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A B S T R A C T

Predicting the release performance of a drug delivery device is an important challenge in pharmaceutics and
biomedical science. In this paper, we consider a multi-layer diffusion model of drug release from a composite
spherical microcapsule into an external surrounding medium. Based on this model, we present two approaches
for estimating the release time, i.e. the time required for the drug-filled capsule to be depleted. Both approaches
make use of temporal moments of the drug concentration at the centre of the capsule, which provide useful
insight into the timescale of the process and can be computed exactly without explicit calculation of the full
transient solution of the multi-layer diffusion model. The first approach, which uses the zeroth and first temporal
moments only, provides a crude approximation of the release time taking the form of a simple algebraic ex-
pression involving the various parameters in the model (e.g. layer diffusivities, mass transfer coefficients, par-
tition coefficients) while the second approach yields an asymptotic estimate of the release time that depends on
consecutive higher moments. Through several test cases, we show that both approaches provide a computa-
tionally-cheap and useful tool to quantify the release time of composite microcapsule configurations.

1. Introduction

Polymeric microcapsules are commonly used in pharmaceutical or
medical processes as drug carriers or for the encapsulation of organic
cells [1,2]. The main functions of these micro- or nano-sized vesicles are
the efficient transport and controlled release of the therapeutic agent
into the external environment. Typically, drug-filled microcapsules
exhibit a multi-layered structure consisting of a spherical core sur-
rounded by a thin, protective semi-permeable polymeric shell. The re-
lease properties depend crucially on the nature of this coating structure
[3]. For this reason, in recent years, materials innovation and nano-
technology have stimulated novel research and progress in biodegrad-
able, biocompatible, environment-responsive, and targeted delivery
systems [4,5]. Mathematical modeling plays an important role in elu-
cidating the drug release mechanisms, thus facilitating the development
of advanced materials and the assessment of smart products by a sys-
tematic, rather than trial-and-error, approach. Within this area, special
attention is given to semi-empirical and mechanistic models, which
often provide a good fit with experimental data [6,7].

Analysis and solution of mechanistic models taking into account the
multi-layer structure of the microcapsule has been recently addressed
by Kaoui et al. [8] and Carr and Pontrelli [9]. However, even when the
drug diffusion process is well represented mathematically, analytical

tools or simple indicators remain useful for extracting insight from the
model and the data. Such tools allow practical questions to be an-
swered, such as how long does it takes to attain a steady state or
therapeutic flux, or what parameters need to be adjusted and by how
much, in order to achieve a certain delivery rate without solving the
complete mechanistic model. Furthermore, when a full mathematical
representation is unavailable, or is too complicated to use in practice,
simple performance indicators can identify the main transport me-
chanisms and the most important components of the process. In most
circumstances, for example, rather than the full transient solution, the
time required to reach a steady state plasma drug concentration solely
determines the effectiveness of the delivery system.

For control systems analysis, Laplace transform and linearization
techniques are commonly used to describe the dynamics of the process
via an effective time constant [10], which represents a useful indicator
of the time required to attain steady state. The concept of a time con-
stant is crucial to pharmaceutical developers who want to create con-
trolled-release devices able to deliver drugs at a desired rate. Estimation
of the release time, i.e. the time required for the drug-filled capsule to be
depleted, is of great importance in the design of drug delivery systems,
because it allows product manufacturers to adjust certain properties to
ensure a precise release within a determined time [11]. The idea of
using a single timescale to characterize how fast the drug concentration
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reaches the equilibrium value has been explored by several authors.
Pontrelli and Simon [12] define a timescale equal to the mean of a
normalized probability density function representing the transition of
the concentration profile from initial to equilibrium state. Calculating
this mean requires either computing the full transient solution or
evaluating the Laplace transform of the transient solution, and ulti-
mately for multi-layered problems, produces quite complex expressions
for the timescale in terms of the relevant parameters in the model.
Another approach is the concept of mean action time, which has been
used to characterize how long a diffusion process takes to reach steady
state [13–16]. Here, the transition from initial to equilibrium state is
represented as a cumulative distribution function, with the mean of the
corresponding probability density function defining the characteristic
timescale. The attraction of the mean action time is that it completely
avoids any calculation of the transient solution and produces simple
explicit algebraic formulas for the timescale in terms of the parameters
in the model [14,15]. Finally, we note that the notion of release time is
different but related to the concept of penetration time, which that has
been studied in a number of configurations for thermal disturbances in
heat conduction problems [17].

