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ABSTRACT

A mathematical model describing the advection-diffusion reaction of a
substance between two porous homogeneous media of different properties
and dimensions is presented. A strong analogy with the one-dimensional
transient heat conduction process across two layered slabs is evidenced
and a similar methodology is proposed. The model incorporates not
only drug diffusive effects, but also convection phenomena and metabolic
processes in the wall. Transformation and separation of variables leads
to a Sturm-Liouville problem with discontinuous coefficients and an exact
analytical solution is given in the form of an infinite series expansion. The
model points out the role of the nondimensional parameters, which control
the complex transfer mechanism across the two layers. In particular, the
drug diffusivity in the wall is shown to greatly influence the residence time.
Drug concentration profiles at various times are given and discussed.
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1. INTRODUCTION

Application of a endovascular drug-eluting stent (DES)

for prevention and cure of restenosis is an emerging

technology that combines mechanical support of re-

stricted lumen with local drug delivery (Maisel, 2007;

Rogers, 2002). Although different configurations exist,

a typical DES consists of one or more biocompatible

polymeric layers coating the metallic strut and contain-

ing the therapeutic agent to be delivered. Drug release

depends on many factors, such as the coating geometry

and physico chemical properties, and drug character-

istic, such as diffusivity and solubility (Delfour et al.

2005). Because only a limited amount of drug can be

loaded onto an eluting stent, it is crucial to optimize

the pharmacokinetics, in terms of concentration and

residence time. In particular, the concentration should

lie within a therapeutic range and its action prolonged

(Hwang et al., 2001).

Because of the involvement of so many factors, pre-

diction of drug release appears as a formidable task and

mathematical models constitute a valuable tool used in

designing coating and stent platforms for drug delivery.

The first step in modeling is to identify all the rel-

evant ingredients entering the mass transfer. Although

diffusive process dominates the drug dynamics, in some

circumstances other processes come into play and mod-

ify the release mechanism: a comprehensive model to

guarantee generality is worth to be set up. For example,

an important effect can be ascribed to the convective

flow due to a pressure drop across the arterial wall

(Hwang et al., 2001; Meyer et al., 1996). Moreover,

when released into the arterial tissue, the drug is me-

tabolized by living cells and its concentration decays

in time. The fraction consumed with biochemical pro-

cesses depends on the drug type, on the biological

site and on individual factors (Ai and Vafai, 2006;

Macheras and Iliadis, 2006).

In the last few years, some attempts to model and

numerically simulate DES have been done, either from

a mechanical point of view (Holzapfel et al., 2005;

Migliavacca et al., 2007) or focusing drug release as-

pects (Migliavacca et al., 2007; Delfour et al., 2005;

Zunino et al., 2004; Sakharov et al., 2002). In a re-

cent study, a purely diffusive model has been presented

and a strong analogy with the transient heat conduc-

tion process across two-layered slabs has been shown

(de Monte, 2000). With such an approach, the con-

centration is expressed in a closed form as a finite

sum of eigenfunctions (Pontrelli and de Monte, 2007

and 2008). The present work extends that model by

adding drug convective motion and metabolism in the

wall layer and provides a comprehensive model of mass

release in vascular drug deliver. Through variable trans-

formatio, the problem is amened to a pure diffusion

problem and the concentration solution written in the

form of a Fourier series.

Compared to a fully numerical method, the analytical

approach provides a deeper insight into the physical

sense of the drug delivery process. As a matter of fact,

the present one-dimensional model is shown to catch

most of the interplaying aspects of the drug dynamics.

By showing relationships among the relevant variables

and material parameters, it can be used to identify

simple indexes or clinical indicators of biomechanical

significance. Through a nondimensional analysis and

a computational methodology, the role played by dif-

ferent physical and biochemical effects is highlighted.

Results point out that the influence of the parameters,

such as drug diffusivity, may be tuned to better design

novel release mechanisms as well as to improve drug

delivery protocols in therapy and diagnostics.

2. MATHEMATICAL MODEL

A stent consists of a tubular wire mesh (strut) in-

serted and then expanded in a stenosed artery (Fig. 1).

