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The rate of drug delivery to cells and the subsequent rate of drug metabolism are dependent on the cell
membrane permeability to the drug. In some cases, tissue may be composed of different types of cells
that exhibit order of magnitude differences in their membrane permeabilities. This paper presents a brief
review of the components of the tissue scale three-compartment pharmacokinetic model of drug delivery
to single–cell–type populations. The existing model is extended to consider tissue composed of two dif-
ferent cell types. A case study is presented of infusion mediated delivery of doxorubicin to a tumor that is
composed of a drug reactive cell type and of a drug resistive cell type. The membrane permeabilities of
the two cell types differ by an order of magnitude. A parametric investigation of the population compo-
sition is conducted and it is shown that the drug metabolism of the low permeability cells are negatively
influenced by the fraction of the tissue composed of the permeable drug reactive cells. This is because
when the population is composed mostly of drug permeable cells, the extracellular space is rapidly
depleted of the drug. This has two compounding effects: (i) locally there is simply less drug available
to the neighboring drug resistant cells, and (ii) the depletion of the drug from the extracellular space near
the vessel-tissue interface leaves less drug to be transported to both cell types farther away from the
vessel.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The compartment pharmacokinetic model is used in pharmaco-
logical studies to describe the delivery and transport of molecules
to tissues and cell cultures (Jackson, 2003; Groh et al., 2014;
Clarelli et al., 2020; Dordal et al., 1995; Eikenberry, 2009). This
family of models has been used almost exclusively for single–
cell–type populations. It is well understood that in some che-
motherapeutic treatments, however, different types of cells may
react differently to the drug. Examples occur in the treatment of
tissues that are composed of both healthy and cancerous cells, or
in the treatment of tissue composed of both drug resistant and
drug responsive cells. The biophysical characteristics of the cell
membrane have been associated with the drug resistivity of cancer
cells (Ferté, 2000). The mechanical properties of the cell membrane
in cancer cells have been demonstrated to play a role in the sensi-
tivity/resistivity to the anticancer drug doxorubicin (DOX) (Bell et
al., 2013). A recent experimental study showed that the cell wall
model characteristics associated with healthy cells had an appar-
ent permeability to DOX that was an order of magnitude higher
compared to that of a cell wall associated with cancerous cell con-
ditions (Aminipour et al., 2020). In the study (Peetla et al., 2010)
the authors show that cell lines that are that are resistant to DOX
show a lower transmembrane permeability than the cells that
are sensitive to the drug.
1.1. Single–Cell–Type population compartment models

Pharmacological continuum models that depict mass transfer
from the extracellular space (EC) to the cell interior often use the
concept of binding (Clarelli et al., 2020; Lauffenburger and
Linderman, 1993; McGinty and Pontrelli, 2016). Within the EC,
the drug is free to diffuse and interact with its environment; this
is the drug’s unbound state (or free state). The drug molecule is
designed to reach specific receptors on the cell membrane or
within the cell cytosol. These are referred to as specific binding
sites; the drug that is bound to these sites is considered to be in
its specific bound state. Sometimes the molecule may instead
interact with unintended receptors or other molecules so that
the drug is unable to reach the intended receptors. In this case,
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the drug molecule would be considered to be in its non-specific
bound state.

Many theoretical studies of drug delivery to cells use a three
compartment model that represents the drug in three distinct
phases: (i) the drug in the extracellular space, (ii) the drug in the
intracellular space, and (iii) the product of reaction of the drug
within the cell (Jackson, 2003; Groh et al., 2014; Clarelli et al.,
2020; Dordal et al., 1995). Drug transport throughout the EC occurs
by diffusion (and in some cases by slow advection). The cell mem-
brane regulates the rate of transmembrane transport of the drug
between the EC and the intracellular space. Only once it has
entered the cell is the drug able to react with the intended internal
receptors (resulting here in a product of reaction). A conceptual
depiction of the 3 phases of the three-compartment model is pre-
sented in Fig. 1.

The mathematical expressions governing the conservation of
drug in the three-compartment model represent the drug in its
three states is represented by the coupled system of equations:

@CEC

@t
¼ r � J CECð Þ � FEC�I CEC ;CIð Þ

@CI

@t
¼ FI�EC CEC ;CIð Þ � R CI; PIð Þ

@PI

@t
¼ R CI; PIð Þ: ð1Þ

Here CEC and CI are the extracellular and intracellular drug con-
centrations, respectively, and PI represents the intracellular con-
centration of the product of reaction. The drug flux within the
EC, J CECð Þ, may be representative of simple diffusion, of advection
resulting from some interstitial flow velocity, v, or of a combina-
tion of the two. In the study that follows only diffusion mediated
transport is considered.

