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Abstract. Non-Newtonian models with shear-thinning viscosity are commonly
used to solve a variety of complex flow problems. A new finite-volume
discretization based upon an unstructured grid is used to integrate the differential
form of the lattice Boltzmann equation with a shear-dependent viscosity, using a
cell-vertex finite-volume technique. The unknown fields are placed at the nodes
of the mesh and evolve on the basis of the fluxes crossing the surfaces of the
corresponding control volumes. Numerical results show a satisfactory accuracy
also in the case of relatively complex geometries and demonstrate the ability of
the method to predict the main features of non-Newtonian flows in straight and
stenosed channels.
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1. Introduction

In the last decade LB methods have undergone major progress as an alternative to the
discretization of the Navier–Stokes equations for the numerical solution of complex fluid
problems [1]. The LB method is based on a minimal kinetic Boltzmann equation in
which representative particles evolve on a regular Cartesian grid according to simple
streaming and collision rules, designed in such a way as to preserve the basic symmetries
(conservation laws) of fluid dynamics. The LBM exhibits a number of appealing features
as a computational fluid dynamic solver, such as the simplicity of the stream-and-collide
dynamics, its amenability to parallel computing and its ease of use in handling complex
flows. Another key property of LB, with respect to Navier–Stokes equations, is that
non-linearities are local (quadratic dependence of the local equilibrium on the flow field)
and the non-localities are linear, because advection proceeds along constant, straight
lines defined by the discrete speeds. In particular, owing to its kinetic nature, the
pressure field and the stress tensor are locally available, with no need for solving any
(expensive) Poisson problem. This is particularly important for modeling non-Newtonian
fluids which exhibit a non-linear response to stress and are usually modeled through a
viscosity that changes with the applied shear rate. However, the original LB method
has to be designed on a uniform Cartesian grid. This represents a severe limitation
for practical engineering purposes, especially for flows in complex geometries and/or
for high resolutions near the body or the walls [2]. Among the recent advances that
have led to substantial enhancement of the capabilities of the method for handling
irregular shapes [3, 4], a particularly interesting option is represented by finite-volume
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formulations on fully unstructured grids (unstructured lattice Boltzmann schemes or
ULBE for short) [5, 6]. To date, ULBE implementations were limited to Newtonian fluids
simulations. However, in some applications, such as those involving physiological flows,
the fluid cannot be treated as Newtonian, and a more realistic rheological models should be
used [7]–[9]. In this paper we present the first extension of ULBE to non-Newtonian fluids,
with an application to hemodynamic flows. The use of ULBE for blood flow simulations
combines the advantages of the LBM for non-Newtonian fluids to the enhanced geometrical
flexibility, as the use of an unstructured grid allows one to accommodate the complex
geometries typical of blood vessels (bifurcation, branching, and curvatures) with a limited
number of nodes. Moreover, as in ULBE the body surface is defined by grid points (while
in standard LBM the body surface does not generally lie on lattice sites), both pressure
and viscous forces are locally available at the walls and explicitly expressed in terms of
the distribution function, thus making the wall shear stress calculation straightforward.
This is important in hemodynamics, where an accurate knowledge of the wall shear stress
is highly valued.

As a starting point, because of the complexity of the constitutive equation, only a
steady state case is considered in this paper. A constant flow rate is imposed and the
wall deformability is disregarded. The mathematical model is the shear-thinning Carreau
model, able to describe steady flows for the typical range of shear rates [9, 10]. As a
fundamental study, a couple of basic flow configurations are considered: an excellent
agreement with the literature data for a straight pipe is obtained and the typical flow
fields in constricted tubes are well reproduced.

