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A mathematical model of blood flow through an arterial vessel is presented and the wave propagation in
it is studied numerically. Based on the assumption of long wavelength and small amplitude of the
pressure waves, a quasi-one-dimensional (1D) differential model is adopted. It describes the non-linear
fluid-wall interaction and includes wall deformation in both radial and axial directions. The 1D model is
coupled with a six compartment lumped parameter model, which accounts for the global circulatory
features and provides boundary conditions. The differential equations are first linearized to investigate
the nature of the propagation phenomena. The full non-linear equations are then approximated with a
numerical finite difference method on a staggered grid.

Some numerical simulations show the characteristics of the wave propagation. The dependence of
the flow, of the wall deformation and of the wave velocity on the elasticity parameter has been
highlighted. The importance of the axial deformation is evidenced by its variation in correspondence
of the pressure peaks. The wave disturbances consequent to a local stiffening of the vessel and to
a compliance jump due to prosthetic implantations are finally studied.

Keywords: Wall-fluid interaction; Wave propagation; Blood flow; Multiscale models; Numerical
methods; Stent

INTRODUCTION

Mathematical models for cardiovascular system are

largely used to simulate blood flow in arteries and to

predict dynamical patterns in physiological and patho-

logical conditions. Due to their complexity, comprehen-

sive models are difficult to be settled. Such models depend

on so many variables and parameters that, if not

appropriately simplified, they raise more questions than

useful answers. Complexity derives from geometry, time

dependence and mechanical properties of the wall [1].

Any attempt to model all these aspects with an extreme

degree of detail is to day destined to fail.

According to the specific scale of the phenomenon to be

studied, various degrees of simplification at some levels

have been proposed. One of them concerns the

geometrical dimension of the model. In lumped

parameters models, different complex regions of the

vascular system are collected in simpler compartments

and connected to form a closed loop, in analogy with the

electrical circuits. The number of blocks is related with the

degree of detail desired. Many lumped parameter models

(also called 0D models) have been devised for the full

cardiovascular system [2] and for specific vascular

districts [3]. The main advantage of such an approach is

the possibility to model the circulatory system and

the blood pressure – velocity relationship with a

relatively simple and computationally effective model.

They provide the evolution of the mean flow variables but

do not give any information on the mechanical fluid-wall

interaction.

When wave propagation phenomena are of interest,

one-dimensional (1D) models are commonly used. They

constitute a higher degree of approximation and, based

on the hypothesis that one spatial dimension is prevailing

on the others, are obtained by averaging the motions

equation over the cross section. Many features of the wave

propagation in the arterial system can be understood on

the basis of the linear theory. However, for an accurate

representation and interpretation of observed waveforms,

several non-linear effects are necessary to be included.

The wave dynamics strictly depend on the interaction

between blood flow and arterial wall. A collection of

general problems on the fluid–structure interactions can
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be found in Ref. [4]. For applications in hemodynamics,

an integral formulation for the fluid–wall system has been

recently presented in Ref. [5].

Concerning the fluid forcing at the wall, many authors

make the simplistic assumption that an instantaneous radial

deformation of the wall takes place as a consequence of the

transmural pressure. Actually, the tube deformation is

related to the applied load by a set of differential equations

expressing balances of forces between fluid and structure.

Replacing them by an algebraic law corresponds in

substituting dynamics of the tube by static, and leads to a

gross approximation. A more realistic approach is obtained

when the wall is modelled as a two-dimensional membrane

that deforms under the forces exerted by the fluid [6].

Moreover, in vivo measurements evidence the presence of

longitudinal stretch and stress [7]. Though much smaller

than the radial displacement and generally neglected, the

longitudinal wall motion needs a deeper study, since it

revealed some importance in the analysis of the wall shear

stress and may have interest in the investigation of

pathologies. In this work, a simple 1D model for the fluid-

structure problem describing the blood flow and the wave

propagation in an arterial segment is presented. The wall

constitutive equation for the vascular tissue proposed in

Ref. [8] has been used in “The wall–fluid interaction”

section. A linearization around a reference state is made to

shed light on the nature of the phenomenon and the basic

feature of the propagation features (“Analysis of the

linearized system”).

To take advantage of the 1D model and not give up to

a simple description of the systemic circulation, the idea

of coupling systems of different physical dimensions has

been recently developed (multiscale approach) [9] and

is re-proposed here. The matching interface conditions

between a closed 0D model and a 1D model

inserted at the level of descending aorta is addressed in

“Coupling 0D and 1D models” section. Many compu-

tational results show the effectiveness of such hetero-

geneous approach and point out the dependence on the

physical parameters (“Numerical results and discussion”).

