield the same velocity profile,

if only with different viscosity and pressure gradient. It is worth noting that LB

methods work properly only within a limited range of the kinematic viscosity ν̄ (in

lattice units), typically range 1/N < ν̄ < 1, N being the number of grid points per

linear dimension. Values below the lower bound may trigger numerical instabilities

in the presence of sharp gradients, due to insufficient small-scale dissipation. Values

above the upper bound, on the other hand, undermine the adiabatic assumption,

i.e. fast enslaving of the stress tensor to its equilibrium value, which lies behind the

hydrodynamic limit of the LB equation.

In the transition shear-thinning region, the solution changes qualitatively, the

shear-dependent viscosity rises in the core region where the shear is low, and the

parabolic shape appears flattened in the center of the channel. It turns out that λ

plays a critical role since its values influences the local viscosity in Fig. 1. Tables 1–2,

Table 1. Values of Umax, effective µ∞ (viscosity at the wall) and WSS for several values
of λ (n = 0.3568). The last two columns display the relative errors with the semi-analytical
solution.

λ Umax µwall WSS G %Err. Umax %Err. WSS

0 2.20 0.56 122.5 6179 0.31 0.87

0.01 2.06 0.29 80.82 4080.5 −0.24 0.96

0.1 1.97 0.09 26.5 1348.5 0.58 1.70

1 2.07 0.04 11.98 605 0.79 1.48

3.31 2.12 0.04 9.6 486 0.57 1.23

10 2.16 0.038 8.55 432 0.08 1.04
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Table 2. Values of Umax, effective µ∞ (viscosity at the wall) and WSS for several values
of n (λ = 3.31). The last two columns display the relative errors with the semi-analytical
solution.

n Umax µ∞ WSS G %Err. Umax %Err. WSS

1 2.20 0.56 122.3 6177 0.27 1.00

0.8 2.13 0.17 40.10 2025 −0.13 0.99

0.6 2.09 0.07 16.84 853 0.55 1.29

0.3568 2.12 0.04 9.6 486 0.57 1.23

0.1 2.17 0.035 7.96 390.2 −3.15 −2.00

0 2.18 0.035 7.76 394 0.60 2.16

show for different values of n and λ, the following quantities: maximum velocity in

the fully developed flow region (Umax); viscosity at the wall (µwall); and wall shear

stress in the fully developed flow region (WSS). The value of the pressure gradient

G is obtained from the ULBE numerical simulations and is needed to construct the

semi-analytical solution. As we can see from Tables 1–2, the ULBE results show a

satisfactory agreement with the semi-analytical solutions in all cases.

5. Flow Through a Stenosed Channel

Next, let us consider a rectangular channel of longitudinal extension [−L, L] with

flat walls everywhere, except for a smooth contraction in a small region centered at

x = 0. This contraction (stenosis) is described by the following analytic function:

H(x)

H0
= 1 − δe−φ(x/H0)

2

(5.1)

where H(x) is the height, 0 ≤ δ < 1 is a measure of the degree of constriction, φ of

its length in Fig. 5. The value of φ should be taken sufficiently small to guarantee

a slowly varying boundary profile. The flat rectangular channel is recovered in the

limit δ → 0. The main numerical parameters of the simulation are:

L = 0.1 cm H0 = 0.02 cm φ = 0.8 δ = 0.3

corresponding to a degree of contraction of about 50%, for a circular cross-section

pipe.24

The pressure gradient, the rheological parameters and LB settings are the same

as in the straight channel flow (λ = 0.15 s, n = 0.3568).

It has been shown that ULBE offers the possibility to concentrate the number of

nodes in the critical regions only, keeping the overall number of degrees of freedom

relatively low.21 In the following simulations, a nonuniform mesh having 3648 nodes

and 7010 elements, refined near the contraction, has been chosen in Fig. 5.

In the present Carreau model, the limiting values for viscosities are µ0 = 0.56

Poise, µ∞ = 0.0345 Poise (LB units: µ̄0 = 0.028, µ̄∞ = 1.725 · 10−3), and the

local viscosity in all simulations is found to remain above the lower bound µmin =

0.062 Poise (LB units µ̄min = 3.10 · 10−3). The viscosity contour lines for the
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Fig. 5. The axisymmetric stenosed rectangular channel defined by Eq. (5.1) covered by a tri-
angular mesh (3648 nodes and 7010 elements) refined in the contraction area. Several layers of
regular elements are added at inlet and outlet.
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Fig. 6. (a) Viscosity (values ∗10) contour lines, and (b) profiles across sections A and B for the
Carreau model Eq. (2.2).

Carreau model are depicted in Fig. 6. For λ > 1, the viscosity exhibits a pronounced

peak along the midline. The velocity profiles are of interest, since they provide a

detailed description of the flow field. At that low Reynolds number and for such a

mild contraction, neither recirculation, nor flow reversal are observed and the flow

appears to be symmetric upstream and downstream the stenosis. The magnitude

of the velocity is larger in the Newtonian case in Fig. 7. In the presence of a

narrowing, the flow exhibits additional resistance, hence an enhanced shear stress.
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Fig. 7. Velocity profiles in the throat (continuous) and few diameters downstream (dashed).
Plots compare the Carreau model µ0 = 0.56, µ∞ = 0.0345, λ = 0.15 (a) to the Newtonian case
µ = 0.0345 (b).
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Fig. 8. (a) Velocity magnitude at the vessel centerline computed with the FEM (solid line) and
the ULBE (dashed line) methods. (b) Wall shear stress along the top wall computed with the
FEM (solid line) and the ULBE (dashed line) methods.

These indicators of flow disturbances bear significant physiological relevance. Since

there is no reliable method of determining the wall shear stress experimentally near

the regions of possible reversal flow, numerical experiments represent a valuable

(non-invasive) tool, because they offer a sufficiently accurate approximation of the

flow configuration. The wall shear stress increases smoothly in correspondence of

the contraction and shows a peak value placed symmetrically at the center of the

throat. Downstream, it goes back to the previous value. The wall shear stress is

higher in NN case, because of the higher shear rate and the higher lower bound

viscosity in Fig. 8. All these results are in qualitative agreement with those obtained

by other models in literature.25



June 21, 2010 9:47 WSPC/141-IJMPC S0129183110015488

810 J. Janela et al.

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

y (cm)

D
iff

er
en

ce

(a)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
0

0.005

0.01

0.015

0.02

0.025

y (cm)

D
iff

er
en

ce
(b)

Fig. 9. Difference between the velocity profiles computed by FEM and ULBE in the throat (a)
and a few diameters downstream (b). The maximum difference is in both cases less than 0.02 and
halved in the finer grid region.

Since for this geometry there is no closed form or semi-analytical reference

solution, as a further validation test, we compared ULBE against finite element

solutions over the same grid for several flow cases. The comparisons are displayed

in Fig. 9 and show satisfactory agreement between the two methods, with a relative

discrepancy of a few percent.

6. Conclusions

Summarizing, we have presented an extension of the lattice Boltzmann method on

unstructured grids to the case of non-Newtonian flows, with specific focus on two-

dimensional blood flow problems. This extension has been validated against a recent

class of analytical solutions for simple geometries, as well as with finite-element

solutions for the case of stenosed channels. In all cases, satisfactory agreement is

found, lending credit to the ULBE methods as a potential new entry in the list of

numerical methods for non-Newtonian flows. Much work remains to be done for

the future. Among others, the extension to three-dimensional geometries appears

as one of the most compelling issues in order to put ULBE on a firm basis for the

simulation of complex hemodynamical flows.
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