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Recent developments of the lattice Boltzmann method for large-scale haemodynamic
applications are presented, with special focus on multiscale aspects, including the
self-consistent dynamics of suspended biological bodies and their coupling to surface
structures, such as the glycocalyx, in the proximity of endothelium using unstructured
grids. The description of such multiscale phenomena, each one treated with a suitable
variation of the lattice Boltzmann method, opens up new perspectives for a fundamental
understanding of the physical mechanisms underlying cardiovascular pathologies, such
as plaque growth and the subsequent development of atherosclerotic diseases.

Keywords: haemodynamics; red blood cells; glycocalyx; wall shear stress; lattice
Boltzmann method

1. Introduction

A deeper understanding of the physical mechanisms underlying the correct functioning
of the human body, from the cellular to the organ level, stands out as one of the major
challenges in modern science. The ultimate goal is to turn heuristic knowledge into predic-
tive capabilities, based on quantitative modelling of the fundamental interactions between
basic biochemical processes and their mechanical-hydrodynamic environment. The range
of space-time scales involved in the process is daunting, from nanometres at the molec-
ular level, all the way up, to the size of the human body, i.e. nine orders of magnitude,
and more than twice as much in time, from femtoseconds of chemical bond formation to
the multi-year development of diseases. Taking such daunting spectrum of scales in a sin-
gle modelling swoop is utterly unfeasible and, in many respects, undesirable as well, since
the amount of information involved is overwhelming to the point of obscuring the task of
extracting knowledge from information. A much more sensible procedure is to take advan-
tage of the hierarchical structure of the human body and focus the modelling effort on
treatable subsets – let’s name them compartments – of the full system (the time-honoured
roman principle divide et impera) and patch them together at the end of the process. This
entails two concurrent and cooperative functional tasks: a sharp-shooted modelling focus
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on the basic physics of each compartment and a system-engineering (system-biology, in
fact) approach to glue back the various compartments together into a unified full-scale
picture. None of the two can afford the luxury of exact solutions, but each has to pro-
ceed instead through a sequence of progressive refinements, until a satisfactory solution
is attained. Thanks to the development of computing power and the concurrent progress
in numerical techniques, especially for parallel computers, the aforementioned multiscale
strategy has resulted in major breakthroughs in many areas of biology and quantitative
medicine [1]. In this paper, we shall be dealing with multiscale modelling techniques for a
major compartment of the human body, the cardiovascular system.

The cardiovascular system is a complex adaptive network including centimetre-sized
vessels, like the aorta, down to micrometric capillaries. The study of blood flow in the large
vessels has been the object of computational studies for several decades now, and it is fair
to say that computational haemodynamics (CHD) is now in a position to provide a very
accurate information of the blood flow structure, even in anatomically realistic geome-
tries. On the other hand, traditional CHD is designed to discard microscopic details, such
as the granular nature of blood (a suspension of red and white blood cells, platelets and
other microscopic biological bodies), which may play a major role in shaping the inter-
action with endothelial cells and the ensuing build-up of the biochemical response of the
cellular tissue, with far-reaching implications for the long-term development of cardiovas-
cular conditions. The study of blood in the macrovasculature, as much as in capillaries, has
deep implications for the understanding and prevention of the most common cardiovascu-
lar pathologies, atherosclerosis being possibly the most outstanding example in point. The
build-up of the resultant soft tissue and the eventual changes in its consistency leads to
serious atherosclerotic pathologies, including catastrophic events such as plaque rupture
[2]. Atherosclerotic plaques appear in regions of disturbed blood flow where the local wall
shear stress (WSS) is low (<1.0 Pa) or of alternating direction [3]. Hence, plaques tend to
form near arterial bifurcations where the flow is always altered compared to unbranched
regions [4].

Atherosclerosis primarily affects the coronary arteries and the evidence that low aver-
age WSS has a key role in the disease localization and progression is widely accepted
[5–7]. Predictions of where and how the illness is likely to develop can be obtained by
using fluid dynamics simulations as a routine methodology to study blood flow patterns
in human arteries. As a matter of fact, the shape and the structure of endothelium plays a
number of important roles in the vascular system, and its dysfunction may lead to several
pathological states, including early development of atherosclerosis [8]. The microscopic
shape of the endothelium is defined by the presence of endothelial cells (ECs henceforth),
making the arterial wall undulated. This effect becomes more pronounced in small-sized
vessels, where the corrugation degree increases. The study of blood flow over a regularly
undulating wall made of equally aligned and distributed ECs has been recently carried out
in [9], where the variation of WSS over the ECs has been computed. Furthermore, the
endothelium is coated by long-chained macromolecules and proteins which form a thin
porous layer, called the glycocalyx [10]. The glycocalyx has a brushlike structure and a
thickness which varies with the vessel diameter, but its average is 100 nm for arterioles.
It has several roles: it serves as a transport barrier to prevent ballistic red blood cell interac-
tions with the endothelium and as a sensor and a transducer of mechanical forces, such as
fluid shear stress, to the surface of ECs. Actually, it has been recognized that the glycocalyx
responds to the flow environment and, in particular, to the fluid stress, but the mechanism by
which these proteins sense the shearing forces and transduce mechanical into biochemical
signals is still not fully understood [8]. The glycocalyx itself is remodelled by the shear-
ing flow and by the compression exerted by the deformed erythrocytes in capillaries [11].
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472 G. Pontrelli et al.

Flow-induced mechano-transduction in ECs has been studied over the years with emphasis
on correlation between disturbed flow and atherosclerosis. Recently, some mathematical
modelling work has been carried out, using a porous medium to model the endothelial sur-
face layer (ESL henceforth) [12,13]. However, none of these works include the effect of
the roughness of the wall, which should be incorporated for a more realistic description at
the microscopic level. The importance of treating blood as a suspension of erytrocytes or
red blood cells (RBCs) in the plasma has been addressed by many authors, who developed
a number of analyses to model single RBC in microvessels with complex boundary shapes
and interactions by deformable vesicles [2,11].