In this paper, inspired by recent literature on diffusion processes
[14,15,18–20], we present two approaches for estimating the release
time for a drug-filled capsule. Both approaches utilize temporal mo-
ments of the concentration versus time curve at the centre of the cap-
sule. The first approach, which uses the zeroth and first moments only,
provides a crude approximation of the release time expressed in terms
of the various parameters in the model (e.g. layer diffusivities, mass
transfer coefficients, partition coefficients). The second approach yields
an asymptotic estimate of the release time, defined as the time when the
drug concentration at the centre of the capsule is a small prescribed
distance away from its steady-state value. Attractively, both approaches
can be used without explicit (analytical or numerical) solution of the
underlying mathematical model.

The remaining parts of this article are ordered in the following way:
(i) the diffusion model for drug release from a spherical multi-layer
capsule is presented (ii) both approaches for quantifying the release
time are described (iii) a specific case study on a core-shell capsule is
considered and numerical results presented and discussed.

2. Drug diffusion model for a multi-layer sphere

Multi-layer capsules consist of a drug-loaded (fluid or solid) sphe-
rical core surrounded by one or more polymeric layers [1,2]. Such
layer-by-layer assembly enhances a selective diffusion and allows for
better control of the transfer rate. In this framework, and in the most
general case of n layers, the composite system can be treated as a se-
quence of enveloping concentric shells, constituted by spheres of in-
creasing radii satisfying < < < <R R R0 n0 1 (see Fig. 1 for the case

=n 1). The capsule’s outermost layer is protected by a thin semi-
permeable coating that shields and preserves the encapsulated drug
from degradation and chemical aggression, protects the inner structure,
and guarantees a more controlled and sustained release [21]. The
coating is in contact with the targeted external release medium (either a
bulk fluid or a tissue). Strictly speaking, for a pure diffusion problem in
a homogeneous medium, the concentration field decays exponentially
and reaches zero at infinite distance [22]. Nevertheless, for computa-
tional purposes, we can confine the diffusion process within an envel-
oping spherical layer of finite extent, at a distance far away from the
capsule surface. In our model, this additional layer is defined by setting
a cut-off radius R∞ ≫ Rn (sometimes named release distance or diffusion
length), beyond which the concentration is effectively zero at all times
(Fig. 1) [23]:

>c x t x R t( , ) 0 for all and 0.

Under the assumptions of homogeneity and isotropy, we can con-
sider a one-dimensional model (Fig. 1) with radial symmetry. We adopt

the model formulated in [8,9], where the evolution of concentrations in
the layers is governed by a set of one-dimensional linear diffusion
equations:
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In the above equations, the parameters Di are the diffusion coeffi-
cients of drug in each layer, σi are the partition coefficients, and P is the
mass transfer coefficient at the external coating [8,9]. For a releasing
drug-loaded core, the initial conditions are:

=c r C r R( , 0) , (0, ),0 0 0 (2.8)

= = …c r r R R i n( , 0) 0, ( , ) for 1, , ,i i i1 (2.9)

=c r r R R( , 0) 0, ( , ),e n (2.10)

where C0 > 0 is a constant. The steady state solution of the drug dif-
fusion model (2.1)–(2.10) is trivially given by

= = = …c r c r i n e( ) lim ( ) 0, for 0, 1, , , .i
t

i (2.11)

In our previous studies the transient solution of Eqs. (2.1)–(2.10) was
obtained through a separation of variables [8], or a Laplace transform

Fig. 1. Schematic representation of the cross-section of the radially symmetric
capsule, comprising an internal core Ω0 (0 < r < R0), a concentric layer Ω1

(R0 < r < R1) and the thin coating shell (in red). This two-layer sphere is im-
mersed in the release medium, represented by a concentric external layer Ωe,
delimited by the dashed line R∞. The length R∞ is named release distance and is
defined as the minimum distance from the sphere surface beyond which
c(x, t) ≃ 0, within a prescribed tolerance, at all times. This three enveloped layer
system constitutes the object of our modelling (figure not to scale). (For in-
terpretation of the references to colour in this figure, the reader is referred to
the web version of this article.)
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approach [9]. In some circumstances, however, rather than working
with the complicated expressions of the full solution, simple and cheap
measures of the performance of the delivery system are desired. In the
following sections, we propose two ways to quantify the release time of
the microcapsule, that is, the time taken for the capsule to be depleted
of the drug.