In “Effect of the stent insertion” section a case of clinical

interest is finally studied.

THE WALL–FLUID INTERACTION

The blood flowing in a compliant vessel is a complex

dynamical system and constitutes a genuine fluid–

structure problem. The fluid motion and the wall

deformation are mutually influenced and their coupling

is responsible for effects which cannot be explained by

each of them alone [4]. When wave propagation

phenomena are concerned, simplified models for the

system “blood-arterial wall” can be devised. In

particular, due to the small deformations of the vascular

wall and to the unidirectional nature of blood flow in an

arterial segment, a 1D model is adopted.

The Flow Equations

Let us consider a homogeneous fluid of density r,

viscosity m, flowing in a straight, axisymmetric,

distensible tube of circular cross section. A cylindrical

coordinate system with x as the symmetry axis is used.

Let us consider the quasi-1D cross averaged momentum

equation [1]:

›u

›t
þ u

›u

›x
¼ 2

1

r

›p

›x
þ f ð2:1Þ

where u is the axial velocity, p the transmural pressure,

both averaged over the cross section, and t denotes the

time. The viscous term f is approximated by the friction

term of the Poiseuille steady flow in a tube of radius

R [9,10]:

f . 2
8mu

rR2
ð2:2Þ

As a consequence, the wall shear stress is given by:

t ¼ m
du

dr

����
R

.
4mu

R
ð2:3Þ

Strictly speaking, the expressions (2.2) and (2.3) hold

for a steady flow in a rigid tube, but they are considered

acceptable for quasi steady flows and for small

deformations. However, in 1D models for major arteries,

the fluid viscosity and the wall shear stress can be

neglected and the condition m ¼ 0 is often encountered

[1,10].

The principle of conservation of mass in a deformable

tube is expressed by the following continuity equation [1]:

›R

›t
þ

R

2

›u

›x
þ u

›R

›x
¼ 0 ð2:4Þ

The Wall Equations

Due to its relatively small mass, compared with that of the

fluid, the vessel wall is modelled as an elastic

axisymmetric membrane, that is a 2D thin shell (wall

thickness ! 0). The membrane, which has no bending

stiffness, is capable to deform under the forces exerted by

the fluid (i.e. the shear stress t and the transmural pressure

p-cfr. Eq. (2.3)). Let (xP(s), rP(s)) be the Lagrangian

coordinates of a particle P, with s a parametric coordinate

along the membrane in its symmetry plane. In such

reference frame, the principal deformation ratios in the

axial and circumferential directions are respectively:

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
drP

ds

� �2

þ
dxP

ds

� �2
s

l2 ¼
rP

R*
ð2:5Þ

where R* is the undeformed radius (corresponding to the

zero transmural pressure).
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Since the fluid equations are expressed in Eulerian

coordinates, let us operate a transformation of coordinate

and let us indicate by R(x,t) and S(x,t) the Eulerian

counterparts of the Lagrangian coordinates of a particle of

the membrane (see Ref. [6]). In such coordinate system,

the stretches Eq. (2.5) are written as:

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ R

02

S
02

r
l2 ¼

R

R*
ð2:6Þ

(the prime denotes x-derivative). By balance of forces,

the fluid-membrane equilibrium equations in tangential

and normal directions are provided [6]:

R 0ðT1 2 T2Þ þ RT1
0 ¼ tRð1 þ R

02Þ
1
2

2R00

ð1 þ R
02Þ

3
2

T1 þ
1

Rð1 þ R
02Þ

1
2

T2 ¼ p
ð2:7Þ

Let us now define a constitutive equation for the arterial

vessel that give an expression for T1 and T2 in the Eq. (2.7).

For an incompressible hyperelastic material, it is possible

to define a strain-energy function W as a function of the

principal strains: it represents the elastically stored energy

per unit volume in terms of the strain variables and is a

potential for the stress.