In the following sections, we will present a coarse-grained model that attempts to
include some of the basic physical microscale effects of the ESL attached to the ECs
exploring to what extent the WSS may vary due to this layer, in addition to the previously
examined EC shape and particulate transport [9].

One of the direct benefits of the joint use of simulation and imaging techniques is to
understand the connection between fluid-mechanical flow patterns and plaque formation
and evolution. This has important implications for predicting the course of atherosclerosis
and possibly preventing or mitigating its effects, in particular, by non-invasively and inex-
pensively screening large numbers of patients for incipient arterial disease and to intervene
at clinical level prior to the occurrence of a catastrophic event. One option is to obtain the
arterial wall shape, plaque morphology and lumen anatomy from the non-invasive multi-
detector computed tomography (MDCT) imaging technique, as in the newest systems with
320-detector rows, a technology that enables three-dimensional Cartesian acquisition of the
entire arterial tree in a single heart beat and provides high accuracy of nominal resolution
of 0.1 mm [14].

The lattice Boltzmann (LB) method is particularly suitable for handling such com-
plex arterial geometries, since most of its simplicity stems from an underlying Cartesian
mesh over which fluid motion is represented. LB is based on moving information along
straight-line trajectories, associated with the constant speed of fictitious molecules which
characterize the state of the fluid at any instant and spatial location. This picture stands
in sharp contrast with the fluid dynamics representation, in which, by definition, informa-
tion moves along the material lines defined by fluid velocity itself, usually a very complex
space-time dependent vector field. This main asset has motivated the increasing use, over
the last decade, of LB techniques for a variety of biological processes [15] and multiscale
physical systems [16], including CHD [17–20].

Simulations of blood flows based on the LB method provide a particularly efficient and
flexible framework in handling complex arterial geometries. In the past, the LB method
has been applied to a broad range of fluid dynamics problems, including turbulence and
multiphase flows [21], as well as in blood flow simulations in steady and pulsatile regimes
and with non-Newtonian flows through stenoses [22].

The main aim of this paper is to show that the LB method provides an encompassing
analytical/computational framework embedding microscopic effects, namely RBCs,
endothelial corrugations and glycocalyx structures, within a continuum haemodynamic
description. It is here demonstrated its capability of spanning a range of two- and
three-dimensional models and scales relevant to blood flow [18,23].

The possibility of embedding suspended bodies in the surrounding plasma and the
glycocalyx representation over an undulated endothelial wall addresses two major steps
forward in the modelling of blood from a bottom-up perspective. This would permit to
check the validity of the many assumptions that continuum haemodynamics is based upon,
discarding those which do not match the microscopic description and possibly improving
on those which do only in part.
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2. The lattice Boltzmann method for continuum haemodynamics

In the last decade, the LB method has captured increasing attention from the fluid dynamics
community as a competitive computational alternative to the discretization of the Navier–
Stokes equations of continuum mechanics. LB is a hydrokinetic approach and a minimal
form of the Boltzmann kinetic equation, based on the collective dynamics of fictitious par-
ticles on the nodes of a regular lattice. The dynamics of fluid particles is designed in such a
way as to obey the basic conservation laws ensuring hydrodynamic behaviour in the contin-
uum limit, in which the molecular mean free path is much shorter than typical macroscopic
scales [21]. This condition is clearly met in most blood flow regimes, together with the
Newtonian rheological behaviour of blood in large arterial systems. Non-Newtonian rhe-
ological models appropriate for simulating blood flow in medium or small-sized arteries,
such as the Casson, Carreau or Carreau-Yasuda models, can also be incorporated within
the LB approach [24,25].

The LB method can be regarded as a mesoscopic (between microscopic and macro-
scopic) approach for modelling macroscopic hydrodynamics. Rather than following the
position and velocity of each particle in the system, as is done in microscopic models (i.e.
molecular dynamics), the fluid flow is described by tracking the evolution of the density
distribution function (or population). In other words, the LB method is based on the col-
lective dynamics of fictitious particles on the nodes of a regular lattice where the basic
quantity is fp(x, t), representing the probability of finding a ‘fluid particle p’ at the mesh
location x and at time t and travelling with discrete speed cp. ‘Fluid particles’ represent the
collective motion of a group of physical particles.

The rate of change of the single-particle distribution function is given by the following
discrete Boltzmann equation:

∂tfp + cp · ∇fp = − 1

τ

(
fp − f eq

p

)
(1)

where the left-hand side represents the molecular free streaming, whereas the right-hand
side represents molecular collisions via a single-time relaxation towards local equilibrium
f eq
p on a typical timescale τ [21]. The latter is called the relaxation time and, in macroscopic

terms, is related to the fluid viscosity.
To discretize the previous equation, we employ the common three-dimensional 19-

speed cubic lattice (D3Q19) with mesh spacing �x, where the discrete velocities cp connect
mesh points to first and second neighbours (Figure 1) [26].

The fluid populations are advanced in a timestep �t = 1 through the following
evolution equation:

fp(x + cp�t, t + �t) = fp(x, t) − ω(fp − f eq
p )(x, t) + Fp(x, t) (2)

The right-hand side of Equation (2) represents the effect of fluid-fluid molecular collisions,
through a relaxation towards a local equilibrium, typically a second-order expansion in the
fluid velocity of a local Maxwellian with velocity u,

f eq
p = wpρ

[
1 + u · cp

c2
s

+ uu : (cpcp − c2
s I)

2c4
s

]
(3)
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474 G. Pontrelli et al.

