
International Journal of Heat and Mass Transfer 53 (2010) 3629–3637
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
A multi-layer porous wall model for coronary drug-eluting stents

Giuseppe Pontrelli a,*, Filippo de Monte b

a Istituto per le Applicazioni del Calcolo – CNR, Via dei Taurini 19, 00185 Roma, Italy
b Dipartimento di Ingegneria Meccanica, Energetica e Gestionale University of L’Aquila, Località Monteluco, 67040 Roio Poggio (AQ), Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 12 May 2010

Keywords:
Mass transfer
Multi-layered porous media
Advection–diffusion equation
Multi-layer penetration depth
Drug delivery
Pharmacokinetics
0017-9310/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2010.03.031

* Corresponding author.
E-mail addresses: pontrelli@iac.rm.cnr.it (G. Pontr

q.it (F. de Monte).
An analytical solution for solving the transient drug diffusion in adjoining porous wall layers faced with a
drug-eluting stent is presented. The endothelium, intima, internal elastic lamina and media are all treated
as homogeneous porous media and the drug transfer through them is modelled by a set of coupled partial
differential equations. The classical separation of variables method for a multi-layer configuration is used.
The model addresses the concept of penetration depth for multi-layer solids that is useful to treat the
wall thickness by estimating a physical bound for mass diffusion. Drug concentration level and mass pro-
files in each layer at various times are given and discussed.
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1. Introduction

Alteration of blood flow due to the narrowing or occlusion of an
artery is one of the most common occurrences in cardiovascular
diseases. A medical treatment involves the insertion of a wire scaf-
fold, or stent, designed to hold open and to provide structural sta-
bility to the injured vessel. Often such a treatment reveals
ineffective and failure is associated with the growth of tissue
through the wires of the stent, that reoccludes the lumen [1]. This
can be prevented by a local and controlled delivery of drugs which
inhibit tissue growth. Such a drug is contained in a thin porous
polymeric layer coating the stent surface (drug-eluting stent, DES
for short) and is aimed at healing the vascular tissues or at prevent-
ing a possible restenosis by virtue of its anti-proliferative action
against smooth muscle cells.

The design of DES is aimed at a prolonged release of the drug,
and mathematical models are proposed to simulate the mass
transport in the arterial wall and the complex mechanism of drug
elution. The drug is transported through the vessel wall by both
convective and diffusive processes, and might be metabolized in
the tissues and its progress arrested by partitioning. Computa-
tional modelling is an important tool for deeper understanding
the physical factors that influence the transport process, namely
the geometrical design of the stent, the mechanical characteristics
of the materials, and the chemical properties of the drug [2]. These
effects combine in different time–space scales and physics and
need integrative biomechanical methods [3]. In the last years, a
ll rights reserved.
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number of mathematical models have been developed to address
the fundamental problem of the mass release from DES through
the arterial wall [4–6]. Unconventional approaches of drug deliv-
ery, such as those based on the endoluminal gel paving technology,
have been recently proposed [7]. In some work the combination of
solid mechanics and fluid dynamics allows both mechanical
expansion and DES elution properties to be investigated [8]. Diffi-
culties in coupling different geometrical scales have been reported
[9], and have been recently overcome by multiscale strategies [10].
In most of these studies, the complex multi-layered structure of
the wall is disregarded and a homogeneous porous material with
averaged properties (i.e. media) has been considered for simplicity.

On the other hand, it is known that the arterial wall is consti-
tuted of many layers with different structural and chemical prop-
erties [11,12] and it is believed that a more effective description
of mass release is obtained with a more accurate modelling of
the wall structure. According to the classification of Prosi et al.
there are usually three categories of models depending on the level
of description of arterial wall [9]. The wall-free model describes the
arterial wall simply by means of suitable boundary conditions. The
fluid-wall model approximates the wall structure by a single homo-
geneous layer. Though better than the wall-free model, it is still
inaccurate, as misses important details of tissue microstructure
that can play into drug release mechanism. The multi-layered model
is the most complete model which takes into account the heteroge-
neous properties of the different layers constituting the wall but,
due to its complexity, a larger number of parameters is required
to characterize the physical properties of each layer. Such a com-
prehensive model would depend on so many variables that, if
not conveniently simplified, it raises more questions than useful
answers. An appropriate degree of simplification is necessary to
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Fig. 1. A drug-eluting stent implanted in a stenotic artery.

Nomenclature

c mass volume-averaged concentration
D drug diffusive coefficient
J mass flux
k partition coefficient
l layer thickness
d� penetration distance or penetration depth
t� penetration time
m boundary accuracy index (BAI)
M dimensionless mass per unit of area
P membrane permeability coefficient
t time
x space coordinate
Xi eigenfunction

Greek symbols
c diffusivity ratio:

D
Dmax

� medium porosity

k eigenvalue
r material ratio:

k�
ðk�Þmax

/ nondimensional permeability:
Pd�

Dmaxðk�Þmax
h fraction of drug mass:

M
M0ð0Þ

Subscripts
0 0-th layer (coating)
i i-th wall layer
n number of layers
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discern the relevant features of the phenomena. Although the com-
plexity of stent geometry would require the use of 3D models [5],
nevertheless in fundamental studies simpler one-dimensional
models give some useful hints on the basic physics and allow a sys-
tematic analysis on a wide range of parameters. The easier han-
dling of the governing equations leads to an explicit analytical
form of the solution and gives a deeper insight into the transport
process. In a recent paper, a mathematical model for the mass dif-
fusion from the coating into the arterial tissue as a fluid-wall mod-
el has been presented and the strong analogy with heat diffusion
processes has been emphasized [4]. The influence of other effects
such as the plasma filtration velocity and the drug absorption have
been investigated in [13].