A drug-eluting stent (DES) is a stent coated with a

thin layer of biocompatible polymeric gel containing

a therapeutic drug (coating). Such a drug is aimed at

healing the vascular tissues or at preventing a possible

restenosis by virtue of its antiproliferative action against

smooth muscle cells. In the present work, we are in-

terested in the mechanism of release into the arterial

tissue. Such a phenomenon is not completely under-
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Figure 1. Typical strut of a bare-metal stent

stood and may be influenced by different concurrent

physical processes.

Let us consider a stent coated by a thin layer (of

thicknessL1) of gel containing a drug and embedded

into the arterial wall (of thicknessL2). The complex

multilayered structure of the arterial wall has been

disregarded, and a homogeneous material with averaged

properties has been considered for simplicity (fluid-wall

model) as in Zunino (2004) and Prosi et al., (2005).

Both the coating and the arterial wall are treated as

porous media. Because most of the mass dynamics

occurs along the direction normal to the two layers

(radial direction), we restrict our study to a simplified

one-dimensional (1D) model. In particular, we consider

a radial line crossing the metallic strut, the coating,

and the arterial wall and pointing outward, and being

that the wall thickness is very small with respect to the

arterial radius, a cartesian coordinate systemx is used

along it (Fig. 2).

At the initial time (t = 0), the drug is contained

only in the coating and is distributed with maximum,

possibly nonuniform, concentrationC1f(x) and sub-

sequently released into the wall. Here, and through-

out this paper, a mass volume-averaged concentration

c(x, t) (in milligrams per milliliter) is considered. Be-

cause the metallic strut is impermeable to the drug,

no mass flux passes through the boundary surface

x = −L1. Moreover, it is assumed that the plasma does

not penetrate the surface of the stent coating. Thus,

the dynamics of the drug in the coating (first layer)

is described by the following 1D averaged diffusion

equation, and related boundary-initial conditions:
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Figure 2. Cross-section of a stented artery with a zoomed
area near the wall that shows the metallic mesh and the
two-layer medium at the adventitial side described by the
model (2.1) and (2.2):(a) stent strut, (b) coating, (c)
topcoat, (d) arterial wall. Due to an initial difference of
concentration, drug is released in the arterial wall from (b)
to (d) through the permeable membrane (c). An analogous
two-layer pattern is present on the opposite side of the
strut, referring to the drug dynamics towards the lumen
(lumenal side)

∂c1

∂t
+

∂

∂x

(
−D1

∂c1

∂x

)
= 0 in [−L1, 0]

−D1
∂c1

∂x
= 0 at x = −L1

c1 = C1f(x) at t = 0 (2.1)

where D1 (in centimeters squared per second) is the

drug diffusivity in the porous coating and0≤f(x)≤1.

In the wall (second layer), the drug dynamics is

described by the following advection-diffusion-reaction

equation and related boundary-initial conditions:
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∂c2

∂t
+

∂

∂x

(
−D2

∂c2

∂x
+ 2δ2c2

)
+ β2c2 = 0

in [0, L2]

c2 = 0 at x = L2 (2.2)

c2 = 0 at t = 0

where D2 (in centimeters squared per second) is the

diffusivity of drug in the arterial wall and2δ2 (centime-

ters per second) accounts for a constant characteristic

convection parameter, based on a filtration velocityu2.

Even not strictly realistic in a multidimensional model,

for the 1D flow of an isothermal and incompress-

ible fluid in a porous medium, the filtration velocity

u2 is a constant. In other words, in the present 1D

approximation model,u2 represents anaveragedfiltra-

tion velocity in thex direction, evaluable through the

Darcy law (Pontrelli and de Monte, 2007). Moreover,

2δ2 = α2u2/k2ε2, whereα2 [sieving coefficient or hin-

drance coefficient, see (Zunino, 2004)] accounts for the

reduction of the convective term due to the collisions of

large molecules of drug with the porous structure of the

wall, k and ε are the partition coefficient and porosity,

respectively [see Pontrelli and de Monte (2007) for a

precise definition of the physical quantities].

The last term on the left-hand side of Eq. (2.2.1)

represents the drug reaction on the surface of smooth

muscle cells (SMCs) inside the media layer of the

arterial wall. Here, it is approximated by a linear

reaction havingβ2 > 0 (in seconds to the minus 1) as

an effective first-order consumption rate coefficient.

Equation (2.2.2) accounts for a drug dispersion at

relatively large distance (L2 À L1) and is justified

for quite small values ofδ2.

