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Abst rac t - - In  biof luid mechanics the f lu id-sol id interaction is important. To this aim 
the propagation of waves in a distensible tube fi l led with a viscous f luid was studied 
numerically. Based on the assumption of long wavelength and smal l  ampli tude of 
pressure waves, a quasi- lD differential model  was adopted. The model  accounted for 
vessel wall visco-elasticity and included the wall deformations in both radial and 
axial directions. The non-linear problem was solved in non-dimensional form by a 
finite difference method on a staggered grid. The boundary condit ions were for two 
relevant cases: natural oscil lations in a deformable tube fixed at the ends and 
persistent oscil lations due to a periodical forcing pressure. The natural frequency 
St* was found to vary as the square root of  the elasticity coefficient K, with 
O< K< 6000, and was not affected by the viscosity. These results highl ight a 
strong influence of both wall visco-elasticity and blood viscosity. The natural 
oscil lations are damped in a few t ime units and the damping t ime was found to 
be inversely proport ional to the wall viscosity coefficient and the f luid viscosity 
provided an even larger damping factor. 
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1 In t roduct ion  

FLOWS OF viscous fluids in deformable tubes are quite common 
in many applications, for example, in modelling blood flow 
problems. Experimental evidence shows that, when an unsteady 
forcing perturbs a steady flow in a distensible tube, damped waves 
are formed and propagated downstream, in spite of many theories 
having been developed to explain this phenomenon, the propa- 
gation mechanism is not yet fully understood, because of the 
complexity of the system and of the non-linear fluid-structure 
interaction. 

Although physiological flows are better described in multi- 
dimensional models, simpler 1D models give some useful 
hints on wave propagation and offer an easy tool to under- 
stand the basic features of the damping effect, allowing a 
systematic analysis of a wide range of parameters. As a matter 
of fact, the unidirectional nature of blood flow justifies the 
attempt to apply the 1D approximation to long arterial 
conduits. Several studies of pulse propagation in arteries 
have been carried out to provide some insight into the 
mechanical interaction between blood and vessel wall. Many 
of these models are concerned with an incompressible 
Newtonian fluid contained in a compliant tube. Moreover, 
most of them are based on linearised equations of motion and 
linearised relationships between stress and strains (LIGHTHILL, 
1978; PEDLEY, 1980). 

Under the simplistic assumption that the vessel wall is purely 
elastic, such linear models are known to produce shocklike flow 
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patterns in the propagating pulses that are not observed under 
physiological conditions (ANLIKER et al., 1971; OLSEN and 
SHAPIRO, 1967). 

On the other hand, many authors have pointed out that the 
blood vessel walls are non-linear, visco-elastic and anisotropic 
(ROCKWELL et al., 1974). By including an appropriate mathe- 
matical model for the visco-elastic properties of the wall, the 
applicability of the one-dimensional theory can be extended. The 
damping resulting from visco-elasticity inhibits the sharp peaks 
of the pressure and flow pulses and flattens the abrupt rise of 
wave fronts. Thus, such models lead to more realistic results 
when a comparison with experimental data is carried out 
(HORSTEN et al., 1989). 

in most of these papers, however, the distensibility of the 
arterial wall is modelled by non-linear algebraic relationships 
between the cross-section of the tube and the transmural pressure 
(MORGAN and PARKER, 1989) and sometimes is a function of the 
frequency (REUDERINK et al., 1989): in some cases, the integra- 
tion is possible along the characteristics, and the wave celerity is 
expressed in explicit form (ROCKWELL et  al., 1974). 

in contrast with this approach, which lacks a reliable mechani- 
cal justification, a constitutive strain-stress equation modelling 
the mechanical properties of the arterial wall has been proposed 
(HUMPHREY, 1995). A recent study has been carried out on a 
two-dimensional flow in a rigid channel, where a part of the wall 
was replaced by a visco-elastic membrane subject to deforma- 
tion (PEDRIZZETTI, 1998). in this paper, a similar but simpler 
one-dimensional (1D) model is demonstrated to be sufficient to 
describe propagative phenomena. The wall-fluid interaction in 
arterial flow problems and the role played by the constitutive 
equation of the vessel, which includes a visco-elastic term, are 
examined. 