In the present work, a multi-layered extension of the above
studies is developed. Following [11,14], an idealized model of
wall consisting of four layers (namely endothelium, intima, inter-
nal elastic lamina and media) is proposed. Each layer is treated as
a macroscopically homogeneous porous medium with own diffu-
sive properties and continuity of mass flux between any two
adjacent layers is imposed (the geometrical and mechanical ef-
fects of the stent are not considered here). As a matter of fact,
the endothelium is covered by a thin ciliate layer called endothe-
lial surface layer or glycocalyx, constituted by a sequence of long
chain macromolecules and proteins [12]. As the drug transport
properties through the glycocalyx are unknown, it has been in-
cluded in the endothelium layer for simplicity. The stent coating
is assumed as a thin porous slab in imperfect contact with the
endothelium due to the presence of a topcoat. The adventitia
and the surrounding tissues form the outmost wall layer and
have a sufficiently large thickness to be considered as semi-infi-
nite (Section 2). However, by using the concept of penetration
depth defined in transient heat conduction [15] and extending
it to the present multi-layered problem, we estimate the correct
distance where the concentration and mass flux are dumped
out and approximate this semi-infinite layer as a bounded region
(Section 3). The classical separation of variables method leads to a
Sturm–Liouville problem with discontinuous coefficients and se-
vere spectral irregularities (Section 4). Drug concentration in each
layer at various times is given in the form of a Fourier series by
using dimensionless parameters which control the transfer mech-
anism across the layered wall (Section 5). The concentration lev-
els and the mass profiles are shown and discussed in Section 6. In
particular, the drug diffusivity in the wall layers is shown to
greatly influence the residence time.

The aim of these studies is to enhance control of the rate of drug
delivery, enable a wider range of drug therapies, and increase the
range of clinical applications of DES.
2. The multi-layer wall model: governing equations

A drug-eluting stent (DES) consists of a tubular wire mesh
(strut), inserted in a stenosed artery and coated with a thin layer
(coating) of biocompatible polymeric gel containing a therapeutic
drug to be delivered (Fig. 1).

Let us consider a stent coated by a thin layer (of thickness l0) of
gel containing a drug and embedded into the arterial wall [6]. Be-
cause most of the mass dynamics occurs along the direction nor-
mal to the stent coating (radial direction), we restrict our study
to a simplified 1D model. In particular, we consider a radial line
crossing the metallic strut, the coating and the arterial wall and
pointing outwards and, being the wall thickness very small with
respect to the arterial radius, a cartesian coordinate system x is
used along it. It is generally accepted that the arterial wall is con-
stituted by a sequence of contiguous layers of different physical
properties and thickness, say the endothelium, the intima, the
internal elastica lamina (IEL), the media and the adventitia (see
[16] for an anatomic and physiological description of them). Either
the polymer coating and the wall layers are treated as macroscop-
ically homogeneous porous media. Without loss of generality,
let us assume x0 = 0 is the coating-wall interface. In a general
1D framework, let us consider a set of intervals ½xi�1; xi�
i ¼ 0;1;2; . . . ;n having thickness li ¼ xi � xi�1 modelling the coat-
ing (layer 0) and the wall (layers 1,2, . . . ,n) (Fig. 2).

At the initial time (t = 0), the drug is contained only in the coat-
ing and it is distributed with maximum, possibly nonuniform, con-
centration C0f0ðxÞ and, subsequently, released into the wall. Here,
and throughout this paper, a mass volume-averaged concentration



x 0 x−1  = 0

l0 l1 l2 li nl

x
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Fig. 2. A sketch of the layered wall. The 1D wall model is defined along the line normal to the strut stent surface and extends with a sequence of n contiguous layers
½xi�1; xi� i ¼ 1;2 . . . ; n from the polymer coating interface x0 = 0 up to the wall bound xn estimated by the penetration distance d� (see Section 3). ST indicates the metallic
stent strut bearing the coating (figure not in scale).
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c(x,t) (mg/ml) is considered. Since the metallic strut is imperme-
able to the drug, no mass flux passes through the boundary surface
x ¼ x�1 ¼ �l0. Moreover, it is assumed that the plasma does not
penetrate the surface of the stent coating. Thus, the dynamics of
the drug in the coating (1st layer) is described by the following
1D averaged diffusion equation, and related boundary-initial
conditions:

@c0

@t
þ @

@x
�D0

@c0

@x

� �
¼ 0 in ½x�1; x0� ¼ ½�l0; 0�

� D0
@c0

@x
¼ 0 at x ¼ x�1

c0ðx;0Þ ¼ C0f0ðxÞ ð2:1Þ

where D0 ðcm2=sÞ is the drug diffusivity and c0 the concentration in
the coating and 0 6 f0ðxÞ 6 1.

In the i-th layer of the wall, the drug dynamics is described by
the following advection–diffusion-reaction equation and related
initial conditions:

@ci

@t
þ @

@x
�Di

@ci

@x
þ 2dici

� �
þ bici ¼ 0 in ½xi�1; xi� i ¼ 1;2; . . . ; n

ci ¼ 0 at t ¼ 0 ð2:2Þ

where Diðcm2=sÞ is the diffusivity of drug and ci its concentration in the
i-th layer and 2di ðcm=sÞ accounts for a constant characteristic convec-

tion parameter. It may be estimated as 2di ¼
aiui

�i
[4], where ai is the

hindrance coefficient in the x-direction [17], �i the porosity and ui is
the filtration velocity due to the pressure difference between lumen
and adventitia. Note that 2di can be rewritten as 2di ¼ ð1� miÞui, being

mi ¼ 1� ai

�i
the Stavernan filtration coefficient [18].