To close the previous mass transfer system of

Eqs. (2.1) and (2.2), the conditions at the interface

x = 0 have to be assigned. One of them is obtained

by imposing continuity of the mass flux across the two

layers,

D1
∂c1

∂x
= D2

∂c2

∂x
− 2δ2c2 at x = 0 (2.3)

In addition to slow down the drug release rate, a

permeable membrane (calledtopcoat) of permeability

P (in centimeters per second) is located at the interface

(x = 0) between the coating and the arterial wall. A

continuous mass flux passes through it orthogonally to

the coating film with a large concentration jump due to

the very different physical properties between arterial

walls and coating. In the present case, the mass transfer

through the topcoat can be described using the second

Kedem-Katchalsky equation (Kargol et al., 1996), that

is

−D1
∂c1

∂x
=P

(
c1

k1ε1
− c2

k2ε2

)
at x = 0 (2.4)

2.1. Variable Transformation

All the variables and the parameters are now scaled as

follows:

x̄=
x

L2
t̄=

D2

L2
2

t c̄1 =
c1

C1
c̄2 =

c2

C1

γ=
D1

D2
L=

L1

L2
φ=

PL2

D2k2ε2
σ=

k1ε1

k2ε2
(2.5)

Thus, the convection and reaction terms are controlled

by the dimensionless groups,

Pe=
δ2L2

D2
Da =

β2L
2
2

D2
(2.6)

termed as Ṕeclet and Damkholer numbers, respectively

(Baehr and Stephan, 1998). By means of the following

change of variables:

x̄ → x t̄ → t c̄1 → c1 c̄2 → c2 (2.7)

and, in the second layer, through the following transfor-

mation (Özişik, 1993):

c2(x, t) = w2(x, t) exp
[
Pex−(

Pe2+Da
)
t
]

(2.8)

the problem [(2.1) and (2.2)] can be written in terms of

c1 andw2 in dimensionless form as
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∂c1

∂t
= γ

∂2c1

∂x2
in [−L, 0]

∂c1

∂x
= 0 at x = −L

γ
∂c1

∂x
=

(
∂w2

∂x
− Pew2

)
exp

[− (
Pe2 + Da

)
t
]

at x = 0

c1 = f(x) at t = 0 (2.9)

∂w2

∂t
=

∂2w2

∂x2
in [0, 1]

− γ
∂c1

∂x
= φ

{c1

σ
− w2 exp

[− (
Pe2 + Da

)
t
]}

at x = 0

w2 = 0 at x = 1

w2 = 0 at t = 0 (2.10)

3. EIGENVALUE PROBLEM

By separation of variables,

c1(x, t) = X1(x)G1(t)

w2(x, t) = X2(x)G2(t) (3.1)

Equations (2.9) and (2.10) yield the ODEs,

1
γ

G′1
G1

= −λ2
1

G′2
G2

= −λ2
2 (3.2)

having as solution,

G1(t) = e−γλ2
1t G2(t) = e−λ2

2t (3.3)

By imposingG1 = G2 exp
[− (

Pe2 + Da
)
t
]
, we have

the following relationship:

λ1 =

√
λ2

2 + Pe2 + Da
γ

(3.4)

The spatial part leads to the Sturm-Liouville eigen-

value system,

X ′′
1 = −λ2

1X1 in [−L, 0] (3.5)

X ′
1 = 0 at x = −L (3.6)

γX ′
1 = X ′

2 − PeX2 at x = 0 (3.7)

X ′′
2 = −λ2

2X2 in [0, 1] (3.8)

X2 = 0 at x = 1 (3.9)

γX ′
1 +

φ

σ
X1 = φX2 at x = 0 (3.10)

The general solution of the ordinary differential

Eqs. (3.5) and (3.8) is

X1(x) = a1 cos(λ1x) + b1 sin(λ1x)

X2(x) = a2 cos(λ2x) + b2 sin(λ2x) (3.11)

where the eigenvaluesλi and the unknown coefficients

ai and bi may be computed by imposing the outer and

inner boundary conditions as follows. From Eqs. (3.6)

and (3.9), we have

sin(λ1L)a1 + cos(λ1L)b1 = 0 (3.12)

a2 cos(λ2)− b2 sin(λ2) = 0 (3.13)

From the interface conditions (3.7) and (3.10), it fol-

lows:

γλ1 b1 + Pea2 − λ2 b2 = 0 (3.14)

φ

σ
a1 + γλ1 b1 − φa2 = 0 (3.15)

Equations (3.12)–(3.15) form a system of four ho-

mogeneous linear algebraic equations with unknowns

a1, b1, a2, and b2. To get a solution different from the

trivial one (0, 0, 0, 0), it is needed that the determi-

nant of the coefficient matrix associated with the above

system be equal to zero; that is,

ϕ(λ2) = σγλ1 tan(λ1L) [(φ + Pe) tan λ2 + λ2]

− φ(λ2 + Petan λ2) = 0 (3.16)

whereλ1 is related toλ2 by virtue of Eq. (3.4). Note

that, in general, Eq. (3.16) admits an infinite number

of real and possible imaginary roots. These may appear
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when Pe> 0 or Da > 0, their number being finite and

proportional to the magnitude of Pe and Da.

Solving Eq. (3.16), the coefficients are evaluated in

cascade as

a2 = − tan(λ2) b2 = ã2 b2 (3.17)

b1 =
(

λ2 − Peã2

γλ1

)
b2 = b̃1b2 (3.18)

a1 =

(
− b̃1

tan(λ1L)

)
b2 = ã1b2 (3.19)

where the multiplicative constantb2 will be determined

through the initial condition (see Section 3.1).

The nonlinear system of Eqs. (3.4) and (3.16)

admits as solution an infinite number of couples

(λ1m, λ2m,m = 1, 2, ...). Subsequently, the constants

ã1m, b̃1m, and ã2m are obtained from (3.19), (3.18),

and (3.17), respectively, and thus the eigenfunctions

X1m andX2m defined in Eq. (3.11) have the form

X1m = b2m

[
ã1m cos(λ1mx) + b̃1m sin(λ1mx)

]

= b2mX̃1m (3.20)

X2m = b2m [ã2m cos(λ2mx) + sin(λ2mx)]

= b2mX̃2m (3.21)

3.1. Concentration Solution

Once the eigenvaluesλ1m and λ2m are computed, the

corresponding time-variable functionsG1m and G2m

defined by Eqs. (3.3) are obtained as

G1m = e−γλ2
1mt G2m = e−λ2

2mt (3.22)

Thus, the general solution of the problem [(2.9) and

(2.10)] is given by a linear superposition of the funda-

mental solutions [(3.20) and (3.21)] in the form

c1(x, t) =
∞∑

m=1

AmX̃1m(x) e−γλ2
1mt

w2(x, t) =
∞∑

m=1

AmX̃2m(x) e−λ2
2mt (3.23)

where the Fourier coefficientsAm := b2m are com-

puted in accordance with the initial condition. By eval-

uating Eq. (3.23.1) att = 0 and multiplying it byX̃1n,

after integration we get

0∫

−L

∑
AmX̃1mX̃1ndx =

0∫

−L

f(x)X̃1ndx (3.24)

n = 1, 2, ....

Similarly in the interval[0, 1], we have

1∫

0

∑
AmX̃2mX̃2ndx = 0 n = 1, 2, .... (3.25)

By combining Eqs. (3.24) and (3.25) and by using the

orthogonality property (Pontrelli and de Monte, 2007),

we have

Am




0∫

−L

X̃2
1mdx+σ

1∫

0

X̃2
2mdx


=

0∫

−L

f(x)X̃1mdx (3.26)

where the term in brackets on the left-hand side is the

norm Ñm = Nm/b2
2m andNm obtained by straightfor-

ward computations (Pontrelli and de Monte, 2007). We

get

Am =

0∫
−L

f(x)X̃1mdx

Ñm

m = 1, 2, .... (3.27)

In particular, if f(x) = 1, bearing in mind Eq. (3.20)

and integrating from−L to 0, we have

Am =
ã1m sin(λ1mL) + b̃1m [cos(λ1mL)− 1]

Ñmλ1m

= − b̃1m

Ñmλ1m

m = 1, 2, .... (3.28)
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Finally, using the inverse of the transformation (2.8),

the complete solution for concentration reads

c1(x, t) =
∞∑

m=1

AmX̃1m(x) e−γλ2
1mt

c2(x, t) =
∞∑

m=1

AmX̃2m(x) ePexe−γλ2
1mt (3.29)