A constitutive strain-energy density function w model-

ling the mechanical properties of the arterial wall has been

recently proposed by Zhou and Fung [8] as:

w ¼ c0ðe
Q 2 1Þ Q ¼ c1E2

1 þ c2E2
2 þ 2c3E1E2 ð2:8Þ

where c0 is a material parameter having the dimensions of

dyn/cm, c1, c2, c3 are non-dimensional constants (with

c1 < c2 and c1, c2 @ c3) and Ek ¼ 1=2ðl2
k 2 1Þ k ¼ 1; 2

are the principal Green strains. Once the form of w is

specified, the mechanical properties are completely

determined, being the stress components (averaged across

the thickness) along the longitudinal and circumferential

directions given by differentiation of w:

T1ðl1; l2Þ ¼
l1

l2

›w

›E1

¼
1

l2

›w

›l1

¼ 2
l1

l2

c0eQðc1E1 þ c3E2Þ ð2:9Þ

T2ðl1; l2Þ ¼
l2

l1

›w

›E2

¼
1

l1

›w

›l2

¼ 2
l2

l1

c0eQðc3E1 þ c2E2Þ ð2:10Þ

The former relations hold in the case of an

incompressible and anisotropic material, wherein princi-

pal directions of strain and stress coincide and express

the property that the instantaneous Young’s modulus

increases with the strain, but with a different amount

in the two directions [7]. Moreover, if jl1j < 1 (or in case

of pure radial deformation), it follows E1 < 0 and

we approximate:

T1 ¼
1

l2

c0c3eQðl2
2 2 1Þ T2 ¼ c0c2eQðl2

2 2 1Þ

In such a case, we have:

T2

T1

¼
c2

c3

l2
2

ANALYSIS OF THE LINEARIZED SYSTEM

Because of the complexity of the mathematical model,

we proceed to a preliminary analysis by using a

linearization of the variables in an infinite domain. This

idealized case is justified because of the small wave

amplitude and is useful to better understand the nature of

the differential problem.

When a compliant tube filled with a liquid at rest or

flowing with constant velocity is disturbed at one place,

the disturbance will be propagated as a wave along the

tube at finite speed. For simplicity, let us take a constant

equilibrium unstressed state ðR* ; S* ¼ x; p* ; 0; u* Þ as

reference configuration,† and let us perturb the system

with infinitesimal quantities (R̃, S̃, p̃, ũ):

R¼R*þ ~R S¼ xþ ~S p¼0þ ~p u¼u*þ ~u ð3:1Þ

In the hypothesis of waves of small amplitude and long

wavelength, let us also assume that R̃0, R̃00, S̃0, ũx, p̃x and their

time derivatives are infinitesimal of the same order.

By neglecting second and higher order infinitesimals,

we have the following approximations (see Eq. (2.6)):

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~R

02
p

<1þ
~R
02

2
<1 1þ

~R

R*

� �21

<12
~R

R*

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~R

02

ð1þ ~S
0
Þ2

s
<

1

1þ ~S
0
<12 ~S

0

l2 ¼
R*þ ~R

R*
¼1þ

~R

R*

ð3:2Þ

It follows that:

E1 ¼ 2~S
0

E2 ¼
~R

R*
Q ¼ 0

Hence, by omitting second order terms:

T1 ¼ 2c0 2c1
~S
0

þ c3

~R

R*

� �

T2 ¼ 2c0 2c3
~S
0

þ c2

~R

R*

� � ð3:3Þ

†For a viscous fluid, u* ¼ 0:
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By replacing Eqs. (3.2) and (3.3) in Eqs. (2.1), (2.4) and

(2.7) we obtain:

~R
0

2c0 ðc3 2 c1Þ~S
0

þ ðc3 2 c2Þ
~R

R*

� 	

þ ðR* þ ~RÞ2c0 2c1
~S
00

þ c3

~R
0

R*

� �
¼ tðR* þ ~RÞ

2 ~R
00

2c0 2c1
~S
0

þ c3

~R

R*

� �
ðR* þ ~RÞ

þ 2c0 2c3
~S
0

þ c2

~R

R*

� �
¼ ~pR*

~ut þ ðu* þ ~uÞ~ux ¼ 2
~px

r
þ f ð~uÞ

~Rt þ
R* þ ~R

2
~ux þ ðu* þ ~uÞ ~Rx ¼ 0

The first two terms in the first two equations are

infinitesimal of second order and will be omitted. Thus,

after integration (along x) of the first equation, the four

equations reduce to:

2c0 c3

~R

R*
2 c1

~S
0

� �
¼

ð
~t dx ; gð~uÞ ð3:4Þ

2c0 c2

~R

R*
2 c3

~S
0

� �
¼ ~pR* ð3:5Þ

~ut þ u* ~ux ¼ 2
~px

r
þ f ð~uÞ ð3:6Þ

~Rt þ
R*

2
~ux þ u* ~Rx ¼ 0 ð3:7Þ

The integration of the latter equations is accomplished

in two steps: by first solving the wall configuration

Eqs. (3.4) and (3.5) and then by updating the flow field

Eqs. (3.6) and (3.7).