2. The unstructured lattice Boltzmann equation

The LB method can be regarded as a mesoscopic (between microscopic and macroscopic)
approach for modeling macroscopic hydrodynamics. Rather than following the position
and velocity of each particle in the system, as is done in microscopic models (i.e. molecular
dynamics), the fluid flow is described by tracking the evolution of the density distribution
function (or population) fi(�x, t) ≡ f(�x,�v = �ci, t), i = 1, b that describes the probability
of finding a particle at site �x, at time t moving along the lattice direction defined by the
discrete speed �ci. The time rate of change of the particle distribution function is given by
the following discrete Boltzmann equation:

∂tfi + �ci · ��fi = −(fi − f eq
i )/τ (1)

in which the left-hand side represents the molecular free streaming, whereas the right-hand
side represents molecular collisions via a single-time relaxation towards local equilibrium
f eq

i on a typical timescale τ [4]. The latter is called the relaxation time or relaxation
parameter and, in macroscopic terms, it defines the fluid viscosity.

The local equilibrium is given by the expansion in Taylor series of the Maxwell–
Boltzmann distribution:

f eq
i = ρwi

[
1 + βui +

β2

2
(u2

i − u2)

]
(2)

where β = 1/c2
s , cs being the lattice sound speed, ρ the fluid density, �u the fluid speed,

ui ≡ �u · �ci and wi are the associated weight coefficients.
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Figure 1. Geometrical layout of the cell-vertex finite-volume discretization
around a grid point P .

One of the key properties of the LB method is that only a very limited set of
discrete speeds �ci needs to be retained for hydrodynamic purposes, so that LB is orders
of magnitudes less expensive than microscopic simulation methods.

In order to recover the correct fluid dynamic equations in the macroscopic limit, the
set of discrete speeds must satisfy mass, momentum and energy conservation, as well as
rotational symmetry. It should be noted that only a limited class of lattices exhibits the
right symmetry to ensure the conservation constraints. In the present work we shall refer
to the two-dimensional nine-speed model (known as D2Q9) with given discrete speeds
�ci and weights wi [6]. In the limit of weak departures from local equilibrium (i.e. small
Knudsen numbers), it has been demonstrated that the above formulation recovers the
dynamic behavior of a fluid with kinematic viscosity ν = c2

sτ [6]. The macroscopic local
quantities may be computed at any instant during the evolution by taking the appropriate
discrete velocity moments of the distribution functions: ρ =

∑
i fi and �u =

∑
i �cifi/ρ. The

fluid pressure is given by P = ρc2
s .

The ULBE approach for numerically solving equation (1) is a finite-volume scheme
of the cell-vertex type, using a tessellation based on triangular elements. The use of
unstructured grids with control volumes of arbitrary triangular shape allows local and
heterogeneous forms of grid refinements which are beyond reach of the standard BGK.
However, the time-stepping procedure suffers from stricter stability constraints. The nine
discrete populations fi(�x, t) associated with each node P of the discrete grid (figure 1)
represent the unknowns of the problem. The finite volume over which equation (1) is
integrated is defined by means of the set of K triangles, which share P as a common
vertex. Since the discrete grid is unstructured, each node is identified by its coordinates
and the connectivity (P, Pk, Pk+1 in figure 1) is free to change from node to node. As shown
in figure 1, the portion of the control volume [ Ck, Ek, P, Ek + 1] that refers to the kth
triangular element is built through the union of the two sub-grid triangles Ω−

k = [P, Ek, Ck]
and Ω+

k = [P, Ck, Ek+1], where Ck is the center of the grid element and Ek and Ek + 1
are the mid-points of the edges that share P as a common vertex. Populations at off-
grid points Ek and Ck are calculated with standard linear interpolations. Application
of the Gauss theorem to each finite-volume portion yields the following set of ordinary
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differential equations:

dfi(P, t)

dt
=

1

VP

∑
k

(Φik − Ξik) (3)

where the sum k = 0, K runs over the control volume ΩP = ∪kΩk obtained by joining
the centers Ck with edge mid-points Ek, VP is the control volume associated with P and
the index k = 0 denotes the pivotal point P . Φik indicate the fluxes associated with the
streaming operator and Ξik the integral of the collision operator of the ith population at
the kth node, respectively. The ULBE takes the following general form:

dfi(P, t)

dt
=

K∑
k=0

Sikfi(Pk, t) −
K∑

k=0

Cik[fi(Pk, t) − f eq
i (Pk, t)]

τ
(4)

where the detailed expressions for the streaming and collision matrices Sik and Cik = Ckδik

can be found in [6]. By definition the following sum rules apply:

K∑
k=0

Sik = 0,

K∑
k=0

Cik = 1, ∀i.