The analytical form of Eq. (3.29) allows an easy

computation of the dimensionless drug mass (per unit

of area) in both coating and wall layers as function of

time as

M1(t) =

0∫

−L

c1(x, t)dx

M2(t) =

1∫

0

c2(x, t)dx

obtaining,

M1(t) = −
∞∑

m=1

Am
b̃1m

λ1m
e−γλ2

1mt (3.30)

M2(t) =
∞∑

m=1

Am

((
ePe

[
(Pe + λ2mã2m) sin(λ2m)

+(Pe ã2m−λ2m) cos(λ2m)
]
+λ2m−Pe ã2m

)

/
(
Pe2 +λ2

2m

))
e−γλ2

1mt (3.31)

In particular, M1(0) =
0∫

−L

f(x)dx and M2(0) = 0.

When f(x) = 1, we have M1(0) = L. A relevant

quantity is the normalized mass

M̂2(t) =
M2(t)

M1(0) + M2(0)
(3.32)

which indicates the drug fraction left in the wall at time

t (compared to the initial total mass).

4. NUMERICAL RESULTS AND DISCUSSION

The physical problem depends on a large number of

variables, each of them may vary in a finite range,

and there is a variety of different limiting cases. As

a matter of fact, they cannot be chosen independently

from each other, but they are related by some compat-

ibility condition to give rise to a realistic model. The

following parameters are considered for computational

experiments:

L1 =5×10−4 cm L2 =10−2 cm P =10−6 cm/s

D1 = 10−10 cm2/s D2 = 7× 10−8 cm2/s

k1 = 1 k2 = 1 ε1 = 0.1 ε2 = 0.61 (4.1)

These parameters have been chosen according to a

physical basis or to the experimental evidence, and in

agreement with the typical scales in DES and data in

literature for the arterial wall and heparin drug in the

coating layer (Hwang et al., 2001; Sakharov et al.,

2002; Creel et al., 2000). Actually, it has been shown

that the problem depends only on the six independent

groups defined by Eqs. (2.5.2) and (2.6). According to

Eq. (4.1) the four ratiosφ,σ, L, γ are fixed as

φ=0.234 σ=0.164 L=0.05 γ=0.0014 (4.2)

The effect and the sensitivity of the solution on them

have been analyzed in a recent work (Pontrelli and

de Monte, 2007), and for the time being, their values

are left unchanged as reference parameters. However

here, we are interested to systematically investigate the

dependence on Pe and Da only, aimed to understand the

relative influence of convection and reaction inside the

wall, compared to the diffusive terms.

Being that the problem diffusion dominated (Pe'
10−1 and Da' 10−1 in typical regimes), we first

consider

Pe= Da = 0 (4.3)

as starting values and let them raise separately in a

convenient range consistent with the other quantities.
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Because of the character of the series, Eq. (3.29) a

relatively small number of terms in the series (typically

m ≤ 50) is required to achieve an acceptable accuracy.

Computational results show that drug is eluting from

coating to the wall, with the wall concentration decay-

ing in time. Figure 3 shows the concentration profiles in

the two layers at three instants.

4.1. Effect of Filtration Velocity

To show the influence of filtration velocity on the

drug release, a valueδ2 ' 10−6 cm/s is considered,

in agreement with measurements (Meyer et al., 1996;

Migliavacca et al., 2007). Simulations for four values

of Pe in a compatible range are carried out to show

the trend of the solution. It turns out that a relatively

small advection lowers the concentration curves at all

times (Fig. 4). This can be explained because the
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Figure 3. Concentration profiles in the coating (left) and
in the wall (right) with Pe= 4 and Da= 20 (note the
different scales)
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Figure 4. Wall concentration decay profiles at varying Pe
(with Da = 0)

convection velocity sweeps the drug away from the

wall, where it is dispersed. At intermediate and later

instants, the profiles may appear bulged and therefore

a more uniform concentration is guaranteed. A critical

value of Pe exists; beyond it the solution becomes

unphysical.