3. Crude approximation of the release time

Fig. 2 shows the typical spatio-temporal behaviour of the di-
mensionless concentration, ci(r, t)/C0, arising from the solution of the
diffusion model (2.1)–(2.10). An important observation from this plot is
that the centre of the capsule, =r 0, takes the longest time to reach
steady state. In Fig. 2b we plot the dimensionless concentration at the
centre of the capsule, c t c t C( ) (0, )/ ,0 0 0 versus time as it progresses
towards the steady state solution of zero concentration (2.11). Using the
curve c t( )0 we define the release time, as the time tr > 0 satisfying:

=c t( ) ,r0 (3.1)

where ε is a small specified tolerance (see Fig. 2b) [18,20]. In other
words, tr measures the time taken for the capsule to be depleted within
a small tolerance. Since c t( )0 monotonically decreases from one to zero,
tr is unique for a given choice of ε. Under this definition, the release
time is not an absolute concept, but dependent on the desired level of
accuracy required to measure a complete depletion.

We now define a crude approximation of the release time tr (3.1)
based on temporal moments of c t( )0 . The area underneath the curve
c t( ),0 or the zeroth temporal moment of c t( ),0 shaded in Fig. 2b, is
defined as

= c t t( ) d .0 0 0 (3.2)

The value of 0 will tend to be small for a fast release and large for a
slow release. Moreover, when comparing two different capsule config-
urations, if the corresponding c t( )0 curves for the two configurations do
not intersect then the configuration with the larger release time will
have a larger area (larger value of 0). Therefore, it is reasonable to
conclude that 0 provides a useful characterization of the timescale of
release1.

A major attraction of working with Eq. (3.2) is that a simple closed-
form expression can be derived for 0 involving the model parameters
without requiring the full analytical or numerical solution expression

for c0(0, t). This is achieved by extending and modifying similar ideas
presented elsewhere (see, e.g., [14,15]). First, we define:
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C
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which allow us to write down an equivalent form of Eq. (3.2)
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Next, applying the linear operator , defined as
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to both sides of Eq. (3.3) and making use of Eqs. (2.1)–(2.3) yields the
following differential equation:
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Supplementary boundary and interlayer conditions corresponding to
Eqs. (2.4)–(2.7) are derived using the definition of ui(r) in Eq. (3.3) (see,
e.g. [14,18]). In summary, recalling the initial conditions (2.8)–(2.10)
and the steady-state solution (2.11), we have the following boundary
value problem satisfied by ui(r) ( = …i n e0, 1, , , ):
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The above boundary value problem admits a closed-form analytical
solution. By way of example, we consider the simplest case of the core-
shell model, a drug-filled core surrounded by one hydrogel shell ( =n 1).
In this case, the differential Eqs. (3.7)–(3.9) possess the general solu-
tion:

= +u r
r

r
D

( )
6

,0
0

1
2

0 (3.14)

Fig. 2. Typical spatio-temporal behaviour of the drug concentration arising from the drug diffusion model (2.1)–(2.10) with a single hydrogel layer ( =n 1) (a) Plot of
the dimensionless concentration, ci(r, t)/C0, versus radius r at four values of t with a black arrow indicating the direction of increasing time. Vertical lines denote the
interfaces =r R0 and =r R1. (b) Plot of the dimensionless concentration at the centre of the capsule c t( )0 versus time. The shaded area underneath this curve defines
the zeroth moment 0 (3.2) while the release time, as defined in Eq. (3.1), is the time when c t( )0 reaches a small prescribed value ε.