The motivation for this study lies in the possibility of under- 
standing the evolution of small flow disturbances induced by a 
local vessel insertion or generated by a pathological state. 
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The analysis of 1D models has been shown to provide much 
insight into the mechanism and the alteration of pulse propaga- 
tion (REUDERINK et al., 1989). The model used is based on 
quasi-lD flow equations, coupled with the massless membrane 
equilibrium equation. A strain-stress constitutive equation for 
the wall is also provided, allowing for wall deformations in both 
longitudinal and circumferential directions. Although blood 
flow in large arteries is inertia dominated, the limiting cases of 
very small and very large Reynolds numbers are also considered, 
so that we can understand the important role of the dissipative 
mechanism induced by viscous friction and giving rise to 
damped waves when the system evolves to the steady state. 
The critical parameters involved in the mechanics and respon- 
sible for possible numerical instability are pointed out. 

2 Mathematical  formulat ion 

Let us consider the flow of a homogeneous, incompressible 
Newtonian fluid in a cylindrical distensible tube, of circular 
cross-section and of radius R 0 and length L. As we are 
interested in the flow pulse propagation, the assumption of 
one-dimensional flow is a valid approximation under the 
hypothesis that the wave amplitude is small and the wavelength 
is long, compared with the tube radius, so that the slope of the 
deformed wall remains small at all times. 

2.1 Fluid equations 

Assuming that the flow is axisymmetric and indicating with x 
and r the longitudinal and radial co-ordinates, respectively, let us 
consider the x-component of the momentum equation 

3w 3w l o p  v 3 ( r  OW) 

3 7 + ~ 3 x  - p O x + T g \  Or] 

where w is the axial component of the velocity, v is the kinematic 
viscosity, and p is the transmural pressure. The diffusive term 
OZw/Ox 2 and the other velocity components are comparatively 
small and have been neglected (PEDLEY, 1980). 

Let us define the flow rate and the averaged velocity over a 
cross-section A = g R  2, respectively, as 

R Q 
Q = 2~ wr dr u = -- 

o A 

and let us introduce a set of non-dimensional variables 

x r tU o 
X - - ->  - -  r - - ->  - -  t - - >  - -  

Ro Ro Ro 
u p 

u - + - -  p - + - -  
Uo pUo 

where U0 is a characteristic velocity, and R 0 is a reference radius. 
By integrating (1) over the cross-section A, we obtain the 

quasi-lD non-dimensional form of the momentum equation 

au au 8p 
a t  + u ax ax + f 

wheref is  the friction term. 
if  we locally approximate the friction term in (3) by that 

corresponding to the steady Poiseuille flow in a tube of 
radius R, then 

8u 
f --~ Re R 2 

where Re = UoRo/v is the Reynolds number. Consequently, the 
wall shear stress is approximated by 

d-~ru R--~ -- 4u z = Re R (5) 

Strictly speaking, (4) and (5) hold for a steady flow in a rigid tube, 
but, as we are interested in the average effect of pulse propagation, 
they are reasonable when 3R/3x  << 1 and for quasi-steady flows. 
Actually, (4) and (5) are considered acceptable by many authors 
in one-dimensional averaged flows (ANLIKER et al., 1971; 
MORGAN and PARKER, 1989; PORENTA et al., 1986). 
Moreover, as, in larger arteries, Re is quite large, z and f are 
both extremely small and are negligible in most applications. 

in a distensible tube, the continuity equation reads 

aA a(Au) 
F - -  -- 0 (6) 

3t 3x 

or, alternatively, 

OR R Ou OR 
at F ~ x  + u-~-x = 0 (7) 

2.2 Wall equations 

To close the system in (3)-(7), an algebraic relationship relating 
the local transmural pressure and the radius under static 
conditions 

p = p(R, x) 

(known as the local tube law) is required. Many tube laws have 
been proposed in arterial mechanics to model the deformation as 
a consequence of a given pressure (compliance) (see PORENTA 
et al. (1986)). in most of them, the pressure acts as a loading term 
for the radial displacement, but shear stress along the wall 
surface is neglected (independent ring models). 

(1) Here, we follow another approach that relies on mechanical 
arguments and is particularly suited for time-dependent flows. 
Despite its thickness, the vessel wall is modelled using 
membrane theory (TIMOSHENKO, 1940). This is a mathematical 
model o fa  2D shell, with a negligible mass compared with that 
of the fluid and without bending forces, it is subject to stresses in 
the tangential plane that are assumed to be averaged across the 
thickness (HUMPHREY, 1995). Thus, when forces act on the 
membrane, it deforms and reaches an equilibrium state. Let us 
indicate by R(x,  t) and S(x, t) the Eulerian counterparts of the 
Lagrangian co-ordinates of a particle of the membrane, as in 
PEDRIZZETTI (1998). The fluid-membrane equilibrium equations 
in tangential and normal directions are provided in PEDRIZZETTI 
(1998) and are rewritten here for completeness 