Wall Equilibrium Configuration

Let us suppose the flow variables p̃ and g(ũ) are known at a

certain time. By solving Eqs. (3.4) and (3.5) with respect

to R̃ and S̃
0

we get:

~R ¼
R* ðc3gð~uÞ2 c1 ~pR* Þ

2c0ðc
2
3 2 c1c2Þ

~S
0

¼
c2gð~uÞ2 c3 ~pR*

2c0ðc
2
3 2 c1c2Þ

ð3:8Þ

The value of the perturbed deformations are inversely

proportional to c0 and do not depend on p̃ and g(ũ) only,

but also on the reference value R*. For an inviscid fluid,

we have gð~uÞ ¼ 0 and ~R=R* ¼ ðc1=c3Þ~S
0

:

Flow Field

Once the wall configuration is computed at a given

time, the fluid dynamics variables are updated as follows.

Let us now suppose that the viscous resistance is

negligible ðf ð~uÞ ¼ gð~uÞ ¼ 0Þ:
By replacing the expression Eq. (3.8) into Eqs. (3.6) and

(3.7) we get the first order linear system:

~ut þ u* ~ux þ
~px

r
¼ 0

~pt þ
c0ðc1c2 2 c2

3Þ

c1R*
~ux þ u* ~px ¼ 0

that is:

wt þ Awx ¼ 0 ð3:9Þ

where

w ¼
~u

~p

 !
A ¼

u*
1

r

c0ðc1c2 2 c2
3Þ

c1R*
u*

0
BBB@

1
CCCA

The eigenvalues of A:

l1;2 ¼ u* ^

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðc1c2 2 c2

3Þ

c1rR*

s

are real and distinct (system of hyperbolic type) and the

characteristics are the straight lines:

dx1

dt
¼ l1

dx2

dt
¼ l2 ð3:10Þ

The system Eq. (3.9) can be put in normal form as

follows. By defining:

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0ðc1c2 2 c2

3Þ

c1rR*

s
. 0 G ¼

g 1

2g 1

0
@

1
A

L ¼ diagðl1; l2Þ ¼

u* þ g 0

0 u* 2 g

0
@

1
A

ð3:11Þ

we have:

GA ¼ LG ð3:12Þ

Let W ¼ Gw. Combining Eqs. (3.9) and (3.12)

we obtain:

Wt þLWx ¼ 0 ð3:13Þ

or, in scalar form:

ð~p þ g~uÞt þ ðu* þ gÞð~p þ g~uÞx ¼ 0

ð~p 2 g~uÞt þ ðu* 2 gÞð~p 2 g~uÞx ¼ 0

Since in physiological regimes u* ! g the flow is

subcritical and the characteristics have opposite sign.

W1 ¼ ~p þ g~u and W2 ¼ ~p 2 g~u are the two Riemann
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invariants of the hyperbolic system Eq. (3.13): they do not

vary along the characteristic lines Eq. (3.10) and concur to

the formation of the pressure and flow pulses. The

resulting solution is given by linear superposition of a

progressive and of a regressive wave, with finite speeds

u* þ g . 0 and u* 2 g , 0; respectively.

The general solution of the system Eq. (3.13) in terms of

p̃ and ũ is given by:

~p ¼
W1 þ W2

2

~u ¼
W1 2 W2

2g

A general analysis with similar arguments would be

carried out when the linearization is around a reference

(i.e. prestressed) state different from the unstressed

configuration.

BOUNDARY CONDITIONS AND LUMPED
PARAMETER MODELS

The linearized approach described in the previous section is

not appropriate for the study of full non-linear system

fluid–structure modelled by the coupled Eqs. (2.1), (2.4)