The principal aim of drug delivery is to initiate some internal
reaction within the cell . This requires that the drug passes the cell
membrane, and the nature of transport across the cell wall is var-
ied and molecule specific (Yang and Hinner, 2015). The function
FEC�I of Eq. (1) represent the transmembrane transport of the drug
between from the extracellular space to the intracellular space
(and FI�EC represents the reverse). When the intrinsic drug concen-
trations are used, these functions must account for the difference
in the volumes of the intracellular space and of the extracellular
space. In models of single–cell–type populations, when intrinsic
drug concentrations are used, the function of transmembrane
transport FEC�I scales linearly to FI�EC by the ratio of intracellular
volume to extracellular volume. For many molecules, the trans-
membrane flux is well represented by Fickian diffusion in which
Fig. 1. The three compartment model in which the drug exists in three states: in its
extracellular free state, in its intracellular free state, and as the intracellular product
of reaction.
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the rate of flux is linearly proportional to the transmembrane con-
centration gradient (Jackson, 2003; Groh et al., 2014; Clarelli et al.,
2020; Dordal et al., 1995). For other molecules, the observed rate of
transmembrane transport is saturable with respect to the trans-
membrane concentration gradient; when, for example, the trans-
port is facilitated by a limited number of specialized carrier
proteins (Yang and Hinner, 2015), continuum models often
describe the rate of transfer in terms of Michaelis-Menten kinetics
(Vendel et al., 2019; El-Kareh and Secomb, 2000; Vendel et al.,
2019)

A conversion of the drug inside the cell to some product PI may
be described by a reaction, R CI; PIð Þ, that occurs between the drug
and the internal organelles of the cell. In some cases the reaction
is represented by an irreversible binding and the drug reaction rate
is simply proportional to the concentration of the free drug in the
cell cytosol (Jackson, 2003; Dordal et al., 1995). For many drugs,
the relationship between the rate of targeted binding and the drug
concentration is modeled in a non-linear reversible manner so that
some of the bound drug may return to its free state. Many models
describing these reactions often consider that the rate of the bind-
ing is limited by the number of available binding sites (Groh et al.,
2014; Clarelli et al., 2020). Recent studies have accounted for both
specific and nonspecific binding by including additional reaction
terms (McGinty and Pontrelli, 2016; Chakravarty and Dalal, 2019).

Some compartmental models make the simplifying approxima-
tion that the transport across the cell wall is instantaneous (Clarelli
et al., 2020; McGinty and Pontrelli, 2016; Vendel et al., 2019;
Chakravarty and Dalal, 2019); here the internal and external con-
centrations of the drug in its free unbound state are equal
CI ¼ CEC ¼ C. This local mass equilibrium approximation allows
the three compartment model of Eqs. (1) to be represented by a
two compartment model that does not distinguish between EC
and IC drug concentrations:

@C
@t

¼ r � J Cð Þ � R C; Pð Þ
@P
@t

¼ R C; Pð Þ: ð2Þ

Because this representation fails to capture the time lag associ-
ated with the cell membrane’s barrier function, this simplification
should only be applied when the internal reactions occur on a
much longer timescale than the transmembrane transport.

The representations of the compartmental model of drug deliv-
ery to cells in tissue are able to account for many different
observed microscale phenomena, and while these theoretical mod-
els are able to conserve the drug mass in each of the phases, they
consider only single–cell–type populations. It is reasonable to
anticipate scenarios in which the tissues is composed of different
cell types. For example when the cell membranes of healthy cells
exhibit a higher permeability to the drug than the cell membranes
of cancerous drug resistant cells. Such effects cannot be captured in
models of single–cell–type populations.
1.2. Multiple cell population models

The motivation behind the current work is to present a model of
drug transport to tissues or cell suspensions that are composed of
multiple-cell-type populations: effectively to extend the general
expression of Eq. (1) to include the conservation of drug in differ-
ent cell types. In this section we review some of the applications of
multiple–cell–type populations. While the models used in these
applications do consider a domain composed of different types of
cells, they do not explicitly conserve the drug (or chemical species)
as is done in the 3 compartment representation of Eq. (1). These
limitations are described next.
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1.2.1. Tumor growth models
Depending on the application, algebraic, ordinary differential

equations, and partial differential equations have been used to
model tumor response to treatment and nutrient availability; a
comprehensive list of the different models is provided in the first
table of (Yin et al., 2019). The reaction–diffusion model (some-
times referred to in this context as the proliferation-invasion
model) allows researchers to expand the analysis to consider
spatio-temporal tumor behavior (Meghdadi et al., 2016; Preziosi
et al., 2021). The review (Roose et al., 2007) presents different
models of coupled sets of reaction–diffusion equations that
account not only for the concentration of cancer cells, but also
for the concentration of nutrients (upon which tumor growth is
clearly dependent). The set accounts for the EC and the spaces
occupied by different cell types. These models use conservative
equations to represent the spatio-temporal changes in the volume
fraction of each of these phases (Roose et al., 2007; Casciari et al.,
1992). For each nutrient type, a diffusion–reaction equation may
be used to represent the conservation of species (Roose et al.,
2007; Byrne et al., 2003). Simplified representations of this system
of equations include the two–phase system of (Ward, 1999) that
considers only: (i) live cells and (ii) dead cells with the conserva-
tion of multiple nutrients. Another two–phase model is presented
in (Breward et al., 2002) and modified by (Flegg and Nataraj, 2019)
which considers the conservation of the two phases, (i) the cell
phase and (ii) the extracellular fluid phase, and conserves the sin-
gle nutrient, oxygen. These tumor-growth models have been devel-
oped to focus on the prediction of the distribution of tumor cell
concentrations and not the conservation of the drug or chemical
species in the different phase. The multiphase approach has been
extended to different types of living cells (cancerous and normal
cells for example). A drug resistance study by (Jackson and
Byrne, 2000) modelled the diffusion of drug through a tumorous
tissue composed of two types that respond differently to the drug.
However that study did not account for the reduction of the drug
mass in the EC resulting from the uptake of the drug by the cells;
again this is because the focus of that study was the conservation
of the cells and not of the drug.