R'(T 1 - T2) + RT[ = zR(I + R'2) 1/2 

- R "  1 
(2) (1 + R'2) 3/2 TI q R(a + R'2) 1/2 T2 = p (8) 

where T 1 and T 2 are the non-dimensional membrane stresses 
in the meridional and circumferential directions, respectively, 
and z is the shear stress exerted by the viscous fluid on the wall 
(see (5)). The static membrane equations (8) are used to model 
the equilibrium state of the wall each time. To define the 

(3) constitutive equation for the wall, let us consider the principal 
deformation ratios in the tangential plane, defined as 

/ 1  + R '2 R 
21 V ~ -  22 = R-- 7 

where R, is the undeformed radius. 
The adequate mechanical characterisation of blood vessels is 

(4) an important prerequisite for a quantitative description of blood 
flow, mostly in wave propagation phenomena. The properties of 
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vascular tissues are highly non-linear, and many models have 
been developed for modelling the arterial wall dynamics in 
physiological and pathological conditions (HUMPHREY, 1995). 
However, in a normally stressed vessel, the radial deformation 
around the equilibrium configuration is quite small (typically, it 
does not exceed 10%), and a linear strain-stress law around it is 
likely to be used. 

To characterise the stresses T 1 and T 2 in (8), in the limit of 
small deformations, we adopted a linear elastic 2D model. This 
constitutes a basic choice that characterises an elastic behaviour, 
although other possible non-linear expressions for the constitu- 
tive equation are possible (KYRIACOU and HUMPHREY, 1996). 
On the other hand, many authors have pointed out the impor- 
tance ofvisco-elasticity in modelling arterial walls. REUDERINK 
et al. (1989) found that neglecting visco-elasticity generates an 
underestimation of both phase velocity and damping. Generally, 
a visco-elastic wall model yields numerical results closer to 
measurements than an elastic one, and a dissipative wall is more 
effective than a viscous fluid in eliminating the high-frequency 
oscillations. The damping resulting from visco-elasticity inhibits 
sharp peaks of the pressure and of flow pulses and leads to more 
realistic results when a comparison with experimental data is 
carried out (HORSTEN et al., 1989). 

As a preliminary study, we consider a linearly varying viscous 
term and we add it to the elastic part, obtaining the following 
strain-stress relationship: 

g 1 (,)el, ,)c2, )el, )c2) = K (21 + 

T2 (,)c 1 , ,)c 2 , )c 1 , )c2) = K(, )c  2 Jr- 

"~2 

in (9), K = E h / p R o U o > O  is a non-dimensional elasticity 
coefficient, where E is the Young's modulus, and h is the 
undeformed arterial thickness, C > 0 is a wall viscosity coeffi- 
cient, and the dot denotes a time derivative (PEDRIZZETTI, 1998). 

The relationships of (9) hold in the case of an incompressible 
and isotropic material, wherein principal directions of strain and 
stress coincide and express the property that the instantaneous 
Young's modulus increases with the strain, although by a 
different amount in each of the two directions. 

Although the inertia of the membrane is neglected and a 
general theoretical framework is still lacking, in the 1D case 
studied here, the simple functional dependence strain-stress in 
(9) takes into account the viscous effects of a material in time- 
dependent motions and models the response of the arterial wall 
to the deformation and to the rate of deformation, in other words, 
(9) means that the membrane does not respond instantaneously 
to forces, as would a purely elastic body, but with a dissipative 
mechanism, as would a visco-elastic material. 

Note that (3) and (7) depend explicitly on time, whereas the 
membrane equilibrium equations of (8) depend on time through 
the dependence of the stresses T 1 and T 2 on the strain rates in (9). 

The boundary conditions are imposed by considering the wall 
fixed at the two ends; that is 

R(0, t )= l  S(0, t)=0 
R(L,  t) = 1 S(L, t) = L ,  

where L, is the length of the undeformed membrane. 
Following the experimental set-up of a distensible tube fixed 

at the two extrema, only the values of p(0, t) and p(L, t) are 
assigned at both boundaries. This approach is different from that 
in PEDRIZZETTI (1998), where the flow rate value is assigned 
at one of the boundaries, together with the value of the pressure. 
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in particular, to study the transient to the equilibrium configura- 
tion, the same value of the pressure is assigned at both ends 

p(O, f) = Pref p(g, t) = Pref (11) 

As a second test case, an oscillating forcing pressure is given at 
the outlet 

p(L, t) = Pref + esin(2xStt) (12) 

where e < Prey and St = Ro/  Uo T are the non-dimensional ampli- 
tude and the Strouhal number (with Tthe period) of the excitation, 
respectively. The use of boundary conditions based on such phy- 
siological considerations is being developed (PONTRELLI, 2002). 