4.2. Effect of Drug Metabolism

The importance of the reaction term depends on the

drug used, on the specific tissue and on individual

factors. However, the presence of a reactive term acts

as a sink for concentration. A typical value for the

consumption rate isβ2 ' 10−4 s−1 (Ai and Vafai,

2006). Consequently,Da ' 0.15 and the trend of

the concentration at three increasing values ofDa
is depicted in Fig. 5. Raising ofDa accelerates the

drug consumption and diminishes the concentration,

but preserves the shapes at fixed times. A negligible

variation with Da is reported at early times. At later

instants, the concentration profiles flatten and decrease

linearly. In conclusion, the effect on varyingPe is

similar, though more sensitive, to that onDa, and they

combine when both coexist.

Drug massM̂2 is first raising up to a peak value

and then falls down asymptotically to zero (Fig. 6). The

M2 peak lowers and anticipates withPe (with a sharper

drop) andDa.
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Figure 5. Wall concentration decay profiles at varying Da
(with Pe= 0)



Modeling of Mass Dynamics 27

0 1 2 3 4 5 6
0

0.1

0.2

0.3

t

M
2

^ Pe = 0
Pe = 1
Pe = 0
Pe = 1
Pe = 2
Pe = 4

0 1 2 3 4 5 6
0

0.1

0.2

0.3

t

M
2

^ Da = 0
Da = 5
Da = 10
Da = 50

Figure 6. Normalized massM̂2 in the wall as a function
of the nondimensional time at varying Pe (above) and Da
(below)

4.3. Drug Elution Indicator

In the pharmacokinetic characterization of drugs, it

is of interest to evaluate to what extent the drug is

distributed and retained in a tissue. This parameter is

generally known as mean residence time (MRT) and

provides a useful insight into the kinetics of a substance

released in a medium (Macheras and Iliadis, 2006).

Roughly speaking, the mean residence time measures

the capability of a drug to reside in a tissue and for

the present application, can be defined as the time that

mass (or mean concentration) in the wall reaches a

given percentage of its maximum value, say

MRTn = max

{
t

∣∣∣∣
1∫

0

c2(x, t)dx

≥ n

100

0∫

−L

c1(x, 0)dx

}
(4.4)

In other words:M̂2(MRTn) = M2(MRTn)/M1(0) '
n

100 [see Eq. (3.32)]. For example, MRT10 indicates the

time elapsed until the mass in the wall stays above 10%

of the initial maximum value.

MRT constitutes a useful quantitative indicator of

drug elution and can be used for comparative purposes

and for designing novel coating technologies in DES.

Actually, for a prolonged therapeutic efficacy, it is

important to maximize MRT as a function of some

physical quantity. Whereas the effect of Pe and Da has

been examined with drug diffusivity held fixed, with

a second set of numerical experiments we now turn

about the case and the influence of varyingD2 only is

investigated.

It is found that a decrease ofD2 augments simul-

taneously the parametersγ, φ, Pe, and Da, but also

reduces the nondimensional time [see Eqs. (2.5) and

(2.6)]. As a consequence, a sensible rising of MRT is

reported, as shown in Table 1.

5. CONCLUSIONS

Many physical phenomena, from biology to geophysics,

from hydraulics to chemical engineering are described

by convection-diffusion-reaction models, even at differ-

ent time scales. A biomedical application provided the

source of inspiration for the present work: mass trans-

port, diffusion phenomena and metabolism of a drug in

the vascular wall are of great importance in delivery

processes and, in particular, in coating stent technology.

Although drug-eluting stents represent an important ad-

vance in the management of coronary arterial diseases,

much remains uncertain about their long-term benefits

and safety: much effort in modeling is currently ad-

dressed to a deeper understanding of the complex drug

elution mechanism.

The study presents a one-dimensional approximation

model, which, as an idealized case, provides a useful

tool to predict the fundamental physics of mass transfer

and to assess the efficacy of the DES technology. The

analytical form of the solution and some numerical

experiments evidence the role played by the convective

and reaction processes when compared to the diffusive

ones. Lastly, the mean residence time is deemed a

valuable indicator for a desired tissue concentration and

results greatly controlled by the drug diffusion.
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Table 1
Mean residence times (in seconds) relative to 1%, 5%,

10%, at increasingD2. Simulations run with the
parameters in Eq. (4.1) andδ2 = 10−6 cm/s and

β2 = 10−4 s

D2 MRT1 MRT5 MRT10

5×10−9 11152 8160 6832
1×10−8 9876 7088 5840
5×10−8 3999 3628 2812
1×10−7 1999 1999 1765
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