Figure 1. The D3Q19 cubic lattice.

where cs = 1/
√

3 is the speed of sound, wp is a set of weights normalized to unity and I is
the unit tensor in Cartesian space. The relaxation frequency ω = 1

τ
controls the kinematic

viscosity of the fluid. The kinetic moments of the discrete populations provide the local
mass density ρ(x, t) = ∑

p fp(x, t) and momentum ρu(x, t) = ∑
p cpfp(x, t). The last term

Fp in Equation (2) represents a momentum source, given by the presence of suspended
bodies, if RBCs are included in the model, as discussed in the following sections. Through
the Chapman–Enskog procedure, in the incompressible limit, the Navier–Stokes equations:

∇ · u = 0

∂u

∂t
+ (u · ∇)u = − 1

ρ
∇P + v∇2u + F (4)

are recovered from Equation (2) [21], where P is the pressure, ν = c2
s �t

(
1
ω

− 1
2

)
, the

kinematic viscosity, and F is any body force, corresponding to Fp in Equation (2).
The LB is a low-Mach, weakly compressible fluid solver and presents several major

advantages for the practical implementation in complex geometries. In particular, in
CHD, the curved blood vessels are shaped on the Cartesian mesh scheme via a staircase
representation, in contrast to body-fitted grids that can be employed in direct Navier–
Stokes simulations. This apparently crude representation of the vessel walls is sufficient at
macroscopic level and can be systematically improved by increasing the mesh resolution.

LB allows to impose no-slip boundary conditions at the endothelium by employing
the bounce-back method; this consists of reversing at every timestep the post-collisional
populations pointing towards a wall node, providing first-order accuracy for irregular walls
[21]. In the bounce-back method, the points corresponding to the exact no-slip hydrody-
namic surface fall at intermediate positions between the external fluid mesh nodes and
the nearby wall mesh nodes. Owing to its simplicity, the method handles irregular vessel
boundaries by a linear interpolation maintaining first-order accuracy. More sophisticated
alternatives with higher-order accuracy are available [27–29].

The WSS, which is a crucial quantity in haemodynamic applications, can be com-
puted via the deviatoric stress tensor σ (x, t) ≡ νρ

(
∂xu + ∂xuT

)
and evaluated via its kinetic

representation:
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σ (x, t) = −νω

c2
s

∑
p

cpcp(fp − f eq
p )(x, t) (5)

The second tensor invariant is the wall shear stress or WSS,

S(xw, t) =
√

1

2
(σ : σ )(xw, t) (6)

where xw represents the position of sampling points in close proximity to the mesh wall
nodes. S(xw, t) provides a direct measure of the strength of the near-WSS [30]. It is worth
mentioning that the WSS evaluation via Equation (5) and (6) is completely local and
does not require any finite-differencing procedure. This is particularly advantageous near
boundaries where the computation of gradients is very sensitive to morphological details.
Moreover, Equation (5) and (6) are usually second-order accurate on the standard LB, but
degrade to first order in the case of irregular wall shapes [27,31]. Further theoretical and
algorithmic details about the accuracy of WSS in such cases can be found in [32,33].
In order to sample high signal/noise WSS data, the LB mesh needs high spatial resolution,
with mesh spacing being as small as �x � 50 µm for standard fluid dynamic simulations,
or being as small as �x � 10 µm in order to account for the presence of RBCs. Simulations
in extended arterial systems are based on the acquisition of MDCT data which are seg-
mented into a stack of slices, followed by a mesh generation from the segmented slices.
For a typical coronary artery system, the procedure to build the LB mesh from the MDCT
raw data starts from a single vessel, formatted as stacked bi-dimensional contours (slices),
with a nominal resolution of 100 µm. In spite of recent technological progress, this reso-
lution is still insufficient and the inherently noisy geometrical data pose a problem in the
evaluation of WSS, a quantity that proves extremely sensitive to the details of the wall
morphology. Thus, raw MDCT data present a mild level of geometric irregularities that
can affect the quality of the LB simulations. For the simulation, we resort to regularize
the initial geometry by smoothing the sequence of surface points via a linear filter along
the longitudinal direction. Similarly, one could filter out surface points along the azimuthal
contour. We have shown that such smoothing is necessary in order to avoid strong artefacts
in the simulation results [34]. Even if the precise shape of the vessel is unknown, as it falls
within the instrumental indeterminacy, the numerical results converge to a common fluid
dynamic pattern as the smoothing procedure reaches a given level. The regularized geome-
tries are still of great interest because they obey the clinical perception of a smooth arterial
system and, moreover, the smoothing procedure falls within the intrinsic flexibility of the
arterial system.

When studying coronary arteries as a prototypical system for plaque formation and
development, one issue regards the presence of deformable vessels. Whereas larger arteries
undergo high deformations, a simple calculation shows that the distensibility index of a
coronary artery of sectional area A is b−1 �1.5 mm Hg. Therefore, the arterial section
during a heartbeat has a maximal deformation of δA/A = b�P, where �P is the maximal
pressure variation over a cardiac cycle. For a pressure jump of 40 mm Hg, the deformation
is less than 3% and thus modelling the coronary system as rigid does not introduce major
artefacts in the computed flow and pressure distributions.

In a branched portion of arteries, boundary conditions at the inlet and multiple outlets
can be chosen in different ways, typically by following the flow–pressure, pressure–
pressure or flow–flow prescriptions. The first two options are more popular in fluid dynamic
models, and pressure conditions at the outlets reflect the presence of a recipient medium.
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476 G. Pontrelli et al.

Even flow–flow conditions have found some applicability, as they can accommodate some
type of metabolic autoregulation as encoded by Murray’s law [35]. It is worth mention-
ing that flow–flow conditions can give rise to numerical instabilities in simple pipe flows,
as long-living transients can develop. The absence of a peripheral system can be compen-
sated by using an equivalent RCL circuit at each system outlet, where the auxiliary circuitry
introduces an external viscous dissipation (R), vessel compliance (C) and fluid inertia (L)
and compensates for the missing components (lumped parameter model).