The initial condition is chosen by considering a finite 
perturbed configuration of the steady flow, corresponding to a 
purely elastic wall and a constant pressure gradient. Then the 
system is left to evolve towards its equilibrium configuration 
(see (11)) or forced by an oscillating pressure (see (12)). 

3 Numerical method and parameters 

The equations of evolution of the fluid, (3) and (7), the 
equation of the equilibrium of the membrane (8) and the 
constitutive equations (9) are discretised by centred second- 
order finite differences in space. 

Let us consider a sequence of n + 1 equispaced grid points, 
with x 0 = 0 and x,  = L. The spatial discretisation is obtained by 
evaluating membrane stresses, strains and their time derivatives 
(see (9)) at n inner points ~i = (xi + Xi+m)/2 of a staggered grid 
by considering averaged neighbouring quantities. 

On the other hand, the equilibrium equations (8) and fluid 
equations (3)-(7) are computed at the n - 1 inner points x i. The 

(9) time discretisation is based on the trapezoidal formula, in such a 
way that the global scheme is of second order in space and time 
(FLETCHER, 1988). The resulting non-linear system is solved by 
a globally convergent Newton-type method. 

Non-linear models turn out to be very sensitive to the choice 
of the material parameters that characterise the specific flow 
problem. The reference values used in (2) are U 0 = 50 cm s 1 
and R 0 = 0.5 cm. The non-dimensional Pref has been fixed as 
Pref = 10, and the other parameters have been chosen around 
some typical values to obtain results that are of physiological 
interest and varied in a typical range to test the sensitivity of the 
system to their perturbation. 

The value of the elasticity parameter K must be larger thanp 
and p / K  is approximately proportional to the radial deformation 
of the membrane, in a physiological context, h / R  o ,,~ 0.1 
(NICHOLS and ROURKE, 1990), and consequently K ~ 200. 
Nevertheless, to investigate better the capabilities of the model 
and the functional dependence of the solution, the problem is 
studied for K ranging in the wider interval 200 _< K _< 6000: it 
turns out that, for a larger value of K, the stiffness of the wall 
becomes extremely high. On the other hand, for K < 200, the 
system undergoes an unrealistically large deformation, and the 
present model is not representative of the physics (see Section 4). 

in all experiments, we selected L = 2, Ax = 10 2 and 
At = 10 3. These values guarantee the numerical stability of 
the system for the set of parameters considered. The accuracy of 
the solution was validated by considering a finer grid that did not 
reveal any different solution structure or unresolved patterns. 
For all the experiments, the same initial data set was chosen. 

(10) Although the Strouhal number of the forcing in the physio- 
logical flow is extremely small (St ,,~ 0.01), in this model study 
we consider it to be comparable with the natural frequency St* of 
the membrane (see following Section). This is computed by 
spectral analysis when the system, subject to an initial deforma- 
tion, is left evolving towards the equilibrium configuration 
obtained by imposing the same value of the pressure at the 
two extrema. 
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4 Results and discussion 

In this Section, the results o f  several numerical tests are 
reported to reproduce realistic flow fields close to the biomecha- 
nical applications. When the system is left evolving from an 
initial perturbation towards equilibrium, all the variables, after 
an initial transient, asymptotically reach a steady-state value 
with damped oscillations having an exponential decay and with 
a K-dependent frequency St* (natural frequency). Owing to the 
elasticity of  the wall, a positive deformation and a positive flow 
rate at the final state are found to be equal at both ends. i f  not 
otherwise stated, a convection-dominated fluid is considered 
( f  = 0 in (3) and z = 0 in (8)). 

As no quantitative data for the dissipation of  the wall in 
dynamic experiments are available, the influence of  the 
membrane viscosity is investigated by varying the value of  C. 
it turns out that the attenuation factor increases with C but is 

independent of  K (see Fig. 1). For C --+ 0, the solution is not 
damped and tends to that of  a system with a purely elastic wall. 

To understand better the effect of  the reference pressure, the 
value of Pref is varied in the range [0.5,200], for two assigned 
values of  K and C. instability develops for larger pressures as 
a consequence of  deformations that are too large, in such a 
case, the 1D model is not adequate to describe the pheno- 
menon. The value of  u does not change with pref, whereas 
the deformation is proportional to it, and a slight increase in 
the natural frequency is observed (see Fig. 2). However, the 
convergence of  the system in the transient case critically 
depends on the initial data. 