1.2.2. Cell chemotaxis models
The uptake of some chemical species by multiple–cell–type

populations has been represented in the continuum dynamics
involved in the interaction between cell migration and the conser-
vation of some chemical species. Chemotaxis, the tendency of a cell
population to migrate in a preferential direction dependent on the
concentration (or gradient in concentrations) of some chemical
species is often represented by the Keller-Segel equation (Keller
and Segel, 1971; Horstmann and From, 1970; Hillen and Painter,
2009). An interesting extension of this model is presented in the
study by Ref. (Painter et al., 2000) that considers the chemotaxis
of a single population of cells with two different chemical types.
The model has also been adapted to include populations of more
than one cell type; for the case of different cell types in competi-
tion for a chemical resource in (Stinner et al., 2014) and for the case
when different cell types can interact with one another (Painter
and Sherratt, 2003). These cell chemotaxis models are not devel-
oped to focus on the uptake of the chemical by the cell; these mod-
els are focused on the distribution and kinetics of the cellular
concentrations. These models do not directly address the conserva-
tion of mass of the molecule taken up by the multiple cell types.

1.2.3. Viral dynamics models
The problem of the spreading of a virus has been considered in

multiple–cell–type populations (Bocharov et al., 2018). Early mod-
els use coupled sets of ODE’s that consider spatial uniformity in the
transient behavior of three coupled expressions describing the
3

dynamics of concertation of infected cells, non-infected cells, and
virus (Nowak et al., 1996) and these employed the reaction kinetics
similar to those described in the binding models. With further
developments, diffusion related spatial effects were included in
the model, initially to capture the 1D spread of a virus through a
population of bacteria (Yin and McCaskill, 1992; You and Yin,
1999). These couple the concentration of the virus (which is free
to diffuse through the extracellular media) to the concentration
of uninfected cells and the concentration of infected cells. These
models focus on the conservation of the number of cell types (in-
fected or non-infected) and the virus is represented by a reaction
rate (often nonlinear and irreversible), so that these models do
not actually conserve the mass of the virus transferred to the cells.
2. Three compartment model of multi-cell-type populations

The models reviewed so far have considered the delivery of
drugs to only a single–cell–type population, or if the models do
consider a multiple–cell–type population, they do not conserve
the drug (or species). In the sections that follow, we introduce a
model of drug delivery to a region of tissue composed of different
cell types and for which each cell type may respond differently to
the drug administered. The extension of the three compartment
model to a multiple–cell–type population is depicted in Fig. 2. Here
CEC is the intrinsic drug concentration in the EC. The intrinsic intra-
cellular drug concentrations of Cell Type 1 and Cell Type 2 are C1

and C2, respectively. The products of reaction of the cell types
are represented by the parameters P1 and P2. The mathematical
representation require that each cell type be assigned its own
unique transmembrane transport term and possibly its own
unique reaction term(s). In the discussion that follows only the dif-
fusion of drug in the extracellular space is considered and any
advection resulting from some interstitial flow has been neglected.
2.1. Porosity, cell fraction, and drug concentration

The porosity of the tissue is the ratio of the volume occupied by
the extracellular space, VEC , to the total volume, VT :

e ¼ VEC

VT
¼ VEC

VEC þ VC
: ð3Þ

Here VC is the volume occupied by all cells. In this study the vol-
ume occupied by the cells comprises the volumes occupied by the
two different cell types:

VC ¼ V1 þ V2: ð4Þ
The fractions of the of the total number of cells that are of Type

1 and of Type 2 are represented by the parameters, f 1 ¼ n1=nC and
f 2 ¼ n2=nC . Under the approximation that the individual cell vol-
ume of the two cell types are equal, the fraction of cells of type 1
and type 2 may be related to the cellular volume as:

f 1 ¼ V1=VC ; f 2 ¼ V2=VC ¼ 1� f 1: ð5Þ
In this way the three volumes occupied by the EC and the differ-

ent cell types may be related to the total volume by:

VEC ¼ eVT ; V1 ¼ f 1 1� eð ÞVT ; V2 ¼ 1� f 1ð Þ 1� eð ÞVT: ð6Þ
At the subcellular scale, the Fickian transmembrane transport

scales with the intrinsic transmembrane concentration difference.
A sub-domain’s intrinsic concentration is a volume averaged mass
concentration in which the drug mass stored in a sub-domain is
averaged only over the volume of that subdomain. Because in this
study there are no transient or spatial variations in the subdomain



Fig. 2. Conceptual depiction of drug delivery to a tissue composed of a two-cell-type population.