The last term on the l.h.s. of the first of Eqs. (2.2) represents the
drug reaction on the surface of smooth muscle cells (SMCs) inside
the media layer. Here, it is approximated by a linear reaction hav-
ing bi > 0 ðs�1Þ as an effective first-order consumption rate coeffi-
cient. To close the previous mass transfer system of Eq. (2.2), flux
and concentration continuity conditions have to be assigned at
each layer interface x = xi:

ci

ki�i
¼ ciþ1

kiþ1�iþ1
Di
@ci

@x
� 2dici ¼ Diþ1

@ciþ1

@x
� 2diþ1ciþ1

at x ¼ xi i ¼ 1;2; . . . ; n� 1 ð2:3Þ

where ki is the partition coefficient.
In addition, to slow down the drug release rate, a permeable

membrane (called topcoat) of permeability P ðcm=sÞ is located at
the interface (x = 0) between the coating and the arterial wall. A
continuous mass flux passes through it orthogonally to the coating
film with a possible concentration jump. In the present case, the
mass transfer through the topcoat can be described using the sec-
ond Kedem–Katchalsky equation [19], that is:

� D0
@cc

@x
¼ P

c0

k0�0
� c1

k1�1

� �
at x ¼ 0 ð2:4Þ

D0
@c0

@x
¼ D1

@c1

@x
� 2d1c1 at x ¼ 0 ð2:5Þ

As reported in [11], only in the media layer the convection-reaction
terms are relevant, whereas in the other layers these effects can be
neglected. However, it has been shown that a more general model
including convection-reaction terms is amened to a pure diffusive
system by a variable transformation [13]. Finally, a boundary condi-
tion has to be imposed at the limit of adventitia xn. Some controversy
occurs when measuring this wall bound. Different values of the
thickness are in fact given in literature, depending on the arterial
size and generally a range 100� 200 lm is found for a medium sized
artery [6,11,17,20]. Actually, as the arterial wall is embedded in the
surrounding tissues, the drug transport does not stop at the adven-
titia but proceeds forward in the external tissues, at a distance that
depends on time when the process is observed. In principle, the do-
main where diffusion takes place cannot be estimated a priori and
any truncation of the domain is rather arbitrary, if made on physio-
logical consideration only. As a matter of fact, for pure diffusion pro-
cesses where concentration and mass flux vanish asymptotically,
instead of guessing the correct wall thickness, a rigorous and general
modelling is made by considering a semi-infinite medium ðxn !1Þ
in perfect contact with the arterial media and having uniform prop-
erties (equal to those of the last layer, i.e. the adventitia).

Thereby the concentration and mass flux for x!1 equate their
initial value there, say zero, and the boundary conditions can be
posed as:

lim
x!1

cn ¼ 0 or lim
x!1

@cn

@x
¼ 0 ð2:6Þ
3. Penetration distance and time

For computational purposes, we do not model the outmost layer
as a semi-infinite medium, but we consider a convenient limited
portion of it and by approximating the Eq. (2.6) using the similar
concept of penetration distance for transient, heat diffusive prob-
lems [15]. Because of the strong analogy between heat and mass
transfer problems, the above definition is revisited here for mass-
diffusion processes and extended to multi-layers transient prob-
lems. The idea is based on observing that the concentration is
damped out asymptotically (within a given tolerance) over a short
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distance at the small times, whereas this distance increases at lar-
ger times. More precisely, let us consider a large (say semi-infinite)
porous homogeneous medium x P 0, having diffusion coefficient
D1, and with an initial zero concentration. Faced in perfect contact
with it, an infinite reservoir is located at x 6 0, and contains a sub-
stance at concentration c0. It is known that the mass diffuses
through the medium and its concentration c(x, t) tends asymptoti-
cally to zero for x!1. Given a tolerance e ¼ 10�m, the penetration
depth d� at a given time t is defined as the distance where the con-

centration and the mass flux J ¼ �D1
@c
@x

vanish within the pre-

scribed tolerance, that is cðx; �Þ and Jðx; �Þ stay below a sufficiently
small value such as 10�mc0 and 10�mJ0, respectively. Analogously,
the penetration time t� at a given location x is the time that it takes
so that cð�; tÞ (resp. Jð�; tÞ) remain below 10�mc0 (resp. 10�mJ0) in the
filling process.