In [6] it was shown that the ULBE scheme recovers hydrodynamics with the same viscosity
of the continuum, ν = c2

sτ , and that numerical viscosity effects are within second order of
accuracy in space. It is important to highlight that with a forward Euler time marching
scheme the maximum time step allowed by the numerical stability condition is

Δt < 2τ (5)

[11].
This condition, combined with the expression for the fluid viscosity ν = c2

sτ , indicates
that small viscosities can only be attained by making the time step correspondingly small.

2.1. Boundary conditions

An important feature of the ULBE method is that boundary conditions are incorporated
in a straightforward way by means of the so-called covolume method [5]. Any boundary
condition for ULBE needs to cope with the fact that the corresponding control volumes
do not close up, leaving two external edges exposed on the boundary. With the covolume
method, the boundary nodes are treated exactly as fluid nodes with the only difference
being that the edge fluxes are evaluated explicitly by using interpolation at the boundary
edges, thus taking part in the matrix Sik definition. The boundary condition is then
given in terms of enforced macroscopic values in the equilibrium distribution function
(i.e. u = 0 for the no-slip boundary condition). The covolume works for the generic
boundary geometries and has proven to support relatively strong boundary gradients. At
least one regular buffer at inlet/outlet sections is necessary for open flows when a null or
constant velocity/pressure gradient is given as a boundary condition. The use of multiple
buffers is beneficial to the stability of ULBE computations for open flows. For more details
on boundary conditions refer to [12].
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3. Extension of ULBE to non-Newtonian models

We shall now generalize the ULBE scheme to the case non-Newtonian (NN) flows, where
a shear-rate-dependent viscosity law μ(γ̇) is imposed. To this end, the constant time
relaxation τ in equations (1) and (4) is replaced by a self-consistent, shear-dependent
τ(γ̇), γ̇ = γ̇[fi] being the shear rate, a function(al) of the density distribution function
f . The current value γ̇ is obtained by the following considerations. In LBM, the strain
and stress tensors Γ and Π can be written explicitly in terms of the particle distribution
functions, respectively as [8, 13]

Γαβ = − 1

2ρτc2
s

Παβ (6)

where

Παβ =
∑

i

(fi − f eq
i )ciαciβ (7)

and α, β run over spatial dimensions. Let us now introduce a measure of the magnitude
of the previous tensors (norm):

γ̇ ≡ 2|Γ| = 2

√∑
α,β

ΓαβΓαβ, σ ≡ |Π| =

√∑
α,β

ΠαβΠαβ. (8)

The strain–stress relationship (6) can be rewritten (averaged) as

γ̇ =
σ

ρτ(γ̇)c2
s

(9)

and, as μ(γ̇) = ρν(γ̇) = ρc2
sτ(γ̇), we have

σ = μ(γ̇)γ̇. (10)

In principle γ̇ must be obtained by solving the above non-linear equation (10) by iteration
at each lattice site. However, due to the slow variation of μ(γ̇)γ̇ on a timescale Δt, current
practice shows that one can adjust τ along the time integration as follows:

τ(t + Δt) =
μ [γ̇(t), t]

ρ(t)c2
s

. (11)

Note that equation (10) yields the standard scalar relation σ = μγ̇ in the Newtonian case.