S. Becker, A.V. Kuznetsov, D. Zhao et al. Journal of Theoretical Biology 534 (2022) 110947
volumes in Eq. (6), the intrinsic concentrations may be simply rep-
resented as the ratio of the drug mass of each subdomain to that
subdomain’s volume:

CEC ¼ mEC

VEC
; C1 ¼ m1

V1
; C2 ¼ m2

V2
: ð7Þ

This differs from the total volume averaged concentrations
which is the mass of the drug stored in the sub-domain that is
averaged over the total domain volume. Formal descriptions of
the determination of the intrinsic concentration and the total vol-
ume averaged concentration is presented in Section 3.2 of the book
(de Monte et al., 2013). In this study the total volume averaged
concentrations simplify to the ratio of the drug mass stored in each
sub-domain to the total volume:

CEC ¼ mEC

VT
; C1 ¼ m1

VT
; C2 ¼ m2

VT
: ð8Þ

Here the total volume is VT ¼ VEC þ V1 þ V2. Substituting (6)
and (8) into (7), the total volume averaged concentration may be
related to their intrinsic counterparts by the expressions:

CEC ¼ CEC � e
C1 ¼ C1 � f 1 � 1� eð Þ
C2 ¼ C2 � 1� f 1ð Þ � 1� eð Þ:

ð9Þ
2.2. Governing equations: application to the tumor chord

A first principles derivation of the set of equations governing
mass transfer of the three compartment model of two cell types
is provided in Appendix A. In the study that follows, the governing
equations are applied to an axi-symmetric cylindrical region of tis-
sue surrounding a small blood vessel representative of a tumor
4

chord. The tissue is situated within the radial coordinates
rI 6 r 6 rO where rI is the radial position of the vessel-tissue
interface and rO is the radial position at the outer boundary of
the domain. This is depicted in Fig. 3.

In the following analysis, the reaction terms of both cell types
are equal to one another and are represented by a reversible sat-
urable binding model similar to that presented in (Groh et al.,
2014; Clarelli et al., 2020) for which:

Ri ¼ k1Ci C0 � Pið Þ � k�1Pi i ¼ 1;2: ð10Þ
Here the index i refers to cell type number. The parameter C0 is

the limiting binding site concentration within the intracellular
space. Its value limits the binding rate at ‘‘saturation”. The param-
eter k1 is the drug association rate, and k�1 is the drug disassocia-
tion rate.

In this study, the mass transfer in the extracellular space is
described by simple diffusion, so that the axi-symmetric coupled
set of equations governing the conservation of drug mass is:

@

@t
CECð Þ ¼ D

@2

@r2
CECð Þ þ 1

r
@

@r
CECð Þ

" #

� 1� eð Þ
e

f 1l1 CEC � C1ð Þ � 1� eð Þ
e

1� f 1ð Þl2 CEC � C2ð Þ
@

@t
C1ð Þ ¼ l1 CEC � C1ð Þ � k1C1 C0 � P1ð Þ þ k�1P1

@

@t
C2ð Þ ¼ l2 CEC � C2ð Þ � k1C2 C0 � P2ð Þ þ k�1P2:

ð11Þ
Here the parameters l1 and l2 are the mass transfer coeffi-

cients associated with Cell Type 1 and Cell Type 2 respectively.
Their magnitudes are proportional to the permeability to the drug
of the cell different membrane types. Because the EC is a porous



Fig. 3. Depiction of the computational domain representing a tumor chord that is composed of two cell types and that surrounds a small blood vessel.
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domain, an effective diffusion coefficient, D, is used to account for
the tortuous pathway through the fluid filled space. The rate at
which the product of reaction occurs in each cell type is repre-
sented by:

@

@t
P1ð Þ ¼ k1C1 C0 � P1ð Þ � k�1P1

@

@t
P2ð Þ ¼ k1C2 C0 � P2ð Þ � k�1P2: ð12Þ
Table 1
Parameter descriptions and values used in this study. With the exception of the drug
resistive cell permeability, l1, and the geometry, all parameters have been
determined from those of (Groh et al., 2014).

Symbol Parameter Value Used in
Eq.

D Effective Extracellular Drug
Diffusion Coefficient

7:5� 10�10 m2s�1 (11), (15)

e Tissue Porosity 1/17 (11)
l1 Drug Resistive Cell Membrane

Permeability
4:123� 10�3 s�1 (11)

l2 Drug Receptive Cell Membrane
Permeability

0:2062 s�1 (11)

C0 Intracellular Binding Saturation
Concentration

2:6� 103 lM (11), (12)

k1 Drug Association Rate Constant 9� 10�7 lM�1s�1 (11), (12)

k�1 Drug Disassociation Rate
Constant

1:4� 10�5 s�1a (11), (12)

rI Radial Location of Tissue –
Vessel Interface

20lM (13),
(14), (15)

rO Outer Radial Position of
Domain Boundary

103 lM (13),
(14), (15)

h Vessel-Tissue Permeability to
the Drug

2:125 � 10�6 m s�1 (15)
2.3. Initial conditions and boundary conditions.