1 We remark that Eq. (3.2) differs from the standard definition of mean action
time (see e.g. [14]) commonly used to characterize the time taken for a diffu-
sion process to reach steady state. The reason for this difference is that the
standard definition is not defined when =c r c r( , 0) ( ),i i as is the case in
Eqs. (2.9)–(2.11).
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where …, , ,0 1 5 are arbitrary constants. Immediately, the boundary
condition (3.10) requires = 00 . The remaining constants satisfy the
following algebraic system generated by substituting Eqs. (3.14)–(3.16)
into the four interface conditions (3.11)–(3.12) with =n 1:

= +R
D R6

,1
0
2

0
0

2

0
3

(3.17)

=R D
R3

,0 1 2

0
2 (3.18)

=D
R

D
R

,e1 2

1
2

4

1
2 (3.19)

= +D
R P R R

,e 4

1
2 1

4

1
5

2

1
3

(3.20)

+ =
R

0.4
5 (3.21)

Eqs. (3.17)–(3.21) can then be solved sequentially: Eq. (3.18) for α2,
Eq. (3.19) for α4, Eq. (3.21) for α5, Eq. (3.20) for α3 and finally
Eq. (3.17) for α1. Combining these results with Eqs. (3.14)–(3.16) yields
the solution to the boundary value problem (3.7)–(3.13)2:
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Evaluating Eq. (3.22) at =r 0 gives the following expression for the
zeroth moment (3.4):
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In summary, Eq. (3.25) provides a simple formula for characterizing the
timescale of release: for small values of 0 we expect a rapid release
while for large values of 0 we expect a slow release.

To approximate the release time tr (3.1) we incorporate the first
temporal moment, = t c t t( ) d ,1 0 0 into the calculation:

+t t3 ^ ,r r0 1 (3.26)

where the square root ensures that the second term has units of time.
The inclusion of the first moment introduces a penalty to c t( )0 curves
with heavy tails that exhibit a slower decay to zero, behaviour that may
not be captured by the zeroth moment alone. The formula (3.26) fol-
lows a similar approximation used by Simpson et al. [15] for estimating
response times of groundwater diffusion processes while the coefficient
of three is a heuristic factor inspired by the three sigma rule [24]. By
deriving a similar boundary value problem to Eqs. (3.7)–(3.13) for the
first moment, ,1 as described later in Section 4, the following closed-
form expression can be derived:
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The advantage of incorporating information about the first moment is
that the expression (3.27), although more complex and costly than
(3.25), provides a better estimate of the release time (see Section 5 for
additional comments on the results). Other estimates can be defined by
modifying (3.26) to include higher moments, but because of their in-
creasingly complicated form, they likely have limited practical use.

In the next section, we present an iterative procedure to improve the
estimate of tr.

4. Estimating the release time using high order moments

Eq. (3.27) provides a crude approximation of the release time of the
capsule, tr, as defined in Eq. (3.1). In this section, we present a highly-
accurate asymptotic estimate of tr by extending, to multi-layer diffusion
in spherical coordinates, previous work by Carr [18], which focussed on
monolayer diffusion in Cartesian coordinates. At =r 0, the analytical
solution to the drug diffusion model (2.1)–(2.10) possesses the fol-
lowing functional form [8]:
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where γj and βj are constants. It follows then that the long time beha-
viour of the concentration is exponentially decreasing:
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0 0 0 (4.2)

Combining Eqs. (3.1) and (4.2) gives the following asymptotic estimate
of the release time3:

t
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The formula (4.3) requires knowledge of γ0 and β0, which are re-
lated to the dominant eigenvalue and eigenfunction pair of the under-
lying Sturm-Liouville problem [8]. Alternatively, γ0 and β0 can be cal-
culated by using appropriate temporal moments of the concentration
[18] as we now describe. Define the kth temporal moment:
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where the first subscript indicates the layer ( = …i e0, 1, , ) and the
second subscript denotes the kth moment ( = …k 0, 1, ). Combining
Eqs. (4.1) and (4.4) and carrying out the integration yields:
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(4.6)

Since β0 < βj for all = …j 1, 2, , we have the following asymptotic ex-
pression for the higher moments [18]:

2 Note that evaluating either u0(r), u1(r) or ue(r) allows the area under the
c t( )0 curve between =t 0 and t → ∞ to be calculated for any value of r, which
may also be of practical interest. 3 To guarantee tr > 0, the condition ε < γ0 is required.
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Evaluating Eq. (4.7) at k and k 1 and solving the resulting algebraic
system for γ0 and β0 gives:
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Finally, substituting Eq. (4.8) into Eq. (4.3) yields the following
asymptotic estimate of the release time:
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where the superscript (*) is used to signify that t *r is an asymptotic
estimate of tr. Due to Eq. (4.7), t *r becomes more accurate for large k
[18]. The attraction of the formula for t *r is that the moment expressions
appearing in Eq. (4.9) can be calculated without computing the full
transient solution at the core, c t( ),0 which appears in the definition
(4.4). This is achieved by deriving a similar boundary value problem to
the one satisfied by ui(r) (or, equivalently ui,0(r)) given in
Eqs. (3.7)–(3.13). Applying the linear operator in Eq. (3.5) to
Eq. (4.5) and utilising Eqs. (2.1)–(2.3) yields:
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Integrating by parts and noting that ci(r, t) → 0 exponentially as t → ∞
produces the following differential equation for u r( )i k, 1 :
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involving the k( 1)th moment at r, namely u r( )i k, 1 . Similar boundary
and interlayer conditions to those in Eqs. (3.7)–(3.13) apply [14] giving
the following boundary value problem for the kth moment:
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The release time is computed iteratively by solving the sequence of
boundary value problems (4.12)–(4.18) for increasing values of k
[18,20]. First, an initial estimate of t *r is calculated by setting =k 1 in
Eq. (4.9), solving Eqs. (4.12)–(4.18) with =k 1 for u0,1(r) to give

= u (0)1 0,1 and using the zeroth order moment computed previously
(Section 3). Next, an improved estimate of t *r is computed by setting

=k 2 in Eq. (4.9), solving Eqs. (4.12)–(4.18) with =k 2 for u0,2(r) to
give = u (0)2 0,2 and using the previously computed first moment. The
process repeats by increasing k until the value of t *r converges suffi-
ciently to an accurate estimate of tr as defined in Eq. (3.1). We remark
that numerically solving the system (4.12)–(4.18) is computationally

inexpensive, since the coefficient matrix that arises from spatial dis-
cretisation of the boundary value problem remains unchanged
throughout the iterations and only needs to be factorized once, with
only the right-hand side of Eqs. (4.12)–(4.14) changing with k.

5. Results and discussion

In this section, we apply the release time estimates of Sections 3 and
4 to several test cases. For all our numerical experiments we consider
the drug diffusion model (2.1)–(2.10) with =n 1 (core-shell model) and
the following base values for the geometrical and physical parameters
[8,9,21]:

= = =R R R1.5·10 m, 1.7·10 m, 30·10 m,0
3

1
3 3 (5.1)

= = =D D D30·10 m s , 5·10 m s , 30·10 m s ,e0
11 2 1

1
11 2 1 11 2 1 (5.2)

= = P1, .0 1 (5.3)

Using this set of parameter values, we first investigate the convergence
behaviour of the asymptotic estimate of the release time, t *r (4.9), for
increasing values of k. In Table 1, we report the value of t *r and c t( *)r0
for = …k 1, , 14 and = 10 , 10 , 104 5 6. These results show that t *r is
converging to a highly accurate estimate of the release time, with

c tlim ( *)k r0 close to the prescribed value of ε (3.1) in all three cases.
For the two smaller values of ε, c tlim ( *)k r0 is closer to the specified
value of ε because the one-term approximation (4.2) becomes more
accurate for larger values of t. For this parameter set, the release time
estimate converges to the second by =k 12 for all three values of ε.

We now investigate the sensitivity of t *r when varying the outer
radius of the capsule, R1, the mass transfer coefficient at the external
coating, P, the diffusivity in the core, D0, and the diffusivity in the
hydrogel layer, D1, about the base values Eqs. (5.1)–(5.3). Each of the
parameters, R1, P, D0 and D1, are varied one at a time holding the other
three parameters fixed at the base values. We consider three values of
R1 between 1.52·10 3 and 6·10 ,3 P between 5·10 8 and 5·10 ,6 D0 be-
tween 5·10 11 and 5·10 9 and D1 between 5·10 12 and 5·10 10. In total,
there are 12 test cases as labelled in Table 2 with the release time es-
timate t *r (4.9) calculated with =k 15 and = 10 4 in all cases. In Fig. 3,
for each test case, we plot the temporal profile of the dimensionless
concentration at the centre of the capsule c t( )0 to show the effect of
varying R1, P, D0 and D1. These results show that over the specified
ranges of each parameter the time required for c t( )0 to approach zero
increases for increasing values of R1 and decreasing values of P, D0 and
D1 (Fig. 3). In Table 2, this translates to larger values of t *r for increasing
values of R1 and decreasing values of P, D0 and D1.