Similarly to the thermal problems, it can be proved by numeri-
cal experiments that in a single layer mass-diffusion process, the
penetration distance d�ðtÞ is estimated by [15]:

d� ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10mD1t

p
t > 0 ð3:1Þ

It measures the minimum distance from x ¼ 0 such that
cðd�; tÞ=c0 ’ Jðd�; tÞ=J0 K 10�m . Reciprocally, the penetration time
t�ðxÞ is computed as:

D1t�

x2 ’
0:1
m

x P 0 ð3:2Þ

The idea can be generalized to n � 1 adjoining layers ½xi�1; xi�;
i ¼ 1; . . . ; n� 1, faced with a n-th semi-infinite layer ½xn�1;1½,
having diffusion coefficients Di and in perfect contact with an infi-
nite reservoir at x = 0. The penetration time t�ðxÞ and the distance
d�ðtÞ are given, respectively, by:

t�Xi�1

j¼1

ljð1� dijÞffiffiffiffiffi
Dj

p þ x� xi�1ffiffiffiffiffi
Di
p

" #2 ’
0:1
m

for x P xi�1 i ¼ 1 . . . ; n

ð3:3Þ

d� ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10mDit

p
þ
Xi�1

j¼1

ljð1� dijÞ 1�
Yi�1

s¼j

ffiffiffiffiffiffiffiffiffiffi
Dsþ1

Ds

s !
for t P t�ðxi�1Þ ¼ t�i�1 i ¼ 1 . . . ; n ð3:4Þ

with dij the Kronecker symbol (see Appendix A.1 for a proof in the
case n = 2). In a n-layered wall, for t 6 t�i only the first i-th layers
will be considered and the condition ci = 0 is imposed at x = xi. For
t > t�n�1, the n-th semi-infinite layer can be truncated at the pene-
tration distance xn ¼ d�ðtn�1Þ and the asymptotic conditions (2.6)
are replaced by

cn ¼ 0 or
@cn

@x
¼ 0 at xn ¼ d� ð3:5Þ

within an accuracy of 10�m, with d� defined in Eq. (3.4) for a bound-
ary accuracy index (BAI) m. In other words, setting condition (3.5)
guarantees that the concentration and the mass flux vanish at d�

with a mass loss comparable with 10�m. In the outmost n-th layer,
both the above conditions hold, but the absorbing condition cn = 0 is
expected to be more realistic, since the vasa vasorum of the adven-
titia are continually replenished with fresh blood and sweep away
any residual drug [6].

4. Solving procedure

The classical separation of variables (SOV) method is used to
solve the model equations. Before that, it is convenient to rewrite
the equations in a dimensionless form.
4.1. Scaling

All the variables, the parameters and the equations are now
normalized to get easily computable nondimensional quantities
as follows:

�x ¼ x
d�

�l ¼ l
d�

�t ¼ Dmax

ðd�Þ2
t �ci ¼

ci

C0

ci ¼
Di

Dmax
/ ¼ Pd�

Dmaxðk�Þmax
ri ¼

ðk�Þi
ðk�Þmax

ð4:1Þ

where subscript max denotes the maximum value across the nþ 1
layers. By means of the following change of variables:

�x! x �l! l �t ! t �ci ! ci

the problem (2.1)–(2.2) can be written in dimensionless form as:

@ci

@t
¼ ci

@2ci

@x2 in ½xi�1; xi� i ¼ 0;1; . . . ; n ð4:2Þ

with the initial conditions:

c0ðx;0Þ ¼ f0ðxÞ ciðx;0Þ i ¼ 1; . . . ; n ð4:3Þ

and with the following interface and B.C.’s:

@c0

@x
¼ 0 at x ¼ x�1 ¼ �l0

c0
@c0

@x
¼ c1

@c1

@x
� c0

@c0

@x
¼ /

c0

r0
� c1

r1

� �
at x ¼ 0

ci

ri
¼ ciþ1

riþ1
ci
@ci

@x
¼ ciþ1

@ciþ1

@x
at x ¼ xi i ¼ 1;2 . . . ; n� 1

cn ¼ 0 at x ¼ 1 ð4:4Þ

The nondimensional penetration time and depth for a n-layer sys-
tem are defined similarly as done in Eqs. (3.3) and (3.4).

4.2. The eigenvalue problem

Because of discontinuous coefficients of the piecewise-homoge-
neous layers, the SOV method leads to a Sturm–Liouville problem
which is not of traditional type, as shown below. By separation
of variables we have:

ci ¼ XiðxÞGiðtÞ i ¼ 0;1 . . . ; n ð4:5Þ

and

X00i ðxÞ
XiðxÞ

¼ G0iðtÞ
ciGiðtÞ

¼ �k2
i ð4:6Þ

where the constants ki are the separation constants, each referring
to its own layer. Solution of the previous equations leads to:

GiðtÞ ¼ expð�k2
i citÞ ð4:7Þ

and

XiðxÞ ¼ ai cosðkixÞ þ bi sinðkixÞ ð4:8Þ

By imposing G0 ¼ G1 ¼ � � � ¼ Gn, one gets:

ki ¼
ffiffiffiffiffi
c0

ci

r
k0 i ¼ 1; . . . ; n ð4:9Þ

and by the B.C.’s:
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a0 sinðk0l0Þ þ b0 cosðk0l0Þ ¼ 0 ð4:10Þ
c0b0k0 ¼ c1b1k1 ð4:11Þ