and (2.7) and a numerical method will be used. The above

differential equations have to be solved in a finite domain

representing an arterial segment. Such a segment is

extracted from the arterial tree and boundary conditions of

physical significance for the variables are required. To this

aim, the presence of the remaining vascular bed has to be

considered. In Ref. [11], a pulsatile pressure is assigned at

the inlet as a forcing, and a simple Windkessel 3-element

parameter model for the termination is proposed. When

balance of flows and pressures for the systemic circulation

have to be taken into account, models for the closed-loop

system should be addressed. They are built by partitioning

the whole vascular tree in elementary districts and by

“lumping” the dynamical variables in each of them

(lumped parameter models). These models date back to the

pioneeristic works of Westerhof et al., and are based on the

analogy between hydraulic networks and electrical circuits

[12]. As example, in the network proposed by Avanzolini

et al. [2] for the circulatory system, six sections can be

recognized (see Fig. 1). In each compartment the values of

the resistance, compliance and inertial parameters Rk, Ck,

Lk are constant and a linear relationship between flow and

pressure is given. These elementary blocks are linked

between them and connected with the heart pump to form a

closed loop representing the cardiovascular system. By

setting conservation of pressure and flow rate in all nodes of

the network, the following differential system is obtained:

C1

dx1

dt
¼

s1z1

ðRl þ R1Þ
2 x2

L1

dx2

dt
¼ x1 2 R2x2 2 x3

C2

dx3

dt
¼ x2 2 x4

L2

dx4

dt
¼ x3 2 R3x4 2 x5

C3

dx5

dt
¼ x4 2

s2z2

R4

dx6

dt
¼

s2z2

R4

2
s3z3

ðRr þ R5Þ

C4

dx7

dt
¼

s3z3

ðRr þ R5Þ
2 x8

L3

dx8

dt
¼ x7 2 R6x8 2 x9

C5

dx9

dt
¼ x8 2 x10

L4

dx10

dt
¼ x9 2 R7x10 2 x11

C6

dx11

dt
¼ x10 2

s4z4

R8

dx12

dt
¼

s4z4

R8

2
s1z1

ðR1 þ RlÞ

ð4:1Þ

The system describes the time evolution of the mean

values of the variables in each compartment: xi,

i ¼ 1,3,5,7,9,11 indicate pressure, while xi, i ¼ 2,4,8,10,

refer to the flow rates. x6 and x12 are the volume variation

in right and in the left ventricle with respect to a reference

volume. Finally, the variables si represent the state of two

diodes simulating the cardiac valves and are such that:

si ¼
1 zi . 0

0 zi # 0

(
ð4:2Þ

depending on the sign of pressure gradient zi; i ¼ 1; . . .; 4

at their ends. In Ref. [2] the authors simplify

FIGURE 1 The electrical network analogue to a lumped parameter model at six compartments for the human circulatory system (see Avanzolini
et al. [2]).
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the description of ventricular activity by linearizing the

pressure–flow relation during the systolic phase. More-

over, the ventricular compliance during diastole is

assumed constant. By indicating V0 a reference volume,

we have:

PvðtÞ ¼
UðtÞ þ EðtÞðV 2 V0Þ þ R _V ðSystoleÞ

Ed�ðV 2 V0Þ ðDiastoleÞ

(
ð4:3Þ

where V is the ventricular volume and _V its time

derivative. The isovolumic pressure and the ventricular

elastance E(t) are given by the following functions:

UðtÞ ¼ U0aðtÞ; EðtÞ ¼ Ed þ Es aðtÞ;

where

aðtÞ ¼

1
2

12 cos 2p t
ts

� �h i
0# t , ts ðSystoleÞ

0 ts # t , tc ðDiastoleÞ

8<
: ð4:4Þ

and ts e tc are the systolic and cardiac period, respectively.

The present 0D model represents a compromise

between a quite high level of detail for the systemic

circulation and computational simplicity and is used here

as a prototype. The reader can refer to Ref. [2] for further

details.

COUPLING 0D AND 1D MODELS

To account for a comprehensive system of the global

circulation, the lumped model (a) described in “Boundary

conditions and lumped parameter models” and the

distributed model (b) presented in “The wall–fluid

interaction” are coupled. This approach allows to

implicitly assign boundary conditions for the system (b).

Actually these are easily expressed as the functions of

variables of (a) to guarantee the continuity of flow and

pressure at the interfaces. Following Ref. [9], we have

inserted the model (a) in the point of network

corresponding to the descending aorta (Fig. 2). Conse-

quently the 3rd and 4th Eqs. of system (4.1) has to be

replaced by:

C2

dx3

dt
¼ x2 2 Qu ð5:1Þ

L2

dx4

dt
¼ pd 2 R3x4 2 x5; ð5:2Þ

where Qu and pd indicate upstream flow rate and

downstream pressure in model (b).