In the framework of the LB method, boundary conditions at the inlet and multiple
outlets can be imposed as follows. A constant velocity (with plug or parabolic profile) is
enforced at the entrance of the main artery, as a way to control the amplitude of the flow.
Even if the inlet profiles are not the real ones for irregular geometries, they fulfil the pur-
pose of imposing the total flow rate in the chosen region. The fluid flow spontaneously and
rapidly develops the consistent profile already at a short distance downstream. A constant
pressure is imposed on the several outlets of the main artery, as well as on the outlet of all
secondary branches (of the order of 10 in typical coronary systems). This leaves the simu-
lation with the freedom of creating an appropriate velocity profile in the outlet regions and
building up a pressure drop between the inlet and several outlets. The Zou–He method [36]
is used to implement both the velocity inlet and the pressure outlets. This method exploits
information streamed from fluid bulk nodes onto boundary cells and imposes a completion
scheme for particle populations which are unknown because their neighbouring nodes are
not part of the fluid domain. The boundary cells are treated as normal fluid cells where the
conventional LB scheme holds. Thanks to this natural integration of the boundary scheme,
the method is second-order accurate in space, compatible with the overall accuracy of the
LB method [37]. The method handles in a natural way time-dependent inflow conditions for
pulsatile flows. The algorithm requires that all nodes of a given inlet or outlet are aligned
on a plane which is perpendicular to one of the three main axes, although the injected flow
profile and direction can be arbitrary. However, since the inlet section is typically a critical
region of simulation in terms of numerical stability due to the high fluid velocities, it is
preferable to have an incoming flow direction aligned with one the Cartesian axis. This
requirement can be fulfilled by rotating the artery in such a way as to align the inlet axis
with one of the Cartesian axis, which guarantees an exact control on the flow imposed at
the inlet. Conversely, the outlet planes are not, in general, normal to the orientation of the
blood vessels. However, this does not lead to noticeable problems because the pressure
drop along typical arterial systems is mild and the error due to imposing a constant pres-
sure along an inclined plane is negligible. Although our model is restricted to a particular
case, other alternative approaches for the treatment of more general outflow conditions are
available [38].

3. Modelling blood as a suspension

Blood is a complex fluid made of many corpuscular elements suspended in the plasma.
RBCs constitute an important component in blood because of their large number and
their crucial role in oxygen transport. Typically, a human RBC has a biconcave shape with
∼8 µm diameter and ∼2 µm thickness. The interior fluid has a viscosity of 6cP, which is
about five times of that of the suspending plasma. The cell membrane is highly deformable,
so the RBCs can pass through capillaries of as small as 4 µm inner diameter with large
deformation; they exhibit both rotational and orientational responses that effect and mod-
ulate blood rheology [2]. While blood flow is quasi-Newtonian away from the endothelial
region, the presence of RBCs strongly affects flow in the proximity of the endothelium,
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where the interplay of RBC crowding for haematocrit levels up to 50%, depletion due to
hydrodynamic forces and RBCs’ arrangement in rouleaux takes place.

In order to consider these different factors, we have recently proposed a model that
focuses on three independent components: the far-field hydrodynamic interaction of an
RBC in a plasma solvent, the raise of viscosity of the suspension with the hematocrit
level and the many-body collisional contributions to viscosity [39]. These three critical
components conspire to produce large-scale haemorheology and the local structuring of
RBCs. The underlying idea is to represent the different responses of the suspended bodies,
emerging from the rigid body as much as the vesicular nature of the globule, by distinct
coupling mechanisms. These mechanisms are entirely handled at kinetic level, that is, the
dynamics of plasma and RBCs is governed by appropriate collisional terms that avoid to
compute hydrodynamic forces and torques via the Green’s function method, as employed
in Stokesian dynamics [40]. The fundamental advantage of hydrokinetic modelling is to
avoid such an expensive route and, at the same time, enabling to handle finite Reynolds
conditions and complex or irregular boundaries within the simple collisional approach.
At the macroscopic scale, the non-trivial rheological response emerges spontaneously as a
result of the underlying microdynamics.

In our modelling approach, an RBC is introduced as a body having position Ri, velocity
Vi, angular velocity �i and instantaneous orientation given by the matrix

Qi =
( nx,i tx,i gx,i

ny,i ty,i gy,i

nz,i tz,i gz,i

)
(7)

and where ni, ti and gi are orthogonal unit vectors, such that QT
i Qi = 1. We introduce a

function to account for the ellipsoidal shape and orientation via the following expression:

δ̃(x, Qi) ≡
∏

α=x,y,z

δ̃α[(Qix)α] (8)

with

δ̃α(ỹα) ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

8

(
5 − 4|ỹα| −

√
1 + 8|ỹα| − 16ỹ2

α

)
|ỹα| ≤ 0.5

1

8

(
3 − 4|ỹα| −

√
−7 + 24|ỹα| − 16ỹ2

α

)
0.5 < |ỹα| ≤ 1

0 |ỹα| > 1

and ỹα ≡ (Qix)α/ξα and ξα being a set of three integers for each Cartesian component
α = x, y, z, representing the ellipsoidal radii in the three principal directions [39].

The RBC-fluid translational coupling is given by the following kernel:

φ(x, i) = −γT δ̃i (Vi − u) (9)

where γT is a translational coupling coefficient and δ̃i ≡ δ̃(x − Ri, Qi) is a short-hand
notation.