Equations (11)–(12) are subject to the following homogeneous
initial conditions:

t ¼ 0 : CEC ¼ C1 ¼ C2 ¼ P1 ¼ P2 ¼ 0 in ri 6 r 6 rO; ð13Þ
At the outer boundary, a no flux condition is imposed in the EC:

r ¼ rO :
@CEC

@r
¼ 0: ð14Þ

A case study is conducted based on the one presented in (Groh
et al., 2014) in which the drug is injected into the blood stream so
that it enters the EC at the tissue-vessel interface. This infusion
mediated delivery is represented using a type III boundary condi-
tion at the tissue-vessel interface:

t P 0; r ¼ rI : D
@CEC

@r
¼ h Cp � CEC

� �
: ð15Þ

Here h is the permeability of the vessel wall to the drug and the
concentration of the drug in the plasma is represented by a mono-
exponentially decaying pharmacokinetic profile (Groh et al., 2014):

Cp ¼ a � exp �t=sð Þ: ð16Þ

a Initial Infusion Concentration

at the Vessel Wall
50lM (16)

s Infusion Concentration Decay
Constant

200 s (16)

a The drug dissacociation rate constant is taken from the electronic supplemen-
tary material of (Groh et al, 2014)
2.4. Numerical modeling considerations

Equations (11) and (12) subject to Boundary and Initial Condi-
tions (14)-(16) were evaluated numerically in the commercially
5

available software COMSOL 5.5. In the EC, the drug concentration
was solved using the Transport of Diluted Species Solver of the
Chemical Species Module. For each of the remaining concentra-
tions and products of reactions, a Domain ODE and DAEs solver
of the Mathematics module was used. These equations were time
integrated using the inbuilt implicit backwards differentiation for-
mula (BDF) solver set at a maximum order of 2. By default, the soft-
ware uses an adaptive time step and in this study the maximum
allowable time step was limited to Dtmax = 1 s. The radial domain
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was discretized using uniform grid length ofDr = 1.96 mm resulting
in 500 nodes. The choices in times step restriction and grid size
were informed by a resolution study that is presented in Appendix
B1.

This study is conducted within the radial coordinates:
rI ¼ 20lm and rO ¼ 103 lm. Cell Type 1 is very resistive to the drug
and is assigned a mass transfer coefficient of l1 ¼ 4:123� 10�3 s�1

this value is 50 times smaller than the mass transfer coefficient of
Cell Type 2 , l2 ¼ 0:2062 s�1 which is representative of the exper-
imentally determined permeability of the membranes of tumor
cells to DOX reported in (Groh et al., 2014). The remaining param-
eter values are also determined from those presented in (Groh
et al., 2014) which are representative of the infusion mediated
delivery of DOX to tumor cells surrounding a small vessel and
are summarized in Table 1. Note that the supplementary electronic
material of (Groh et al., 2014) presents a drug disassociation rate
constant, k–1, that is one order of magnitude smaller than that
reported in the main article; this study uses the smaller value.

The numerical solution method of the current study has been
verified in a comparison with the published single cell population
study of (Groh et al., 2014). Quantitative comparisons are pre-
sented in Appendix B and the numerical results at specified times
and radial locations are in excellent agreement with the published
values. This also re-enforces the chosen drug disassociation rate
constant.

In the study that follows the delivery of the drug to the tumor
chord by infusion from the vessel is modeled. The tumor chord is
composed of 2 cell types for which the membrane of one cell type
is much less permeable to the drug than the other cell type. Two
different cell populations are studied: in one, most of the popula-
tion is composed of drug impermeable cell type (f1 = 0.9), and in
the other case most of the population is composed of drug perme-
able cell types (f1 = 0.1).
3. Results and discussion

The purpose of this work is to model the delivery of drugs to
cells in tissue for which the tissue is composed of two different cell
types. It has been shown experimentally that one of the contribut-
ing factors to drug resistance in cells is related to the permeability
of the drug in the cell membrane. Here we consider the case when
the permeability of Cell Type 1 is 50 times lower than that of Cell
Type 2. Two different types of cell population are considered: a
population that is composed of 10% of the drug resistant Cell Type
Fig. 4. The concentration of the product of reaction of resistive Cell Type 1 (blue lines) a
administration and b) the transient profiles at r = 25 lm. Here the population compositio
that of Cell Type 2.

6

1 (f1 = 0.1) and a second population that is composed of 90% of the
drug resistant Cell Type 1 (f1 = 0.9).

The spatial distribution of the product of reaction at a time one
hour after the beginning of the drug administration for these two
different population compositions are considered first. The concen-
tration of the products of reaction of both cell types decrease in
exponentially with distance from the vessel wall regardless of pop-
ulation composition (Fig. 4a). The concentration profiles of the pro-
duct of reaction of the drug resistant cells, P1 are consistently lower
than those associated with the less resistive cells, P2 . At all loca-
tions, the both cell types exhibit lower conentrations of products
of reaction when the population is composed of drug permeable
cells compared to when the population is composed mostly of drug
resistant cells. The transient profiles at r = 0.25 lm (Fig. 4b) reveal
that for both population types, the peak conentration of the pro-
duct of reaction occurs within 30 minutes and that the peak values
of both cell types decseases as more of the population is composed
of the drug permeable cells.

The reason that the reaction within the cell is strongly influ-
enced by the composition of the population can be explained by
looking at the transient drug concentration in each cell type and
the transient concentration of the drug in the EC.