The coupled system (multiscale model) is equivalent to

a 1D model for the full circulatory system where, except

for a segment, the remaining arterial tree has been

truncated and lumped in a finite number of blocks. On the

other way around, the coupled model can be regarded as

a lumped parameter model where a compartment has

been expanded in a distributed model. The connected

subsystems (a) þ (b) form a unique closed-loop and no

boundary condition for the flow variables is required.

If the coupling strategy eliminates the drawback of

assigning a boundary value for u and p, wall displacement

conditions at the extrema of the compliant vessel have to

be provided. These are given by considering a long vessel‡

with free ends. Therefore, the conditions:

R 0 ¼ R00 ¼ 0 S0 ¼ 1 ð5:3Þ

hold at the ends.{ From Eq. (2.7) it follows that the

implicit relation for R:

Rp ¼ T2 ð5:4Þ

‡Here long means of length much larger than the reference radius R*.
{The conditions (5.3) imply l1 ¼ 1 (null axial strain), see Eq. (2.6).

FIGURE 2 Coupling of 0D and 1D models at the level of the descending aorta. Pressure and flow variables are exchanged at the interface points to
guarantee continuity (by courtesy of Formaggia et al. [9]).
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(law of Laplace) unifies the three conditions (5.3) and is

prescribed at the boundaries. Moreover, the boundary

conditions on S:

Sð0; tÞ ¼ 0 SðL; tÞ ¼ L* ð5:5Þ

expressing a finite axial deformation are imposed.

Thus, we solve the differential system Eq. (4.1) (with

the replacements of Eqs. (5.1) and (5.2)) and the partial

differential system Eqs. (2.1), (2.4) and (2.7), together

with interface continuity conditions. The algorithm

proceeds as follows. At the first time step:

(1) The variables of the lumped system (a) are arbitrarily

initialized. The values of Qu and pd are obtained as

solution of the equilibrium configuration of system

(b) with the boundary conditions pu ¼ x3ð0Þ and

Qd ¼ x4ð0Þ: In such a way the initial profile of the

vessel segment is also computed.

From time t k to time (t þ Dt)kþ1, we proceed by

solving alternately (a) and (b):

(2) The lumped system (a) is solved with the values Qk
u

and pk
d in Eqs. (5.1) and (5.2).

(3) The distributed system (b) is updated. The interface

conditions:

pkþ1
u ¼ xkþ1

3 Qkþ1
d ¼ xkþ1

4

and the Eqs. (5.4) and (5.5) allow to solve the system

(b) and to compute the new values Qkþ1
u and pkþ1

d :
The profiles of R and S are also updated.

The procedure is repeated from point 2 at the

following time steps [9,13].§

NUMERICAL RESULTS AND DISCUSSION

To solve the 1D fluid-structure model numerically, the

Eqs. (2.1), (2.4) and (2.7) are solved simultaneously in a

finite interval [0,L]. Let us consider a sequence of n þ 1

equispaced grid points ðxiÞi¼0;...;n with x0 ¼ 0 and xn ¼ L:
The spatial discretization is obtained by evaluating

membrane strains and stresses (see Eqs. (2.6), (2.9) and

(2.10)) at n inner points ji ¼ ðxi þ xiþ1Þ=2 of a staggered

grid by considering averaged neighboring variables.

On the other hand, wall–fluid equilibrium Eq. (2.7) and

flow Eqs. (2.1) and (2.4) are computed at the n 2 1 inner

points xi [14]. In the following numerical experiments,

the spatial mesh has been obtained by dividing the length

of the vessel L ¼ 8 cm in 800 equal parts ðDx ¼ 0:01 cmÞ

and with a time step Dt ¼ 1024 s: The 1D model is

inserted in correspondence of the descending aortic artery

(Fig. 2) and is solved coupled with the 0D model. The

Runge-Kutta scheme of second order has been used both

in the distributed and the lumped parameter model to

advance in time, as described in previous section.

The choice of the above numerical values guarantees

stability and grid independence. The resulting non-linear

system is solved by a globally convergent Newton type

method.

The following numerical values for the distributed

model are used in Ref. [8]:

c1 ¼ 0:38 c2 ¼ 0:26 c3 ¼ 0:046

R* ¼ 0:8 cm L* ¼ L ¼ 8 cm r ¼ 1:05 g=cm3

In a large vessel, as that considered here, the frictional

force due to the fluid viscosity is comparatively small and

will be neglected. The condition m ¼ 0 implies that f ¼ 0

in Eq. (2.1) and t ¼ 0 in Eq. (2.7) (see “flow equations”).