The RBC-fluid rotational coupling has different origins. By considering the general
decomposition of the deformation tensor in terms of purely elongational and rotational
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478 G. Pontrelli et al.

terms ∂u = e + ρ, where e = 1
2 (∂u + ∂uT ) is the rate of strain tensor and ρ = 1

2 (∂u −
∂uT ) is the vorticity tensor, the rotational component of the deformation tensor gen-
erates solid-like tumbling motion, while the rotational and elongational terms generate
tank-treading motion [39]. Consequently, at rotational level, RBC experiences two distinct
torques: (1) the coupling between the body motion and the fluid vorticity, given by the
kernel

τA(x, i) = −γRδ̃i (�i − ω) (10)

where γR is a coupling coefficient and (2) the elongational component of the flow con-
tributes to the orientational torque for bodies with ellipsoidal symmetry. By defining the
stress vector tσ = σ · n, where n is the outward normal to the surface of a macroscopic
RBC, the surface normal is replaced by the vector spanning over the volume of the diffused
particle, i.e. n = ∂ δ̃/|∂ δ̃|. The associated torque is given by

τ S(x, i) = χδ̃it
σ × (x − Ri) (11)

where χ is a control parameter.
Finally, the elongational torque includes an independent contribution arising from tank

treading based on the vesicular nature of the RBC. Its effect is included by considering that
tank-treading couples to both the rotational and elongational flow components and results
in a net torque with the same angular symmetry of the tumbling response. Thus, the extent
of tank-treading response is controlled by the intensity of the elongational torque, that is
by choosing an appropriate value for α [39].

Once the roto-translational coupling kernels have been introduced, the hydrodynamic
force and torque acting on the RBC are obtained via integration over the globule spatial
extension. Owing to the discrete nature of the mesh, the coupling kernels are expressed as
discrete sums:

Di =
∑

x

φ(x, i) (12)

Ti =
∑

x

τA(x, i) + τ S(x, i) (13)

Forces and torques act on the fluid according to the term

G = −
∑

i

{
Diδ̃i + 1

2
Ti × ∂ δ̃i

}

Some algebra shows that the action of the forces Di and torques Ti are counterbalanced
by opposite reactions on the fluid side. Conservation of linear and angular momentum in
the fluid-RBC system preserves the basic symmetries of the microdynamics and produces
consistent hydrodynamic response.

The explicit force exerted by the RBCs on the fluid is given by the term (see
Equation (2)):

Fp = wp

[
G · cp

c2
s

+ (G · cp)(u · cp) − c2
s G · u

c4
s

]
(14)
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Within the LB scheme, this equation produces first-order accurate body forces. Higher
order methods such as those described in [41], could be adopted. However, given the
non-trivial dependence of the forces/torques on the fluid velocity/vorticity, Guo’s method
would require an implicit numerical scheme, whereas it is preferable to employ an explicit,
first-order accurate scheme.

RBCs are carriers of an internal fluid that contributes significantly to the dissipation of
energy. The consequence of which is the rapid growth of the apparent viscosity with the
haematocrit level. The effect of the inner fluid is considered by locally enhancing the LB
fluid viscosity within the RBC extension. In the LB scheme, this is easily accomplished by
the following relaxation time:

τ (x) = τ0 + �
∑

i

θ̃i (15)

where τ0 corresponds to the viscosity of pure plasma, � is viscosity enhancement factor
and θ̃i is the ellipsoidal characteristic function, related to δ̃ in Equation (8). By choos-
ing ν0 = 1/6 and � = 2, the ratio between inner (θ̃i ∼ 1) and outer (θ̃i ∼ 0) viscosities
corresponds to the physiological value of 5.

Besides hydrodynamic interactions, mechanical forces regulate the packing attitude
and structuring of RBCs. These interactions are modelled as pairwise forces by means of
the Gay–Berne (GB) potential [42], the pairwise GB energy being a function of the relative
distance and orientation between RBCs. Given the principal axes (ai,1, ai,2, ai,3) of the ith
globule, the ellipsoidal shape associated to the excluded volume interactions is constructed
according to the shape matrix Si = diag(ai,1, ai,2, ai,3) and the transformed matrix Ai =
QiS

2
i QT

i in the laboratory frame. The pair of particles i, j at distance Rij experiences a
characteristic exclusion distance ηij that depends on the RBCs mutual distance, shape and
orientation, written as

ηij = 1√
φij

φij = 1

2
Rij · Y−1

ij · Rij

where Yij ≡ Ai + Aj. A purely repulsive potential is given by [42,43]:

4�0(ρ−12
ij − ρ−6

ij ) + �0 ρ6
ij ≤ 2

0 ρ6
ij > 2

(16)

with

ρij = Rij − ηij + ηmin
ij

ηmin
ij

(17)

where �0 is the energy scale and ηmin
ij is a constant, both parameters being independent of

the ellipsoidal mutual orientation and distance. For two identical oblate ellipsoids, ηmin
ij

corresponds to a contact distance of the two particles having face-to-face orientation.
In general, by considering the minimum particle dimension amin

i = min(ai,1, ai,2, ai,3) then

ηmin
ij =

√
2

[(
amin

i

)2 +
(

amin
j

)2
]

(18)
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480 G. Pontrelli et al.

Figure 2. Schematic diagram of the circulatory system surrounding the heart. The inset illustrates
a detail of the branched coronary arteries, in the presence of 50% hematocrit.

Once the forces and torques standing from both hydrodynamics and direct mechani-
cal forces are computed, the rigid body dynamics is propagated via a time second-order
accurate algorithm [44,45].