For each concentration curve in Fig. 3 we also indicate the result of
applying the crude approximation of the release time t̂r (3.27) using a
vertical dash line. These results demonstrate that the crude approx-
imation provides an accurate visual match with the time required to
reach steady state. This is further confirmed in Table 2, which shows
that for all 12 test cases c t(^ )r0 is of the order 10 2– 10 3. In this table, the
zeroth and first moments, 0 and ,1 are also given for each test case.
Comparing cases 3 and 4 we see the importance of incorporating the
first moment: both cases have a similar value for the zeroth moment,
however, the heavy tail of case 3, evident in Fig. 3, leads to a sig-
nificantly larger release time, which is appropriately captured by the
significantly larger value for the first moment (see Table 2). In sum-
mary, although t̂r is less precise than t *,r it is much easier to compute
and can be useful to assess the release performance for different con-
figurations.
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6. Conclusions

Polymer capsules, pellets, tablets, layer-by-layer vehicles and other
micro-engineered drug releasing implants are attracting a great deal of
attention for their potential use for therapeutic applications. The design
of such novel drug delivery devices poses major challenges, such as the
unknown significance of process parameters. Modelling and computa-
tional tools, however, can assist in designing drug delivery devices to
enable control over the delivery rate and the time required to establish
a steady-state flux. Moreover, the performance of a composite micro-
capsule can be sensibly enhanced if the release mechanism is under-
stood and an appropriate mathematical model is used to characterize

the releasing ability of the system. In this study, novel approaches to
estimate the release time of diffusion problems from spherical multi-
layer capsules are presented under a limited number of physical as-
sumptions. The method is based on the linearity of a pure diffusive
system, that holds or dominates in most circumstances. No explicit
solution of the diffusion problem is required; instead temporal moments
of the drug concentration versus time curve at the centre of the capsule
are used to derive analytical expressions that provide a priori quanti-
tative indication of the drug release time. The proposed methodology,
which accounts for the relevant geometrical and physical parameters,
provides a simple tool to measure microcapsule dynamic performance.

Table 1
Convergence of the asymptotic estimate of the release time t *r (4.9) for increasing values of the index k applied to the drug diffusion model (2.1)–(2.10) with a single
hydrogel layer ( =n 1) and the physical parameters Eqs. (5.1)–(5.3). The value of t *r is calculated using three different choices for ε and is displayed in the format
days:hours:minutes:seconds.