The influence of population composition on the resulting tran-
sient concentration profiles at r = 25 lm are plotted in Fig. 5. At
this location, the intracellular drug concentrations of the drug
resistant Cell Type 1 (Fig. 5a blue lines) and of the drug permeable
Cell Type 2 (Fig. 5a red lines) are both affected by population com-
position. This sensitivity can be explained as follows. When the
resistant Cell Type 1 makes up a small proportion of the cell pop-
ulation (f = 0.1) a greater volume of the tissue is composed of the
higher permeability Cell Type 2. The rate that the EC is depleted
of the drug increases with the fraction of the population composed
of the permeable cells (with decreasing f1). This population depen-
dence of the depletion is evident in the transient extracellular drug
concentration profile (Fig. 5b). Because rate of drug uptake is pro-
portional to the transmembrane concentration difference (Eq. (11))
and because for low f1 there is simply less drug available in the EC
(Fig. 5b), the resistive Cell Type 1 experiences slower drug uptake
(and hence lower values C1) for lower values of f1; there is less drug
available to experience the intracellular drug reaction of Eq. (10)
and this results in the inverse dependence of P1 on f1 observed in
Fig. 4.

The transient behavior of the concentrations at a location far-
ther away from the vessel-tissue interface, at r = 150 lm, have
been plotted in Fig. 6. At this location, the intracellular drug con-
nd responsive Cell Type 2 (red lines) ofor: a) the spatial profiles one hour post drug
n is either 10% or 90% of Cell Type 1 (f1) and the permeability of Cell Type 1 is 1/50



Fig. 5. The transient behavior at r = 25 lm of: a) the intracellular concentrations of both Cell Type 1 (blue lines) and Cell Type 2 (red lines) and b) the extracellular
concentration. Here the population composition is either 10% or 90% of Cell Type 1 (f1) and the permeability of Cell Type 1 is 1/50 that of Cell Type 2.

Fig. 6. The transient behavior at r = 150 lm of a) the intracellular concentrations of Cell Type 1 (blue lines) and Cell Type 2 (red lines) and of b) the of the extracellular
concentration. Here the population composition is either 10% or 90% of Cell Type 1 (f1) and the permeability of Cell Type 1 is 1/50 that of Cell Type 2.
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centrations (Fig. 6a) of both Cell Type 1 (blue lines) and Cell Type 2
(red lines) increase with increasing f1. Recalling Eq. (12), the lower
intracellular drug concentrations are anticipated to result in the in
lower production rates of P1 and P2 and this is reflected in the pro-
files of Fig. 4 at r = 150 lm. When the more permeable Cell Type 2
makes up a large proportion of the cell population (f1 = 0.1), the EC
at locations closer to the vessel wall is depleted of the drug
(Fig. 4b). The diffusive transport within the EC depends on the
extracellular concentration gradient and this gradient decreases
with the previously described depletion that occurs near the
vessel-tissue interface at low f1. Thus less drug is transported to
regions farther away from the vessel-tissue interface (Fig. 6b).
With low values of f1, there is simply less drug available in the
EC at higher radial positions. Because the rate of drug uptake into
both cell types is proportional to the transmembrane concentra-
tion differences, lower values of CEC result in less drug uptake
and hence the lower values of P1 and P2 seen in Fig. 4.

4. Conclusions

The models reviewed in this paper that do capture the contin-
uum dynamic behavior of drug mass in cell cultures or in tissues
all considered a population composed of only a single cell type.
This has obvious limitations when, for example, a drug is delivered
to tissue composed of different types of cells that react very differ-
ently to a drug. There are some existing models of multiple–cell–
7

type population in applications such as viral dynamics, tumor
growth, and cell chemotaxis. However, these models do not con-
serve the drug (or chemical species); instead these focus on the
conservation of the transient cell density of the different cell types.
The model presented in this study allows researchers to predict the
drug uptake by a population composed of different cell types
which has the potential to be especially useful in the prediction
of the efficacy of treatments when the tissues or cell cultures are
heterogeneous.

The three compartment pharmacokinetic model of drug deliv-
ery to tissues has been extended to represent tissue composed of
two different cell types. A first principles derivation of the model
is presented and the numerical method is quantitatively verified
in a comparison with a published study of drug delivery to tissue
composed of a single–cell–type. A case study is presented of a pop-
ulation composed of two cell types that are distinguished by their
transmembrane drug permeability values. The two–cell–type pop-
ulation model is used to determine the influence of population
composition on delivery of drugs to tissues surrounding a small
blood vessel. When the cell population of the tissue is composed
primarily of drug permeable cells, the drug concentration within
the EC is quickly depleted. This leads to lower values of drug
uptake and metabolic reaction by drug resistant cells (compared
to the case when the tissue is composed primarily of drug resistant
cells). At regions farther away from the blood vessel (�4 vessel
diameters) increasing the fraction of cells that are permeable to
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the drug results in lower values of intracellular drug concentration
and metabolism for both cell types.
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Appendix A. Derivation of the governing equations

Consider an elementary control volume (CV) of total volume is
VT ¼ DxDyDz as depicted in Fig. 7. If the porosity of the CV is uni-
form, each of the control volume faces have equal areas occupied
by the EC. The area in the y-z plane that is occupied by the EC is
AEC and this is treated here as a constant.