Numerical results have shown that the particulate nature of blood cannot be omitted
when studying the rheology of this biofluid and the shear stress distribution in complex
geometries. The model for RBCs has been tested against in vitro data on rheological
response to data skimming and a good match has been found [39]. In addition, the pressure
distribution of a complex coronary stenotic network has been compared with in vivo data
and has been excellent agreement reported [46]. Regions of low shear stress can appear as
the haematocrit reaches physiological levels as a result of the non-trivial organization of
RBCs and the irregular morphology of vessels, with far reaching consequences in real-life
cardiovascular applications, where the organization of RBCs impacts both the local flow
patterns and the large-scale flow distribution in vascular networks [39]. A crucial advan-
tage of the hydrokinetic model with the presence of realistic haematocrit is its reduced
computational cost, thus enabling the investigation of systems of physiological relevance
(Figure 2).

4. Modelling the corrugated wall surface

At a lower scale, the scale of the blood cells, new intriguing aspects come to light in
haemodynamics. For example, the vessel wall surface is covered by ECs that give a wavy
structure, so far neglected (Figure 3); this does not imply a significant variation in the
flow field, but it can be extremely relevant in computing WSS, which is constant in a flat-
walled artery. Indeed, the ECs (a single EC has been estimated to be about 15 µm long
by 0.5 µm high, see [47]) form a continuous, undulated wall layer above which blood is
flowing. At such mesoscopic scale, the wall may be considered as a wavy surface consti-
tuted by a regular array of equal, repeated ECs. We consider a two-dimensional channel
flow between two boundary surfaces located at y = ±h(x), with the x-axis in the direction
of the mean flow.
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Mathematical and Computer Modelling of Dynamical Systems 481

Figure 3. The rough surface of the endothelium as imaged using scanning force microscopy (from
[47]). Arrows point to granular structures on ECs’ surfaces, white line marks scanning line for height
profile evaluation and scale bar corresponds to 5 µm.

The shape of each internal wall appears as a smoothly corrugated surface: the chan-
nel semi-width is obtained as a perturbation around a reference constant value H : h(x) =
H ± ξ (x), where ξ (x) is given by repeating the profile of a single EC several times and
subsequently smoothing it. The quantity max ξ/H represents the corrugation degree.

For such complex geometries, the standard LB method, designed to be used over a
uniform Cartesian grid, would represent a severe limitation for high resolutions near the
walls. Recent advances in LB have led to a substantial enhancement for handling irregular
shapes, and a particularly interesting option is represented by finite-volume formulations
on fully unstructured grids [48]. The pressure-driven axi-symmetric flow of a continuum
fluid through a plane channel having a corrugated surface where the grid is locally refined
(Figure 4) has been recently modelled with an unstructured lattice Boltzmann equation
(ULBE) in [9]. At small Reynolds number and with moderate corrugation degree, the
velocity profiles preserve the parabolic shape (Figure 5). However, the wall corrugation
causes a local change in the velocity derivative and hence a variation in the WSS values
which match the undulation of the wall; in particular, the minimum and maximum WSS

Figure 4. A two-dimensional arterial segment having a corrugated wall, covered by a near-wall
refined triangular unstructured mesh.

D
ow

nl
oa

de
d 

by
 [

C
on

si
gl

io
 N

az
io

na
le

 d
el

le
 R

ic
er

ch
e]

 a
t 0

0:
22

 0
1 

Se
pt

em
be

r 
20

14
 



482 G. Pontrelli et al.

Figure 5. Parabolic velocity profiles along the wavy channel: its wall is constituted by a uni-
form sequence of peaks and throats (left). Cross-stream variation of shear stress in half-channel:
continuous line – peak of EC; dashed line – valley of EC (LB units) (right).

values correspond to the wall throat and peak, respectively. Their values depend on the
vessel diameter and on the flow rate, but their ratio remains almost constant.

As Figure 5 shows, the shear stress rises linearly in the transverse direction, except
near the wall. Here, the variation in cross-sectional width generates a substantial local
difference in the shear rates and stresses, and the consequence is a local variation of these
quantities in a boundary layer close to the wall and an oscillation of the shear rates and WSS
along the endothelium. We have further investigated the dependence and the sensitivity
on the corrugation degree and quantified the WSS differences with the variation of vessel
diameter and flow rates. It was shown a significant WSS variation between the wall’s peaks
and throats, especially in small-sized arteries [9].

5. Modelling the glycocalyx

The endothelial surface is not only wavy in its geometry but also covered by fibrous fil-
aments and long protein chains forming a thin layer called the endothelial surface layer
(ESL) or glycocalyx [10]. From a fluid dynamics point of view, the ESL can be modelled as
a porous layer of constant thickness (50–100 nm), which suits the wall undulation, through
which the flow of the continuous phase (plasma) is possible. This would alter the bound-
ary condition of the problem; specifically, the classical no-slip condition at the vessel wall
may have to be replaced to allow for plasma penetration through the ESL. The LB method
readily accommodates a model of the glycocalyx itself, as it is particularly well suited to
address what would now become a multiscale model. Furthermore, and differently than in
Section 3, the mesoscopic particulate nature of the blood is now addressed in the context
of a bi-component fluid model: here RBCs are deformable, neutrally buoyant liquid drops
approximated by a uniform interfacial tension and suspended in the plasma. Conceptually,
the idea is to solve a two-domain problem, whereby the bulk flow (in the lumen) is governed
by the multicomponent Navier–Stokes equations and the near-wall region by a porous-
medium Brinkmann flow formulation. At the mesoscale, the glycocalyx is not modelled in
a detailed form, but its effect on the flow is still properly addressed, using methods which
are amenable to coupling other, more detailed, simulations with experiments. We develop
here a two-way coupled model where the drop interface is forced by compression of the
ESL, and the effect of perturbed or compressed glycocalyx is then communicated to the
flow [49]. We assume here that the filaments are strongly anchored in the endothelium,
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L

H

RD

Figure 6. Schematic diagram of the model system. Exploiting axi-symmetry, flow in half-channel
is considered. The hatched layer near the wall indicates the glycocalyx, and the arrow-headed line is
used to point out the periodic boundary conditions at the inlet-outlet, and only the coloured portion
of the vessel is considered explicitly in the simulation.

where they are most resistant to deformation, and that they deform preferably at their tip,
i.e. towards the vessel lumen.