3.1. Statistical mechanics of ULBE and multiscale applications

The set of ULBE equation (4) can be mapped onto a mesoscopic discrete dynamical
system, living in an irregular spacetime defined by the set of N lattice nodes Pk and their
connectivity. In abstract notation,

df

dt
= (S − τ−1C)f + τ−1C f eq (12)

where f(t) represents an N -dimensional state vector and S and C stand for the streaming
and collision operators, i.e. sparse matrices whose structure is fixed by the lattice
connectivity. For the case of NN flows, this system is also adaptive, in that the dynamics
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of the state vector f(t) ≡ f(Pk, t), k = 1, . . . , N , is coupled to the self-consistent dynamics
of the relaxation parameter τ via the local, dynamic constitutive relations equations (9)
and (10). Note that within the mesoscopic ULBE representation, the parameter τ fixes
the typical time of return to local equilibrium, or, alternatively, the lifetime of non-
equilibrium excitations. In a Newtonian fluid, this timescale is everywhere the same,
which means that when moving from one node to another, the populations not only have
to readjust to a different local equilibrium (due to the inhomogeneity of the flow fields),
but also their readjustment time is differs from place to place, depending on the local
strain conditions. In particular, for the case of blood flows, higher strains are associated
with shorter relaxation time. This clearly adds to the complexity of the dynamic behavior
of the system. We note that a similar mechanism applies to the case of turbulent flows,
albeit in the opposite direction: high strains are associated with larger effective viscosities,
and hence longer relaxation time [14].

The ULBE-like equations may represent a paradigm for the mesoscopic representation
of a broad class of complex flowing systems, possibly extending beyond the specific
realm of hydrodynamics. As a result, the systematic analysis of the statistical mechanics
(kinetic theory) of ULBE-like systems with self-consistent/adaptive relaxation dynamics
may constitute an interesting topic for future research in statistical mechanics. Finally,
since ULBE permits one to place degrees of freedom where actually needed, important
applications can also be envisaged for future multiscale applications, whereby ULBE would
be used in selected subregions of the flow, typically near walls, and coupled to more
microscopic models, such as molecular dynamics.

4. Validation of the Newtonian and power-law models

As first test problem, let us consider a basic 2D steady flow between parallel plates located
at ±H and driven by a constant pressure gradient G. In the case of constant viscosity
μ0 (Newtonian fluid) and for a fully developed flow, this is the plane Poiseuille flow that
constitutes the basis for testing more complex flow regimes. For a fully developed flow,
the exact solution is

uN(y) =
G

2μ0

(
H2 − y2

)
= Umax

(
1 − y2

H2

)
. (13)

Also for the power-law model μ(γ̇) = m|γ̇|n−1, with 0 < n < 1, an exact solution is
available:

uPL(y) =

(
G

m

)1/n (
n

n + 1

)
H(n+1)/n

(
1 −

(
|y|
H

)(n+1)/n
)

= Umax

[
1 −

(
|y|
H

)(n+1)/n
]

.

(14)

To check the accuracy and robustness of ULBE, we compare the numerical result of
Newtonian and power-law model with the above analytical solutions (13) and (14).

Note that in the power-law model the viscosity may attain extremely large or
excessively small values. For example, in a shear-thinning fluid μ → 0 when γ̇ → ∞
and, consequently, τ → 0. To avoid such limiting (and unrealistic) cases, the higher or
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Figure 2. Velocity profiles for power-law model G = 5×10−5, μmax = 0.1, μmin =
0.001 (see equation (15)), Δt = 0.01. On the left, the comparison with the
analytical solution (equation (14); dashed line); on the right, that with the
normalized Newtonian solution (n = 1, equation (13); starred line, LB units).

lower viscosities over a given threshold are cut off through the following law:

μ(γ̇) =

⎧⎨
⎩

mγ̇n−1
0 = μmax if γ̇ < γ̇0

mγ̇n−1 if γ̇0 < γ̇ < γ̇∞
mγ̇n−1

∞ = μmin if γ̇ > γ̇∞

(15)

(see [15]). The case with G = 5 × 10−5, m = 10−3 has been simulated with n = 0.5 and
0.75. The viscosity has been truncated according to μmin = 0.001 (never reached in the
simulations) and μmax = 0.1. Figure 2 show an excellent matching with the power-law
analytical solution (left) and the difference from the Newtonian case (n = 1; right).