All transmembrane mass transfer (for both cell types) is repre-
sented as a Fickian process across the cell membrane so that the
drug transport is proportional to the difference in the intrinsic drug
concentrations on either side of the cell wall. The membranes of
the different cell types may have different resistances to mass
transfer. Within this CV, the rate of drug mass uptake by each cell
Fig. 7. A representative control volume of dimensions Dx � Dy � Dz of a
population composed of two different cell types for which the cell distribution is
constant and homogenous.
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type is also proportional to the total number of cells of that type
(volume occupied by cells of that type within the CV). With that
in mind and following the derivations presented in (Boyd and
Becker, 2016; Argus et al., 2017; Mahnic-Kalamiza et al., 2014),
the transport of mass into each of the cell domains are represented
as follows. The net rate of mass uptake into the volumes occupied
by the different cell types resulting from the transport across the
cell membranes are:
_m1 ¼ l1 CEC � C1ð ÞV1

_m2 ¼ l2 CEC � C2ð ÞV2
: ðA1Þ

Here the subscripted parameter, l, is the mass transfer coeffi-
cient. Its magnitude reflects the permeability of the cell membrane
to the drug. Within each cell type, a chemical reaction consumes
(or binds) the free drug. The time rate change of drug mass stored
in the volume occupied by each cell type is increased by the net
rate of drug mass entering the cell types and is decreased by the
reaction. Thus the rate of drug mass stored in each of the cell types
is represented:

@

@t
m1ð Þ ¼ l1 CEC � C1ð ÞV1 � R1 C1ð ÞV1

@

@t
m2ð Þ ¼ l2 CEC � C2ð ÞV2 � R2 C2ð ÞV2; ðA2Þ

Here the reaction rate within the cell types are represented by
the general expressions R1 C1ð Þ and R2 C2ð Þ.

The net rate of the change in mass stored within the extracellu-
lar space (mEC) is decreased by the net transfer of mass leaving the
CV and entering neighboring CV’s and is reduced with mass uptake
by each of the two cell types.

@

@t
mECð Þ ¼ � _mJ � _m1 � _m2: ðA3Þ

Here _mJ is the net mass transfer of the drug across the CV bound-
aries; while this could be a result of diffusion and of advection from
an interstitial flow, only diffusion is considered here. In the deriva-
tion that follows, the rate of mass in the EC that crosses the CV
boundaries in the y-z planes is presented explicitly, and this may
be extended to the other planes as well. Referring to Fig. 7 the area
of the y-z planes of the control volume that are made up of EC space
is AEC . Within the EC, the net rate of mass flux leaving the CV is

related to the rate ofmass transfer per unit area, _m==
x , by the relation:

_mJ;X ¼ @

@x
_m==

x AEC

� �
Dx: ðA4Þ

The rate of mass flux is governed by diffusion only so that:

_m==

x ¼ �D
@

@x
CECð Þ; ðA5Þ

where D is the effective diffusion coefficient. Substituting (A5) into
(A4) and assuming homogeneous parameter values results in:

_mJ;X ¼ �D
@2

@x2
CECð ÞAECDx: ðA6Þ

By applying the steps (A4)–(A5) to the remaining coordinate
directions (or simply representing the flux with the Laplacian oper-
ator), (A6) may be represented in a more general form as:

_mJ ¼ �Dr2 CECð ÞAECDx: ðA7Þ
Noting that for this CV, AECDx ¼ VEC and substituting (A2) and

(A7) into (A3) results in:

@

@t
mECð Þ ¼ Dr2 CECð ÞVEC � l1 CEC � C1ð ÞV1 � l2 CEC � C2ð ÞV2: ðA8Þ

Substituting the definitions of the intrinsic concentrations of Eq.
(7) and the relations of the different volumes of Eq. (6) into Eqs.
(A2) and (A8) and rearranging results in the coupled system of
equations:



Table B1
Comparison with the results published in (Groh et al., 2014).

Location and time CEC (mM) P1 (mM)

(Groh et al.,
2014)

This Study
(% diff.)

(Groh et al.,
2014)

This Study
(% diff.)

26 mm, 75 s 1.80 1.84 (2.2%)
108 mm, 265 s 0.523 0.515

(�1.5%)
190 mm, 374 s 0.406 0.399

(�1.7%)
26 mm, 0:41:02

(h:m:s)
1.93 1.96 (1.6%)

108 mm, 1:02:28
(h:m:s)

0.983 0.971
(�1.2%)

190 mm,
31:45:39 s (h:
m:s)

0.872 0.860
(�1.4%)
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@

@t
CECð Þ ¼ D

@2

@x2
CECð Þ � 1� eð Þ

e
f 1l1 CEC � C1ð Þ

� 1� eð Þ
e

1� f 1ð Þl2 CEC � C2ð Þ
@

@t
C1ð Þ ¼ l1 CEC � C1ð Þ � R1 C1ð Þ

@

@t
C2ð Þ ¼ l2 CEC � C2ð Þ � R2 C2ð Þ: ðA9Þ

Even though Eq. (A9) was developed and presented in Cartesian
coordinates, the expression is easily represented in any coordinate
system with the appropriate Laplacian operator. The rate at which
the product of reaction in each cell type is represented as:

@

@t
P1ð Þ ¼ R1 C1ð Þ

@

@t
P2ð Þ ¼ R2 C2ð Þ: ðA10Þ

Appendix B. Method verification

Spatio-Temporal resolution

Grid size and timestep resolution studies have been conducted
in the numerical integration of Eqs.(10) – (16). The local magni-
tudes of the concentration product of reaction in cell type 2 at
600 s, P2 r;600sð Þ, for a population of cells for which f1 = 0.9, are
evaluated in the following comparisons.