Keeping within the benefits of the LB framework, we use the mesoscale LB method to
solve the governing hydrodynamic equations, which involve multi-component fluid flow,
off-lattice or sub-grid, boundary surfaces and a porous-layer representative of the ESL.

We now consider a wavy two-dimensional axi-symmetric channel, having the same
corrugation repeated along its length. For the sake of simplicity, a single EC is considered
and periodic boundary conditions are imposed, in order to model an infinitely long channel
(Figure 6). The governing hydrodynamic equations for flow in a porous medium, with
constant or variable porosity ε, are an extension of Equation (4), as in [50]:

∇ · u = 0
∂u

∂t
+ (u · ∇)

u

ε
= 1

ρ
∇(εP) + v∇2u + F

(19)

Here, F is the total body force due to the presence of both the porous material (drag) and
other external forces:

F = −εv

K
u − εFε√

K
u|u| + εH (20)

where K is the permeability, Fε is a geometrical function and H is the extra body force
that will be used to incorporate further details of the ESL and particulate effects, such
as the RBC interface force density (pressure step) defined below. To solve governing
Equations (19) and (20), we combine the LB methods of [50] with the model of [51],
which allows for the introduction of two immiscible fluid components and the formation of
interfaces embedding surface tension Laplace’s law. The extended scheme developed here
is completely Eulerian and represents a two-way coupled RBC and flow within a single
framework. To complete the algorithm, we mention that, for multiple fluid, the propagation
step is augmented by a fluid segregation process that ensures the correct kinematics and
dynamics and good integrity for an interface between completely immiscible fluid com-
ponents, representing RBC and plasma, as discussed above [51]. The propagation step is
expressed as
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Rp(x + cp�t, t + �t) = R

ρ
f +
p + wpβ

RB

ρ
· cp · n

Bp(x + cp�t, t + �t) = B

ρ
f +
p − wpβ

RB

ρ
· cp · n

(21)

where the density of each fluid component is given by R = ∑
p Rp(x, t) and B =∑

p Bp(x, t), the combined particle distribution function is fp = Rp + Bp and f +
p accounts

for the collided combined distribution. In Equation (21), β represents an interfacial seg-
regation parameter and n the interfacial unit normal vector. We also note that, if only
one fluid component exists, Equation (21) reduces to the standard LB propagation step
(Equation (2)). The extended bi-component immiscible fluid model benefits from the
interfacial kinematics and a near-complete absence of unphysical fluxes and spurious
velocities. It can access the relevant biological regimes and retain the advantageous scaling
of computational effort, as the number of droplets increases [52].

Returning to the definition of the extra body force term, H in Equation (20), which
incorporates both particulate and glycocalyx forces, this is defined as

H = σ

2ρ
π∇ρN + E (22)

The left-hand side term imposes an interfacial tension σ on multicomponent particles. Here
π = ∇ · n is the local curvature and ρN = (R − B)/(R + B) is a phase field indicator. The
right-hand term E is a glycocalyx force that acts upon the particles as described in the
following section.

In the proposed model of the ESL as a porous layer, the porosity is reduced by a com-
pressive encounter with an erythrocyte. As a consequence, the ESL is squashed locally
transporting the same mass into a smaller volume and consequently decreasing the poros-
ity in that region. Even in the simplest situation, the ESL–lumen boundary should not be
regarded as sharp, and there is an uncertainty region between bulk, lumen and glycocalyx
material [49]. Let us define a variable porosity ε(x) that tends to 1 in the lumen region
and gradually reduces, as it enters the glycocalyx region, where it approaches a minimum
value, εG. This porosity transition is modelled through the increasing smooth function:

ε(x) = εG + 1 − εG

2
[1 − tan h (ξ (s − l))] (23)

where l is the mean ESL thickness and the parameter 1/ξ determines the distribution of
(i.e. the effective standard deviation of) protein chain lengths, while s(x) denotes distance
measured normally to the endothelial surface (Figure 7). Note that εG ≤ ε(x) ≤ 1 and that
for ε → 1, we have F → H (see Equation (20)), and Equations (19) and (20) reduce to the
multi-component Navier–Stokes equations for free multi-component fluid flows. On the
other hand, an additional, fictitious, repulsive body force density acts on the drop interface
which enters the ESL region, impinging on the lumen. This force distribution is so designed
that its accumulation produces an effective Hookean force acting at the centre of the local
volume. Specifically, the erythrocyte is subjected to a surface force distribution, effective in
the ESL only, which is directed everywhere in the drop-surface normal direction. This force
device effectively models the glycocalyx as a continuum of elastic springs, with modulus
E, gradually decaying from a maximum value, EG (in the ESL) to 0 (towards the bulk):
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Mathematical and Computer Modelling of Dynamical Systems 485

Figure 7. The porosity function ε (continuous line) as a function of the distance s: the latter
increases form a minimum value εG (in the ESL or glycocalyx) to the bulk fluid (ε = 1). Similarly,
the elasticity modulus E (dashed line) varies from a maximum value EG in ESL to 0 (no elastic force)
out of it. Note the smooth transition region (due to the uncertain ESL thickness) controlled by the
parameter ξ .

E(x) = EG

2
[1 − tan h (ξ (s − l))] (24)

where all notations are given in correspondence to Equation (23) (Figure 7).
It is important to note that the above force acts solely on the drop and not on the plasma.