� c0b0k0 ¼ /
a0

r0
� a1

r1

� �
ð4:12Þ

1
ri
ðai cosðkixiÞ þ bi sinðkixiÞÞ ¼

1
riþ1

aiþ1 cosðkiþ1xiÞð

þbiþ1 sinðkiþ1xiÞÞ ð4:13Þffiffiffiffi
ci

p
bi cosðkixiÞ � ai sinðkixiÞ½ � ¼

ffiffiffiffiffiffiffiffi
ciþ1

p
biþ1 cosðkiþ1xiÞ½

�aiþ1 sinðkiþ1xiÞ�
i ¼ 1;2 . . . ; n� 1 ð4:14Þ

cosðknÞan þ sinðknÞbn ¼ 0 ð4:15Þ

This set of 2n + 2 algebraic equations form a homogeneous system
with unknowns ai; bi i ¼ 0;1 . . . ; n. By imposing that the coeffi-
cient matrix be singular and by using Eq. (4.9), we get a relationship
in k0 (eigencondition). The discontinuity of the coefficients due to
the non smoothness of the layer diffusivities leads to irregularities
within the entire spectrum of roots of the eigenvalue equation. Ex-
plicit approximate (but very accurate) equations are available for
computing eigenvalues of Sturm–Liouville problems with discontin-
uous coefficients [21]. However, such solutions were derived for
general mathematical studies and for a variety of non-mass-diffu-
sion applications, such as applied mechanics, geophysics and
oceanography, and these methods are inadequate for transient
mass-diffusion problems in layered porous media. Here the eigen-
condition problem is solved numerically by a successive bisection
method. It admits an infinite number of roots ðkk

0Þ; k ¼ 1;2; . . . :

and, from them, the whole set of eigenvalues ðkk
i Þ; i ¼ 1 . . . ; n;

k ¼ 1;2; . . . is determined.
Subsequently, from each eigenvalue, the constants ak

i ; b
k
i i ¼

n;n� 1 . . . ; 1;0 are obtained in cascade from Eq. (4.15) . . . , (4.10)
as a function of an arbitrary value bk

0 (such a multiplicative con-
stant bk

0 is determined through the initial condition Eq. (4.3)). Thus
the eigenfunctions defined in Eq. (4.8) have the form:

Xk
i ðxÞ ¼ bk

0 ~ak
i cosðkk

i xÞ þ ~bk
i sinðkk

i xÞ
h i

¼ bk
0
eXk

i ðxÞ ð4:16Þ

where ~ak
i ¼

ak
i

bk
0

and ~bk
i ¼

bk
i

bk
0

.

5. Computing drug concentration and mass

Once the eigenvalues kk
0 are computed, the corresponding time-

variable functions Gi defined by Eq. (4.7) are obtained as:

Gk
i ðtÞ ¼ Gk

0ðtÞ ¼ expð�c0ðk
k
0Þ

2tÞ i ¼ 1 . . . ; n ð5:1Þ

Thus, the general solution of the problem (4.2)–(4.4) is given by a
linear superposition of the fundamental solutions (4.16)–(5.1) in
the form:

ciðx; tÞ ¼
X1
k¼1

Ak
eXk

i ðxÞ expð�ciðk
k
i Þ

2tÞ

¼
X1
k¼1

Ak
eXk

i ðxÞ expð�c0ðk
k
0Þ

2tÞ ð5:2Þ
Table 1
The parameters used in the simulations for the coating and the wall layers. The penetratio
and depends on the maximum simulated time and on BAI index m (see Eq. (3.4) and Tabl

Coating (0) Endothelium (1) Intim

li ¼ xi � xi�1 ðcmÞ 5 � 10�4 2 � 10�4 10�3

Di ðcm2=sÞ 10�10 8 � 10�9 7:7
�i 0.1 5 � 10�4 0.61

ki 1 1 1
where the Fourier coefficients Ak :¼ bk
0 are computed in accordance

with the initial condition. By evaluating Eq. (5.2) at t = 0 and multi-
plying it by eX h

i , after integration we get:Z xi

xi�1

X
k

Ak
eXk

i
eXh

i dx ¼
Z xi

xi�1

fiðxÞeXh
i dx h ¼ 1;2; . . . : ð5:3Þ

By combining Eq. (5.3) over the n + 1 layers through the coefficients
1
ri

, and by using the orthogonality property (see Appendix A.2), we

have:

Ak

Xn

i¼0

1
ri

Z xi

xi�1

ðeXk
i Þ

2 dx

 !
¼
Xn

i¼0

1
ri

Z xi

xi�1

fiðxÞeXk
i dx ð5:4Þ

where the term in brackets on the l.h.s. is the norm eNk (see Appendix
A.2). Because of the initial condition Eq. (4.3) (i.e., the drug is initially
contained only in the coating layer), the summation on the r.h.s. of
Eq. (5.4) reduces to the first term only. In particular, when the drug
is uniformly distributed in the coating, i.e. f0ðxÞ ¼ 1, bearing in mind
Eq. (4.10) and integrating from �l0 to 0, we have:

Ak ¼
~ak

0 sinðkk
0l0Þ þ ~bk

0ðcosðkk
0l0Þ � 1Þ

r0
eNkk

k
0

¼ � 1

r0
eNkk

k
0

k ¼ 1;2; . . . : ð5:5Þ

The analytical form of the last equations allows an easy computa-
tion of the dimensionless drug mass (per unit of area) in both coat-
ing and wall layers as function of time as:

M0ðtÞ¼
Z 0

�l0

c0ðx;tÞdx MiðtÞ¼
Z xi

xi�1

ciðx;tÞdx MwðtÞ¼
Xn

i¼1

MiðtÞ

We have:

M0ðtÞ ¼
X

k

�Ak

kk
0

expð�c0ðk
k
0Þ

2tÞ ð5:6Þ

MiðtÞ ¼
X

k

Ak
expð�ciðk

k
i Þ

2tÞ
ðkk

i Þ
2

deXk
i

dx
ðxi�1Þ �

deXk
i

dx
ðxiÞ

" #

¼
X

k

Ak
~ak

i ½sinðkk
i xiÞ � sinðkk

i xi�1Þ� � ~bk
i ½cosðkk

i xiÞ � cosðkk
i xi�1Þ�

kk
i

� expð�ciðk
k
i Þ

2tÞ ð5:7Þ
In particular, we have:

M0ð0Þ ¼ l0 Mið0Þ ¼ 0 i ¼ 1;2 . . . ; n ð5:8Þ

Moreover, Eq. (5.7) shows that lim
t!1

MiðtÞ ¼ 0 for all layers, except for

the last one. The n–th layer thickness tends to 1 as t !1 and the
expression in Eq. (5.7) does not hold for it. In such a case,

Mn / erfc const:ffiffi
t
p

� �
and this implies that lim

t!1
MnðtÞ ¼ M0ð0Þ (see Appen-

dix A.1). Summing over all the layers 1,2 . . . ,n the terms correspon-
dent to intermediate layers cancel out and we have:

MwðtÞ ¼
X

k

Ak expð�ciðk
k
i Þ

2tÞ 1

ðkk
1Þ

2

deXk
1

dx
ð0Þ � 1

ðkk
nÞ

2

deXk
n

dx
ð1Þ

" #

¼
X

k

Ak expð�ciðk
k
i Þ

2tÞ
~bk

1

kk
1

�
~bk

n cosðknÞ � ~ak
n cosðknÞ

kk
n

" #
ð5:9Þ
n distance d� estimates the wall bound, provides the thickness l5 of the external layer
e 3).

a (2) IEL (3) Media (4) Adventitia (5)

2 � 10�4 2 � 10�2 d� � x4

� 10�8 4:2 � 10�8 7:7 � 10�8 12 � 10�8

4 � 10�3 0.61 0.85

1 1 1



Table 2
Penetration times t�i i ¼ 1;2;3;4 (in s) for different BAI.

m t�1 t�2 t�3 t�4

2 0.25 1.705 2.322 311.187
5 0.1 0.682 0.929 124.47
8 0.0625 0.4262 0.5806 77.796

Table 3
Penetration distances d� ðcmÞ at several times (s) for m = 2,5,8. In all cases d� falls
within the 5-th layer ðd� P x4 ¼ 0:0214 cmÞ (cfr. tab. 2).

m nt 500 1000 3000 10000 20000

2 0.0287 0.0430 0.0789 0.1489 0.2131
5 0.0488 0.0715 0.1282 0.2390 0.3404
8 0.0633 0.0920 0.1637 0.3039 0.4322
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6. Numerical results

Following [11,14], let us consider the arterial wall subdivided in
four layers: endothelium (1) intima (2), IEL (3), media (4), in contact
with the adventitia and external tissues (5). Despite of the low geo-
metrical dimension, a large number of parameters influences the
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Fig. 3. Concentration profiles in the six layers at three instants (in s
problem and a complete characterization of the physiological set-
ting remains a difficult task. Each parameter is interconnected with
the others and influences the global solution. Actually, the previous
analysis shows that the problem depends only on the independent
groups ci;/;ri and xi defined by Eq. (4.1). In particular, the identifi-
cation of all diffusive coefficients relative to a specific drug and
within each layer is a demanding issue. To set up a realistic simula-
tion, the parameters given in Table 1 and:

P ¼ 10�6 cm=s f 0ðxÞ ¼ 1 ð6:1Þ

have been chosen in agreement with the typical scales in DES and
data in literature for the arterial wall and heparin drug in the coat-
ing layers [2,11,17,20,22].

By using the data in Table 1, the penetration times at each layer
interface (see Eq. (3.3)) are estimated in Table 2.

All the series appearing in the solution (see Eq. (5.2) and foll.)
have been truncated at a finite number of terms M. A value of
M = 50 is considered for all times reported in the simulation. The
penetration distance which corresponds to the maximum simu-
lated time ð2 � 104 sÞ falls beyond x4 ¼ 0:0214 cm in all cases
(Table 3). For all m, the outmost layer results much thicker than
the other ones (’ l4 � 10 at time t ¼ 2 � 104 s, in the case
0 1 2
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) (note the different scale for coordinates and concentrations).
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Fig. 4. Distribution of the mass flux through the wall section at four instants (in s).
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Table 4
Percentage of the drug mass retained in each layer at different times (in
s ’ ðd : h : mÞ).

t h0 (%) h1 (%) h2 (%) h3 (%) h4 (%) h5 (%)

2000 ð’ 33mÞ 55 < 0.01 15 < 0.01 25 3.2
5000 ð’ 1h : 23mÞ 23 < 0.01 9.4 <0.01 42 24

104 ð’ 2h : 47mÞ 5.8 < 0.01 3.8 <0.01 35 54

2 � 104 ð’ 5h : 33mÞ 0.4 < 0.01 1.2 <0.01 21 77

5 � 104 ð’ 13h : 53mÞ < 0.01 < 0.01 0.5 <0.01 11 87

105 ð’ 1d : 4hÞ < 0.01 < 0.01 0.3 <0.01 7.6 91

5 � 105 ð’ 5d : 19hÞ < 0.01 < 0.01 0.1 <0.01 3.3 96

106 ð’ 11d : 14hÞ < 0.01 < 0.01 0.1 <0.01 2.3 97

5 � 106 ð’ 57d : 21hÞ < 0.01 < 0.01 0.05 <0.01 1.0 98
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Fig. 5. Dimensionless mass in the coating (layer 0), endothelium (layer 2) and
media (layer 4) vs. time (in s). In the coating mass is monotonically decreasing,
while in the others there is a characteristic time at which the drug reaches a peak.
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m = 2) and needs a high number of grid points to be conveniently
resolved. However, numerical results show negligible differences
with m, present only in the outmost layer at higher times. For
our purposes, a BAI m = 2 is sufficient to compute a penetration
distance that guarantees a good solution accuracy without compu-
tational overhead.