5. Simulation of steady flows

To simulate a physiological case, we consider a shear-dependent viscosity that follows the
Carreau model:

μ(γ̇) = μ∞ + (μ0 − μ∞)
(
1 + (λγ̇)2

)(n−1)/2
(16)

with the following rheological parameters [10, 16]:

μ0 = 0.56P μ∞ = 0.0345P λ = 3.313s n = 0.3568. (17)

To emphasize the NN shear-thinning effects, let us consider physical variables
pertaining to smaller vessels (arterioles):

Umax = 2 cm s−1 H = 5 × 10−3 cm ρ = 1 g cm−3
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Figure 3. Velocity profiles (normalized on the right) in the case of the Carreau
model G = 10−5, with different λ s. Comparison with the Newtonian solution
(starred line; LB units).

giving rise to a rather small Reynolds number:

Re0 =
ρUmaxH

μ0
≈ 0.017.

The model has been tested against two typical idealized flow problems, such as those
in a straight and through a contracted tube, driven by a constant pressure gradient.

5.1. Flow in a straight channel

In the LB simulations, let us consider a channel of semiwidth H̄ where a fluid of density
ρ̄ and viscosity μ̄ is flowing under a constant forcing Ḡ. To guarantee a mesoscopic flow
regime comparable with the above physical values, a careful scaling between macroscopic
and mesoscopic variables is carried out. A channel of length 10 has been covered by 4460
triangular cells, constituting a uniform grid with 2351 equally distributed nodes. The
time step has been fixed initially as Δt = 0.01, and possibly reduced (halved) in order to
guarantee that condition (5) is verified. As LB variables, we set

H̄ = 1 ρ̄ = 1 Ḡ = 10−5.

In the following, the overbar denoting LB variables is omitted. We have the following
relationship in LB variables: Δρ = Δp/c2

s = G L/c2
s.

In figure 3 the velocity profiles corresponding to four time constants λ are displayed.
The peak value of the velocity rises dramatically with λ, passing from a Newtonian regime
with higher viscosity μ0 to another Newtonian regime with a lower μ∞. In the transition
shear-thinning region, the parabolic shape appears flattened in the center of the channel.
It turns out that λ plays a critical role, since its value affects the viscosity decay as well
as the maximum shear rate.

5.2. Flow through a contraction

Let us consider a channel with the shape of a long rectangle except in a small region
centered at x = 0 with a smooth contraction as described by the following regular function:

H(x)

H0
= 1 − δe−φx2

(18)
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Figure 4. The axisymmetric stenosed rectangular channel defined by
equation (15) covered by three grids: (a) uniform high resolution (left bottom),
(b) uniform low resolution (left top), (c) non-uniform lower resolution (right top).
The latter exhibits optimal properties in terms of accuracy and computational
cost.

Table 1. Relative errors of v and τ on different grids.

u τ

Ea−b 0.096 0.057
Ea−c 0.076 0.041

where H(x) is the height, 0 ≤ δ < 1 is a measure of the degree of contraction, φ of its
length (figure 4). The value of φ should be taken quite small to guarantee a slowly varying
boundary profile. As a particular case, the rectangular channel is recovered for δ = 0.
The numerical parameters for the simulation are

H0 = 5 × 10−3 cm φ = 0.8 δ = 0.3

corresponding to a degree of contraction of about 50% [17]. The pressure gradient, the
rheological parameters and the LB settings are as in the straight channel flow.