Hence, the relative density of the material which comprises the drop may be modelled by
appropriate choice of the spring constant EG in the above equation. A common difficulty in
modelling low-scale physiological process is the identification of reliable estimates of the
model parameters. Experiments in micro-haemodynamics are often prohibitively expen-
sive or impossible in vivo and the only available source are data from literature. Due to
their complex interplay between the fluid, the suspended bodies and the arterial wall, com-
prehensive models are difficult to be settled. Such models depend on so many variables
and parameters that, if not appropriately simplified, they raise more questions than useful
answers. Actually, we have chosen parameters which are in the correct range and where
simulations provide results which are consistent with observation and experimental data.
A number of simulations have been carried out in the case of an axi-symmetric chan-
nel having the same corrugation repeated along the length. Its size (of order of µm) is
slightly larger than a single RBC flowing through it, driven by a constant pressure gradient
with periodic conditions. At such fine scale, for accuracy purposes, the off-lattice non-slip
endothelial surface uses continuous bounce-back conditions [27]. The ESL structure has
been modelled as a porous layer of constant thickness over the undulated wall [52].

As one may expect, the average velocity of the drop is slower in the presence of gly-
cocalyx, which constitutes a hindrance for the lumen flow. Also, the mean deformation
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486 G. Pontrelli et al.

Figure 8. The velocity field for the particulate fluid in the region of the endothelium. The extent of
the ESL is indicated by the broken line. An enhanced recirculation region is induced by the porous
media (bottom), with respect to an experiment without glycocalyx (top). The single deformable drop
has been acted on by encountering the glycocalyx body force field. The flow appears to be deflected
up, which would tend to protect the endothelial surface from increased WSS.

of the drop is more pronounced with the glycocalyx force (Figure 8). Hence, when the
drop is in the ESL influence region, it is subjected to the elastic force, which squeezes and
lifts it away from the boundary, whilst making its shape more elongated. Considering the
action of the glycocalyx as a sensor of mechanical forces, it is worth computing the shear
stress at the glycocalyx/lumen boundary (GSS). Figure 9 shows the differences for WSS
in the cases without and with glycocalyx: it evidences, in the latter case, a reduction of the
shearing stress either at the wall (WSS, due to the plasma only) or at the ESL top (GSS,
due to or the particulate fluid). It is possible that cilia, which deform preferentially at their
tip, would be more likely to protect the EC from WSS fluctuations associated with RBCs
transits [9].

As a comprehensive computational tool to account fov the different aspects of blood
flow simulation in a unified LB framework, we developed the software MUPHY that
involves five basic steps: (1) acquisition of MDCT data, (2) data segmentation into a stack
of slices, (3) mesh generation from the segmented slices, (4) flow simulation and (5) data
analysis and visualization. The MUPHY simulation package is designed to handle generic
geometries, such as those provided by the MDCT acquisitions, and to run large-scale sim-
ulations on commodity or high-performance hardware resources. The major advantage of
MUPHY is the possibility of concurrently simulating fluid dynamics together with sus-
pended bodies at cellular and molecular scales. This multiscale methodology arises from
the combined use of LB and molecular dynamics techniques [20].

For a 50 µm resolution of the vessels, which is sufficient to obtain well converged WSS
distributions, the number of mesh points is easily in excess of 106. In these conditions,
steady-state simulation requires � 5 × 104 timesteps, while pulsatile flows account for
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Figure 9. The WSS and GSS along the channel at the same time without (top) and with glycocalyx
(bottom).

about 106 timesteps. The simulation of a pure LB is of the order of 0.06 sec/timestep on
a serial run over a standard CPU. The computing time drops by orders of magnitude when
employing graphical processing units (GPUs) or parallel simulations on multiple CPUs
or GPUs, owing to the strong amenability of LB to parallel computing. By considering
simulations at finite hoematocrit, the mesh resolution has to be increased with a mesh
spacing below 20 µm, in order to resolve sufficiently the hydrodynamics of the RBCs.
In this case, the simulation time increases by a factor of 20–50, as compared to the pure LB
simulation. Therefore, massively parallel simulations on either CPUs or GPUs are required
and given the excellent scalability of the simulations technique on both types of platforms,
the study of entire coronary system becomes feasible [20,46].

6. Conclusions

Summarizing, it is shown that the LB method offers an extremely flexible and powerful
framework to deal simultaneously with blood plasma, RBCs and glycocalyx in a uni-
fied and consistent form. The versatility of this framework configures a very appealing
candidate for the computational study of biological fluids across scales of motion. More
precisely, we have proposed a coarse-grained model of the blood flow over the exact,
microscale, corrugated EC shape, covered by a prototype ESL, along with two-component
immiscible fluid model. The model preserves the underlying simplicity of the LB algo-
rithm; hence, all of its computational advantages, including its Eulerian nature, permits to
do away with the laborious re-meshing procedures, typical of hybrid Lagrangian schemes.
Restricted to idealized models for RBC dynamics, endothotelial corrugations and glyco-
calyx structures, the paper aims at showing that LB method provides an encompassing
analytical and computational framework to embed different scales. The present study does
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488 G. Pontrelli et al.

contain room for generalizations and is open to many directions for future research in
CHD. The first step is to enhance our current, simplistic, interfacial tension model with
additional stresses and bending properties associated with elastic structures. This would
permit to model complex fluid-interface phenomena, such as tank-treading behaviour of
the biological membrane coating the RBC.

If, at one hand, the microscopic blood–wall interaction has noticeable effects on
pathological states, on the other hand, the accurate description of large-scale circulatory
features relies on sophisticated pre-simulation imaging techniques and powerful simula-
tion methods. In this respect, improved boundary conditions, especially at the outlet of the
cardiovascular network, are in constant demand.

The unifying hydrokinetic methodology presented here has potential to accommo-
date both large-and small-scale aspects, thereby offering a reliable and robust approach to
the understanding of cardiovascular disease in multiple-scale arterial systems, with great
impact on physiological and biomedical applications.
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