Drug is retained differently in each layer, which receives mass
from the inner and transmits to the outer, in a cascade sequence,
up to be completely damped out at distance d� that constitutes
the wall bound. Concentration is decreasing inside each layer,
being possibly discontinuous at the interfaces, with the mass flux
continuity preserved (Figs. 3, 4). Interestingly enough, the levels
of concentration in layer 2 (intima) are nearly constant and can
be higher than in the others, at intermediate times. This is in agree-
ment with the higher diffusivity D2 and relatively small layer thick-
ness l2.

We compute the fraction of drug mass retained in each layer,
defined as:

hiðtÞ ¼
MiðtÞ
M0ð0Þ

i ¼ 0;1; . . . ; 5 ð6:2Þ

and Table 4 shows its different distribution in the wall layers. Hav-
ing posed the first boundary condition (3.5), a negligible mass loss
occurs out of the wall bound d�. In other words, due to the absorb-
ing condition (3.5), all drug mass is transferred at the outmost layer
at a sufficiently large time and the total mass is preserved and
equals its initial value (say the drug mass in the coating M0ð0Þ):

M0ð0Þ �
P5
i¼0

MiðtÞ

M0ð0Þ
¼ 1�

X5

i¼0

hiðtÞ / 10�m ð6:3Þ

Thus, any truncation of the domain before d� is arbitrary and does
not ensure a conservative model.

Due to the diffusive coefficient and to the porosity, the mass is
exponentially decreasing in the coating and in the (1) (innermost
layers), but is first increasing up to some upper bound and then
decaying asymptotically in the (2), (3), and (4) (outer layers)
(Fig. 5). In the outmost layer (5) the mass accumulates as the time
proceeds. The simulation points out the time of peak mass in the
intima (layer 2) is at 1640 s (� 27 min), in the media (layer 4) is
5460 s (� 1 h: 30 min). The thin layers 1 and 3 retain a negligible
mass due to their thickness, and the media is completely emptied
ðh4 � 1%Þ after a time of about 57 days (last row in Table 4). At that
time, all the mass is transferred to the external wall layer, with a
slight mass loss (Fig. 5). However, the therapeutic effects of DES
is limited in the endothelium-media, while the residual drug in
the outmost layer is considered lost.

Differently than in other single layer models, the current simula-
tion constitutes a simple tool to predict the accurate concentration
levels in each wall layer. These results can be used to assess whether
drug reaches target tissues, and to optimize the dose capacity given
by thin surface coatings for an extended period of time.

7. Conclusions

Mathematical modelling has emerged in recent years as a pow-
erful tool to simulate drug delivery processes in DES and much ef-
fort is currently addressed for a deeper understanding of the
elution mechanism. Such a phenomenon is not completely under-
stood and may be influenced by different concurrent physical pro-
cesses. One of them is the structure of the arterial wall that is
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recognized constituted by a sequence of adjacent layers. The multi-
layered wall accounts for a relatively detailed structure for the
macromolecular transport inside the biological tissues and pro-
vides a better accuracy when compared with a homogeneous
monolayered model in diffusion process for DES.

Even though a complete study needs a coupling with the blood
flow and the mechanics of the stent, a simplified release model
provides a deep insight into the complex physics of diffusion pro-
cess into the wall layers. As a matter of fact, the analysis of a 1D
model retains the basic ingredients of the underlying physics and
has revealed to provide much understanding on the mechanism
of mass diffusion.

By showing the relationship among the several variables and
material parameters, it can be used to identify simple indexes or
clinical indicators of biomedical significance and to optimize drug
elution for a desired targeted tissue. A characteristic simulation
parameter is the penetration depth, defined as the distance beyond
which the concentration and mass flux reduce to a given percentage
of the boundary value at a given time. The model turns out to be very
sensitive to the manifold physico-chemical and physiological
parameters and their correct identification is a critical issue and con-
stitutes the key for its successful use. An additional effort is required
to determine them for each arterial wall layer more accurately. As
long as built on a realistic set up, the current simulation is able to
estimate the local concentration, offers an easy tool for computing
the residence time of a drug and can be used as a guideline for
designing better delivery systems in the arterial tissue. Although ap-
plied to the drug transport of DES, the present model can be easily
extended to any other multi-layered mass transfer process.
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Appendix A

A.1. Penetration depth and time for two faced layers

Let us consider two faced layers ½0; x1�; ½x1;1½, having diffusion
coefficient D1 (resp. D2), with initial concentration c1ðx;0Þ ¼
c2ðx;0Þ ¼ 0 and in perfect contact with an infinite reservoir c0

extending for x 6 0 (as consequence, the boundary condition
c1ð0; tÞ ¼ c0 holds). Let us prove that the penetration time and
depth, as defined in Eqs. (3.3)–(3.4) (with n = 2 and i = 2), can be
estimated as:

t�

l1ffiffiffiffiffiffi
D1
p þ x� x1ffiffiffiffiffiffi

D2
p

� �2 ’
0:1
m

for x P x1 ðA:1Þ

and

d� ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10mD2t

p
þ l1 1�

ffiffiffiffiffiffi
D2

D1

s !
for t P t�ðx1Þ ¼ t�1 ðA:2Þ

(note that in this case, x1 ¼ l1).
For an analogous heat diffusive problem, an analytical solution