On the other hand, the steady-state values of  the deformation 
decrease with K and are independent of  C and of  the initial data. 
Similarly, the natural frequency St* increases with K (at the first 
instance, a functional dependence St*o~ ~ is assumed 
(LIGHTHILL, 1978)), but stays unchanged with C (see Fig. 3) 
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Fig. 4 Persistence o f  oscillations o f  R(1, .) at centre o f  tube when foreing oscillatory pressure is applied at right end (e = 1, St = St* in (12)) 
(resonance case) 

and with the initial data. The effect of the viscosity coefficient C 
is to dissipate energy and to damp the high-frequency oscilla- 
tions (but not to modify theft frequency) and is observed only in 
the transient regime. The longitudinal displacement S turns out 
to be very small (three orders of magnitude lower) compared 
with R and is not displayed. However, the influence of such a 
variable becomes more relevant when the fluid friction at the 
wall is considered. 

4.1 Oscil lat ing forc ing  

The boundary condition (12) reflects the basic physiological 
waveform at outlet. Results from simulations with several 
Strouhal numbers and amplitude e : 1 (10% of Pre/ : 10) 
show that the flow no longer decays to a steady solution, but 
there persist steady oscillations of sinusoidal type occudng at 
the same frequency as the input forcing (a blow up of the 
solution is obtained with larger values of e depending on the 
value of K). The oscillations are of about the same value as that 
corresponding to steady state with Pref = 10, and theft 
amplitudes attain a maximum when St  = St* (resonance 
phenomenon) (Figs 4 and 5). The analysis of the radial velocity 
of the wall proves that the propagation features correspond to 
transverse waves that do not propagate along the tube and are 
due to the boundary conditions that generate reflections and 
spurious effects (Fig. 6). The boundary conditions (10) of 
Dirichlet type may be unrealistic in physiological flows, but 
reproduce a physical experiment. The phenomenon is similar 
to that of waves propagating in a stretched string of a finite 
length. The results do not differ if the excitation at the right 
boundary is replaced by one at the left boundary. 

4.2 Inf luence o f  f lu id  viscosity 

To understand the role of viscous and inertial terms in the 
fluid motion and its interaction with the wall, results of an 
inertia-dominated flow (i.e. with Re--+ cx~) and of a very 
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viscous flow (i.e. with Re : 1 in (4) and (5)) (and with all the 
other parameters fixed) have been compared. 

Such a comparison shows that the mean velocities first exhibit 
a stronger damping to zero in the transient and then a rise to the 
steady-state values (see Fig. 7, where a non-monotonic envelope 
is visible). The steady-state deformation value and the oscilla- 
tion frequency remain the same in both cases, even under 
oscillating pressure, and the wave celerity changes with Re 
only when K is small. Therefore it appears that the frequency of 
oscillations is an intrinsic characteristic of the wall and is not 
greatly influenced by the fluid properties. Nevertheless, the 
presence of fluid viscosity allows for a larger value of the 
amplitude e of the forcing pressure, without the vessel blowing 
up. As reported elsewhere, the attenuation of the wall visco- 
elasticity turns out to be a dominant effect in larger vessels, 
whereas the damping induced by the fluid viscosity becomes 
more important in small vessels (PONTRELLI, 1998). 
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5 C o n c l u s i o n s  

A coupled wall-fluid model for studying the unsteady flow of 
a viscous fluid in a visco-elastic tube has been presented, with 
application in arterial flows. The unidirectional nature of blood 
flow suggests modelling the propagating flow pulses with a 
quasi-lD mathematical approximation, which is well supported 
by measurements. However, this formulation yields realistic 
results provided that the wavelength is long and the wave 
amplitude small compared with the mean radius of the tube. 

A linear constitutive relationship for the vessel wall that 
depends on both the strain and the strain rate is presented. The 
model includes the combined effects of the visco-elasticity of 
the solid tube and the viscosity of the blood. The effect of the 

elasticity parameter is related to the frequency of oscillations in 
the transient, and the influence of viscosity parameter is to 
attenuate the high-frequency oscillations, to reduce the tendency 
of shock formation, as present in a purely elastic wall model, and 
to counterbalance possible instability phenomena. 

Although some simplifying hypotheses are necessary to 
assess the theory, the model study presented here is able to 
describe the basic physical mechanism of 1D pulse propagation 
through the non-linear interaction between the fluid and the wall. 
However, the numerical values of the elastic and viscous 
coefficients appearing in the constitutive equation, as well the 
boundary conditions, are critical and need to be carefully 
identified by comparing numerical results with experimental 
measurements. 
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