5.2.1. Grid analysis. A sensitivity analysis on the grid size has been carried out. To
this end, three different grid meshes have been selected—(a) uniform, high resolution
(8569 nodes, reference case), (b) uniform, low resolution, (2205 nodes), (c) non-uniform,
lower resolution (1737 nodes) refined in the contraction area. The three set of results
have been compared. In particular, the relative difference of the horizontal velocity
(u) across the throat and wall shear stress (τ) along the contraction segment have

been considered by taking Ea−b[x] =
√∑

(xa − xb)2/
∑

x2
a as a measure of the relative

error.
Table 1 shows that grid (c), in spite of the reduced number (−20%) of nodes with

respect to grid (b), provides a better accuracy. This demonstrates the ULBE capability of
clustering the degrees of freedom in the critical regions of the flow, without suffering any
loss of accuracy, but actually enhancing it instead. These results confirm the grid analysis
already performed for Newtonian flow simulations [12]. In the following simulations,
the non-uniform mesh (c) has been chosen (figure 4). In the present NN model the
limiting values for LB viscosities are μ0 = 16.7 × 10−3, μ∞ = 1.03 × 10−3, but the
local viscosity in all simulations remains above the lower bound μmin = 2.011 × 10−3.
Figure 5 shows a typical complex pattern of viscosity, related to the strain distribution
(see equation (16)).
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Figure 5. Viscosity contour lines (top) and profiles across sections A and B
(bottom) for the Carreau model equation (16) (G = 10−5, viscosity in LB units
× 102).

Figure 6. Velocity profiles across the stenosed channel in N (left) and NN cases
(right). (G = 10−5; LB units.)

5.2.2. Flow velocities. The velocity profiles are of some interest, since they provide a
detailed description of the flow field. At that low Reynolds number and for such a mild
contraction, no recirculation or flow reversal is present and the flow is symmetric upstream
and downstream of the stenosis. The magnitude of velocity is much larger in the NN case
(figure 6).

5.2.3. Pressure losses and wall shear stress. In the presence of a narrowing, the flow
exhibits a resistance and hence an enhanced shear stress (i.e. the wall vorticity) and
a pressure drop [18]. These are indicators of flow disturbances and are quantities of
physiological relevance. Since there is no reliable method of determining the wall shear
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Figure 7. Pressure drop along the centerline (above) and wall shear stress (below)
in a contracted channel (G = 10−5, LB units). The difference between N (λ = 0,
dashed line) and NN (λ = 104, continuous line) cases.

stress experimentally near the regions of possible reversal flow, the numerical experiments
provide a very valuable (non-invasive) tool, because they offer a sufficiently accurate
approximation of the flow configuration.

A pressure drop is observed as the occlusion is approached (figure 7). The wall shear
stress (WSS) increases smoothly in correspondence with the contraction and has a peak
value placed symmetrically at the center of the throat. Downstream, it goes back to the
previous value. In the straight portion the WSS is higher in the NN case, and the opposite
in the contraction, because of the lowered viscosity. In figure 5 the viscosity contour lines
for NN case are shown. All these results are in qualitative agreement with those from
other models existing in literature [19].

6. Conclusions

We have presented the first extension of the lattice Boltzmann method on unstructured
grids to the case of non-Newtonian flows. The method has been validated for the
case of hemodynamic flows in two-dimensional channels with straight walls and with
constrictions. Despite their preliminary nature, these tests clearly demonstrate the ability
of the ULBE method to gain accuracy by clustering the lattice nodes in the critical regions
of the flow. Besides enhancing the accuracy of the hemodynamic simulations, this property
may also prove very beneficial for future multiscale applications, coupling macroscopic
hemodynamics with nanoparticle transport within the blood flow [20].

doi:10.1088/1742-5468/2009/06/P06005 12

http://dx.doi.org/10.1088/1742-5468/2009/06/P06005


J.S
tat.M

ech.
(2009)

P
06005

ULBE for non-Newtonian flows

A thorough assessment of ULBE versus state of the art hemodynamic solvers,
including standard LB, will require substantial benchmarking and quantitative comparison
with the existing literature. Extension to three-dimensional flows in complex geometries,
such as human arteries, stands out as a major topic for future research. Work along this
direction is currently in progress.
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