is available in [23], pag. 409. Therefore, we can write:

c2ðx;tÞ
c0

¼ 2
K1þ1

X1
n¼1

K1�1
K1þ1

� �n�1

erfc
ð2n�1Þl1

2
ffiffiffiffiffiffiffiffi
D1t
p þ x� l1

2
ffiffiffiffiffiffiffiffi
D2t
p

� �
for x P x1

ðA:3Þ
where

K1 ¼

ffiffiffiffiffiffi
D2

D1

s

Note that for a perfect insulator (D2 = 0) we obtain that K1 = 0,
which is the same as for a 1D finite plate insulated at x ¼ x1 ¼ l1.
When the material is an ideal diffuser ðD2 !1Þ, we have that
K1 !1 , which is the same as for a 1D finite plate kept at zero
temperature at x = l1.

For small dimensionless times, the dominant term of the above
series is the first one and Eq. (A.3) simplifies to:

c2

c0
’ 2

K1 þ 1
erfc

l1

2
ffiffiffiffiffiffiffiffi
D1t
p þ x� l1

2
ffiffiffiffiffiffiffiffi
D2t
p

� �
for x P x1 ðA:4Þ

According to the definition of penetration time, let the above con-

centration
c2

c0
be a very small value such as 10�m; m ¼ 1;2; . . ., for

a given x > x1. Then, solving analytically Eq. (A.4) gives the penetra-
tion time as

t�

l1ffiffiffiffiffiffi
D1
p þ x� l1ffiffiffiffiffiffi

D2
p

� �2 ¼
1

4 erfc�1 10�m

A

� �� �2 x P x1 ðA:5Þ

where A ¼ 2
1þ K1

.

To approximate the r.h.s. of (A.5), let us note that A 2 ½0;2� for
K1 2 ½0;1� . As a matter of fact, for A = 1 and m = 10, the r.h.s. of
Eq. (A.5) gives the value of about 0.012. Some other values given
by Eq. (A.5) are for A = 2 and m = 10, which yields 0.0116; and for
A = 0.1 and m = 10 which yields 0.0134. Hence the values of the
penetration time are quite insensitive to A, that is, to the diffusivity
ratio. The most conservative value is A = 0.0116 that, for sake of
simplicity, is approximated by 0.01. In general, for any value of
the integer m, we have:

1

4 erfc�1 10�m

A

� �� �2 ’
0:1
m

ðA:6Þ

which proves the r.h.s. of Eq. (A.1). By straightforward algebraic
manipulation, we get Eq. (A.2). A similar result is obtained for
J2ðx; tÞ=J0 ’ 10�m.

A.2. Orthogonality of the eigenfunctions

It is easily proved that the system of eigenfunction Xk
i is orthog-

onal [4], i.e.:Xn

i¼0

1
ri

Z xi

xi�1

eXk
i
eXh

i dx ¼
0 for k–heNk for k ¼ h

	
ðA:7Þ

where

eNk ¼
Xn

i¼0

1
ri

Z xi

xi�1

ðeXk
i Þ

2dx ðA:8Þ

andZ xi

xi�1

ðeXk
i Þ

2dx ¼ 1
2

xðeXk
i Þ

2 þ 1

ðkk
i Þ

2

deXk
i

dx
x

deXk
i

dx
� eXk

i

 !" #xi

xi�1

ðA:9Þ

Let us now prove the Eq. (A.9). By integration by parts, we have:

Z xi

xi�1

ðeXk
i Þ

2dx ¼ eXk
i

Z xi

xi�1

eXk
i

" #xi

xi�1

�
Z xi

xi�1

Z eXk
i dx

� �
deXk

i

dx
dx ðA:10Þ

Eq. (4.6) can be rewritten as:

Xk
i ¼ �

1

ðkk
i Þ

2

d2eXk
i

dx2 ðA:11Þ

and substituting in Eq. (A.10):
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Z xi

xi�1

ðeXk
i Þ

2dx ¼ 1

ðkk
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deXk
i

dx

 !2

dx� 1

ðkk
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2
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" #xi
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On the other hand:Z xi

xi�1

ðeXk
i Þ

2dx ¼
Z xi
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1ðeXk
i Þ

2dx ¼ ½ðeXk
i Þ

2x�xi
xi�1
� 2

Z xi

xi�1

xeXk
i
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i
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ðA:13Þ

Making use of Eq. (A.11), the integral on the r.h.s. of the above Eq.
yieldsZ xi

xi�1

xeXk
i

deXk
i

dx
dx ¼ � 1

ðkk
i Þ

2

Z xi

xi�1

x
deXk

i

dx
d2eXk

i

dx2 dx ðA:14Þ

Applying again the integration by parts:Z xi

xi�1

x
deXk

i

dx
d2eXk

i

dx2 dx ¼ 1
2

x
deXk

i

dx

 !2
24 35xi

xi�1

� 1
2

Z xi

xi�1

deXk
i

dx

 !2

dx ðA:15Þ

and substituting back Eq. (A.15) in Eqs. (A.14) and (A.13):

Z xi

xi�1

ðeXk
i Þ

2dx ¼ xðeXk
i Þ

2
h ixi

xi�1

þ 1

ðkk
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2 x
deXk
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dx

 !2
24 35xi

xi�1
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ðkk
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i
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 !2

dx
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Finally, summing Eqs. (A.12) and (A.16), we obtain Eq. (A.9).
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