In the grid refinement study, 4 simulations were conducted
with different numbers of nodes, N, placed at regularly spaced
radial intervals. Solutions of different grid sizes were compared
to a very refined mesh: N = 104 at grid spacing of Dr = 9.8 � 10–2

mm. All used the same maximum allowable timestep of 1 s. The
local absolute percent difference between the solution of a grid
of node number, N, compared to a the very refined mesh of
N = 104 is defined as:

dx � 100� 1� P2 r; t ¼ 600 s;Nð Þ
P2 r; t ¼ 600 s;N ¼ 10; 000ð Þ

����
���� : ðB1Þ

The local percent differences for N = 100, 500, and 1000 are
plotted over the computational domain at t = 600 s in Fig. 8a.
The mesh that was used to develop the results of Section 3 corre-
sponds to N = 500 nodes equally spaced at intervals of Dr = 1.96
mm; in this case the absolute percent difference with the very
refined mesh is never above 0.01%.

A time step sensitivity analysis was conducted in which time
integrations using the BDF solver were carried out at different
maximum allowable time steps Dtmax = 10, 1, 0.1, and 0.001 s.
Fig. 8. Spatio-temporal refinement comparisons of absolute percent difference in the sol
f1 = 0.1 at 600 s for: a) a mesh refinement at different number of nodes compared to a ver
at different maximum allowable time steps compared to the Dtmax = 0.01 s as defined b

9

The local absolute percent difference of the solutions (compared
to the very refined time step) is defined as:

dt � 100� 1� P2 r; t ¼ 600 s;Dtmaxð Þ
P2 r; t ¼ 600 s;Dtmax ¼ 0:01 sð Þ

����
���� : ðB2Þ

The local percent differences forDtmax = 10, 1, and 0.1 s are plot-
ted over the computational domain at t = 600 s in Fig. 8b. The max-
imum allowable time step that was used to develop the results of
Section 3 corresponds to Dtmax = 1 s; in this case the absolute per-
cent difference is always below 0.001%.

Solution method verification

To verify the numericalmethodology used in the current study, a
comparison ismade to the resultsof (Grohet al., 2014)whichconsid-
ers the delivery of DOX to in a radially symmetric tumor situated
around a blood vessel. In that study the reaction is represented by
a reversible saturable binding model so that the drug conservation
within the single–cell–type population is governed by:

@

@t
CECð Þ ¼ D

@2

@r2
CECð Þ þ 1

r
@

@r
CECð Þ

" #
� 1� eð Þ

e
l CEC � C1ð Þ

@

@t
C1ð Þ ¼ l CEC � C1ð Þ � k1C1 C0 � P1ð Þ þ k�1P1

@

@t
P1ð Þ ¼ k1C1 C0 � P1ð Þ � k�1P1: ðB3Þ

This is subject to the following homogeneous initial conditions:

t ¼ 0 : CEC ¼ C1 ¼ P1 ¼ 0 in rI 6 r 6 rO; ðB4Þ
utions to the product of reaction in the drug receptive cell type in a population with
y refined mesh of 10,000 nodes as defined by Eq. (B1), and b) a time step refinement
y Eq. (B2).
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and the EC is subject to a type III boundary transient boundary con-
dition at the tumor-vessel interface and a no flux condition at the
outer boundary:

D
@

@r
CECð Þ

����
rI

¼ h Cp � CEC
� � @

@r
CECð Þ

����
rO

¼ 0: ðB5Þ

The concentration of the drug in the plasma is represented by a
mono-exponentially decaying pharmacokinetic profile:

Cp ¼ a � exp �t=sð Þ; ðB6Þ
Simulations are conducted using the paramteter values of (Groh

et al., 2014) for which: rI=16 lm, rO=200 lm, l=0.2062 s-1, and the
remaining are those listed in Table 1.

In this comparison study, the concentration in the EC and the
concentration of the product of reaction in the intracellular space
are considered at the three radial positions: 16 mm, 108 mm, and
190 mm. The maximum values of the product of reaction and the
extracellular concentration at these locations and the time at
which these maximum concentrations are reached published in
(Groh et al., 2014). Concentration values at these locations and
times are determined numerically in the current study and side
by side comparisons are presented in Table B1. The current study
values are in very good agreement with the published results. Note
that because the simulations include times up to 31.75 h, the grid
resolution was set to N = 100 with COMSOL’s default unconstrained
adaptive time stepping BDF method.
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