The value of c0 is varied in the range c0 ¼ 105 2

107 dyn=cm (note that c0 in Eq. (2.8) is obtained by

integration across the wall thickness of the analogous

density energy function in Zhou and Fung [8]). For a lower

value of c0 the vessel wall undergoes large deformations

that cannot be adequately represented by the present

model. For c0 @ 107 the solution approaches to that

relative of a rigid tube (see below). Actually, the values of

R*, p and c0 cannot be chosen independently, but should

satisfy a compatibility condition, being c0 approxima-

tively equal to pR (mean values), in the linear case. The

same parameters Rk, Ck, Lk as in Ref. [2] for the lumped

model have been used.k

Subject to a positive heart pressure cycle Eq. (4.3),

transmitted through the 0D model, the wall expands and

oscillates periodically between a maximum and a

minimum limits. Similarly, all the flow variables have a

periodical behaviour. Actually we recognize a mean value

and small-superposed fluctuations over it. Such values

depend on the elasticity coefficient c0 and of the

undeformed radius R*. In Fig. 3 the time history of the

four variables u, p, R and S in the mid point are depicted

for three different values of the parameter c0. A small

phase lead of p on u is present (see also Fig. 5). For larger

c0 the wall becomes stiffer: as expected, both the radial

and longitudinal deformations decrease with c0, being the

latter comparatively smaller. Despite no significant

variation in the pressure is present (a rise of the systolic

peak of the pressure is obtained only at large c0), a sharp

increase of the flow velocity is reported, correspondent to

the reduced arterial lumen. Some extra oscillations after

the systolic peak may be present.

To measure the influence of c0 on the radial

deformation, let us introduce the mean deformation—

referred to the central point ðx ¼ 4Þ and computed over

the last two periods as:

R̂ ¼
Rmax þ Rmin

2

§Another possible strategy is to advance in time the 1D and 0D systems simultaneously.
kStrictly speaking, such parameters would change when the 1D segment is inserted.
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the mean circumferential stretch l̂2 ¼ R̂=R* and the

non-dimensional radial amplitude Â ¼ ðRmax 2 R̂Þ=R* :
Both l̂2 and Â drop (the former of 45%, the latter of

95%) with c0 in the range considered, until an

asymptotic value (Fig. 4).

The velocity of the wave can be obtained by fixing

two points in the vessel and measuring the crossing

time of a peak. However, such a procedure is not

accurate over a short length and for the time and space

steps as those selected in this work. Moreover,

the profiles change their shape as they travel, and

it is difficult to follow a profile in time. As a

consequence, the computed speed value measured for u,

p and R between the same grid points may be different,

and varies in time. For c0 ¼ 2·105 dyn=cm; an averaged

value of the speed for u wave is found of about

6–7 m/s.

Khir and Parkers [15] suggest another method to

measure the wave speed g in elastic tubes in the

absence of reflected waves. It is based on the validity of

the water-hammer equation dp ¼ ^rg du and consists

in measuring the slope of the PU loop curves. For a

typical PU loop as that displayed in Fig. 5, the

local wave speed is g ¼ 5:2 m=s; in agreement

with experiments. The theoretical estimate of g

in the linearized case (see Eq. (3.11)) predicts a much

lower approximation of the wave speed (<2.46 m/s).

This is because an unstressed reference configuration

has been considered.

EFFECT OF THE STENT INSERTION

One of the most frequent anomalies of the vascular system

is the local stiffening of the wall due to the deposit of

lipids and other substances. This induces the formation of

an atherosclerotic plaque, which reduces the arterial

lumen, and, to avoid surgical operations, the insertion of a

endoprosthesis (stent) is a useful procedure to enlarge

the arterial wall and to restore the correct flow. Despite its

complex geometrical structure and a variety of mechanical

characteristics, a stent can be schematically represented

with a cylindrical meshed metal sleeve placed in the vessel

to correct excessive narrowing of the section (i.e. stenosis)

[16]. Although the stent implantation changes the

geometry of the vessel and consequently induces

important disturbances in the local flow, a relevant effect

in the wall–fluid interaction are the change of the

compliance due to the abrupt variation of the elasticity

coefficient and the characteristics of the propagation [13].