= 10 4 = 10 5 = 10 6

k t *r c t( *)r0 t *r c t( *)r0 t *r c t( *)r0

1 02:06:22:59 7.2152 · 10−4 02:22:53:05 4.8197 · 10−4 03:15:23:12 3.5016 · 10−4

2 07:23:03:31 8.6792 · 10−5 13:02:30:33 2.0023 · 10−5 18:05:57:35 4.6400 · 10−6

3 07:21:39:42 8.8261 · 10−5 15:11:32:11 1.0190 · 10−5 23:01:24:40 1.1822 · 10−6

4 07:14:19:34 9.6411 · 10−5 15:14:06:10 9.8849 · 10−6 23:13:52:46 1.0199 · 10−6

5 07:11:49:55 9.9360 · 10−5 15:13:37:58 9.9401 · 10−6 23:15:26:02 1.0013 · 10−6

6 07:11:02:47 1.0031 · 10−4 15:13:18:53 9.9777 · 10−6 23:15:34:58 9.9953 · 10−7

7 07:10:48:25 1.0060 · 10−4 15:13:11:17 9.9926 · 10−6 23:15:34:10 9.9969 · 10−7

8 07:10:44:09 1.0069 · 10−4 15:13:08:41 9.9977 · 10−6 23:15:33:14 9.9988 · 10−7

9 07:10:42:54 1.0071 · 10−4 15:13:07:52 9.9994 · 10−6 23:15:32:50 9.9996 · 10−7

10 07:10:42:33 1.0072 · 10−4 15:13:07:37 9.9999 · 10−6 23:15:32:41 9.9999 · 10−6

11 07:10:42:27 1.0072 · 10−4 15:13:07:32 1.0000 · 10−5 23:15:32:38 1.0000 · 10−6

12 07:10:42:25 1.0072 · 10−4 15:13:07:31 1.0000 · 10−5 23:15:32:37 1.0000 · 10−6

13 07:10:42:25 1.0072 · 10−4 15:13:07:31 1.0000 · 10−5 23:15:32:37 1.0000 · 10−6

14 07:10:42:25 1.0072 · 10−4 15:13:07:31 1.0000 · 10−5 23:15:32:37 1.0000 · 10−6

Fig. 3. Profiles of the dimensionless concentration at the centre of the capsule, c t( ),0 over time showing the effect of varying (a) the outer radius of the capsule (R1);
(b) the mass transfer coefficient at the external coating (P); (c) the diffusivity in the core (D0); and (d) the diffusivity in the hydrogel layer (D1). The vertical dash lines
represent the corresponding crude approximation to the release time t̂r (3.27). When varying a parameter all other variables are held fixed at the values given in
Eqs. (5.1)–(5.3). All results are based on the drug diffusion model (2.1)–(2.10) with a single hydrogel layer ( =n 1). The test cases match those reported in Table 2.
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Case 1 2 3 Case 4 5 6

R1 [m] 1.52 · 10−3 3.00 · 10−3 6.00 · 10−3 P [m s−1] 5.00 · 10−8 5.00 · 10−7 5.00 · 10−6

0 [h] 1.05 2.74 3.61 0 [h] 3.58 1.63 1.44
1 [h2] 18.39 43.30 111.17 1 [h2] 34.80 21.74 20.43

t̂r [h] 13.92 22.48 35.24 t̂r [h] 21.27 15.62 15.00

t *r [h] 177.80 188.55 237.58 t *r [h] 185.23 179.35 178.77

c t(^ )r0 [-] 5.38 · 10−3 1.06 · 10−2 1.59 · 10−2
c t(^ )r0 [-] 1.09 · 10−2 5.50 · 10−3 5.43 · 10−3

c t( *)r0 [-] 1.01 · 10−4 1.01 · 10−4 1.05 · 10−4 c t( *)r0 [-] 1.01 · 10−4 1.01 · 10−4 1.01 · 10−4

(a) Varying R1 (b) Varying P

Case 7 8 9 Case 10 11 12

D0 [m2 s−1] 5.00 · 10−11 5.00 · 10−10 5.00 · 10−9 D1 [m2 s−1] 5.00 · 10−12 5.00 · 10−11 5.00 · 10−10

0 [h] 3.15 1.28 1.09 0 [h] 5.83 1.42 0.97
1 [h2] 31.39 19.76 19.14 1 [h2] 90.83 20.29 18.09

t̂r [h] 19.96 14.61 14.22 t̂r [h] 34.42 14.93 13.73

t *r [h] 181.17 178.51 178.25 t *r [h] 189.86 178.71 177.63

c t(^ )r0 [-] 4.47 · 10−3 5.47 · 10−3 5.54 · 10−3
c t(^ )r0 [-] 6.49 · 10−3 5.42 · 10−3 5.38 · 10−3

c t( *)r0 [-] 1.01 · 10−4 1.01 · 10−4 1.01 · 10−4 c t( *)r0 [-] 1.01 · 10−4 1.01 · 10−4 1.01 · 10−4

(c) Varying D0 (d) Varying D1

E.J. Carr and G. Pontrelli Mathematical Biosciences 315 (2019) 108216

7

https://doi.org/10.1016/j.mbs.2019.108216
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0001
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0001
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0001
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0002
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0002
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0012
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0012
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0013
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0013
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0013
https://doi.org/10.3390/catal9010001
https://doi.org/10.3390/catal9010001
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0015
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0015
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0015
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0016
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0016
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0003
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0003
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0004
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0004
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0004
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0005
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0005
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0006
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0006
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0007
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0007
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0007
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0007
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0017
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0017
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0008
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0008
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0009
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0009
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0018
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0018
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0019
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0019
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0019
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0010
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0010
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0010
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0020
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0020
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0011
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0011
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0021
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0021
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0021
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0022
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0023
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0023
http://refhub.elsevier.com/S0025-5564(19)30049-5/sbref0024

	Drug delivery from microcapsules: How can we estimate the release time?
	Introduction
	Drug diffusion model for a multi-layer sphere
	Crude approximation of the release time
	Estimating the release time using high order moments
	Results and discussion
	Conclusions
	Declarations of interest
	Acknowledgments
	Supplementary material
	References