In an artery of elasticity coefficient c0, let us consider a

stent of length 2s centered in a point x* and with elastic

constant cs . c0. Therefore, the elasticity parameter along

the stented artery is subjected to an abrupt change given by:

cðxÞ ¼
cs if jx 2 x* j , s

c0 otherwise

(

but, to avoid a compliance mismatch between the relatively

rigid stented segment and the distensible vessel, the elastic

FIGURE 3 Time histories for u, p, R, S at the center of the artery for three values of the elasticity coefficient c0ðc0 ¼ 105 dyn=cm dotted line,
c0 ¼ 2·105 dyn=cm continuous line, c0 ¼ 5·106 dyn=cm dashed line).
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FIGURE 4 Mean circumferential stretch l̂2 (above) and non-dimensional radial amplitude Â (bottom) at the center of the vessel as a function of c0.
Starred points are results from simulations, continuous curves are obtained by a cubic interpolation. Note the different order of magnitude.

FIGURE 5 PU loop curve for c0 ¼ 2·105 dyn=cm in the central point of the vessel. Slopes of such a curve indicates the local wave speed. A phase lag
between the two variables is present.
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parameter is modelled by a continuous rapidly changing

function:

cðxÞ ¼ c0 1 þ de2
x 2 x*

s
� �8� �

d ¼
cs 2 c0

c0

ð7:1Þ

(for cs ¼ c0 an uniform elasticity coefficient is recovered).

The effect of a physiological local hardening of an artery and

the mechanical properties of stents can also be roughly

modelled by varying the value of d and s.

In the numerical simulations, we fixed L ¼ 8 cm;
x* ¼ 4 cm s ¼ 1 cm; c0 ¼ 2·105 dyn=cm (corresponding

to a stent 2 cm long placed at the center of the tube) and

we varied cs in Eq. (7.1) up to cs ¼ 109 dyn=cm:
As expected, the maximum values of the deformation

and of the pressure at the center of the tube are reduced

with cs=c0; and the asymptotic value of rigid wall is

attained (Fig. 6). A sensible variation of the variables with

respect of the unstented case occur only in correspondence

of the peak of the systolic phase (Fig. 7), while the wave

frequency remains unchanged with c. The crossing time of

the wave in the stented artery is found up to three times

lower than the correspondent time in the unstented case.

CONCLUSIONS

Mathematical models predicting the wave propagation

characteristics of an arterial vessel are of interest for the

clinicians. The outcome of such models constitute

physiological indicators of diagnostic significance and

FIGURE 6 Ratio between the stented and unstented maximum values of the deformation (continuous line) and pressure (dashed line) at the center of
the artery vs. cs=c0ðc0 ¼ 2·105 dyn=cm; s ¼ 1 cm). The values drop to the rigid tube values for cs < 100c 0:

FIGURE 7 Time histories for u and p at the center of the stented artery (bold line), compared with the same variables in the unstented artery (thin line,
cfr. Fig. 3) ðc0 ¼ 2·105dyn=cm; cs ¼ 1000 c0; s ¼ 1 cm).
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their anomalies can be used to detect pathological states in

vascular system.

The dynamics of the blood flow in an arterial

segment has been studied in relation to the elastic non-

linear properties of the vessel wall. The mechanical

fluid–wall interaction is described by a 1D model and

is expressed by a set of four non-linear partial

differential equations. The hyperbolic nature of the

propagation phenomenon has been analyzed in the

linearized case. To account for a global circulation

features, the distributed model has been coupled with a

comprehensive lumped parameter model, which provide

the proper boundary conditions by reproducing the

correct waveforms entering into the vessel and avoid

unphysical reflections at the outlet. This constitutes an

improvement of the previous study where a simple

Windkessel model has been used to approximate the

arterial termination. For its multiscale structure, the

present model depends on many physical, geometrical

and material parameters. To discriminate among them,

the emphasis has been put on the wall elasticity, which

greatly affects the wave propagation. On the other hand,

the fluid viscosity has been disregarded because of its

small influence.

The model has some limitations: one is due to

the mechanics of the wall, approximated as a thin shell

with negligible inertia and no bending stiffness. Never-

theless, by including the longitudinal deformation, it

reproduces the waveforms and the pressure pulse quite

well, and offers a predictive insight in propagation

phenomena. The model is adaptable for variable elastic

properties of the vessel and the modified flow and structure

pattern consequent to a prosthetic insertion has been

investigated.

Numerical simulations have focused on the effect of the

elastic properties on the flow and on the wall deformations

and the results, though within a limited range of

parameters, agree with physiological measurements with

a good level of accuracy. The solution turns out to be much

sensitive to the distributed and lumped parameters and

a more realistic estimate of them should be done on

the basis of experiments and clinical data.
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