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The unsteady flow of a viscoelastic fluid in a straight, long, rigid pipe, driven by a
suddenly imposed pressure gradient is studied. The used model is the Oldroyd-B fluid
modified with the use of a nonconstant viscosity, which includes the effect of the shear-
thinning of many fluids. The main application considered is in blood flow.

Two coupled nonlinear equations are solved by a spectral collocation method in space
and the implicit trapezoidal finite difference method in time. The presented results show

the role of the non-Newtonian terms in unsteady phenomena.

1. Introduction

Industrial and biological flows in pipes are quite common and have relevant ap-

plications. Since unsteadiness dominates most of such processes, flows due to the

sudden variation of the pressure gradient are worth being studied, because they are

the basis for understanding the material properties and the characteristics of other

unsteady complex flows.

In the context of the linear Navier–Stokes theory, the basic problem was first

solved by Szymanski.28 The analytical solution can be found as superimposition

of the Poiseuille flow and an unsteady solution expressed as combination of Bessel

functions.

On the other hand, many recent studies pointed out the importance of non-

Newtonian characteristics of many fluid materials both in technology and in nature.

Marked viscoelastic properties possess fluids such as diluted polymers or suspen-

sions, where a solid constituent is dissolved in a solvent. A variety of non-Newtonian

models have been developed in the last years, as an expression of the rheological

properties of many fluids.4
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In Ref. 30, Ting analyzed the flow of an impulsive pressure gradient for a sec-

ond order fluid in a circular tube. In his work, bounded solutions for physically

acceptable values of the parameters cannot be found.

Etter and Schowalter studied the problem for the class of Oldroyd fluids, both

in a step change in pressure and in a sinusoidally varying pressure gradient. They

showed how the solution can overshoot the final steady state value.12

Waters and King considered the case of a viscoelastic liquid of integral type,

and for the Oldroyd fluids in particular. Their solution, expressed again in terms of

Fourier–Bessel series, shows that, for sufficiently large values of the elastic parame-

ters, the velocity profiles may overshoot the asymptotic velocity and oscillate around

it for quite a long time.32

Balmer and Fiorina described the impulsively started flow of a power-law fluid,

and obtained a variety of solutions as the power index varies.2

An impulsive flow of a dusty (two phases) fluid through a circular pipe induced

by an impulsive pressure gradient is considered in Ref. 10.

In Ref. 17, the starting and stopping flows of a biviscosity fluid through a pipe

with and without stenosis are considered. The start-up flow of an Oldroyd-B fluid

between two rotating concentric cylinders is studied in Ref. 11: an overshooting

of the dynamical variables is observed and a comparison with measurements in

experiments is given.

More recently, an analytical solution in the case of upper-convected Maxwell

fluid is derived in several cases of pressure gradient24 and solutions are extended

for tubes of rectangular cross-section.25

Other mathematical models for unsteady pipe flows with pressure gradients of

different types have been developed and solved analytically or numerically, and

reveal a great effort in describing or predicting important effects in biological flows

or in processing operations.1,26

A relevant example of a non-Newtonian liquid is the blood. Blood is a suspen-

sion of different cells in the plasma: among these, the red cells have a dominant

influence in hemodynamics: although plasma is constituted by 90% water and can

be considered a Newtonian fluid, it is commonly assumed that blood is a non-

Newtonian fluid, because the elastic and deformable structure of red cells gives it

a shear dependent viscosity and a viscoelastic nature.8,11,14,16,22

Due to its complex chemical structure, a theoretical universal reliable model

for blood in the mechanics of continuum is still lacking. Although it has been

well established that blood is both a viscoelastic and a shear-thinning liquid, the

connection of these two aspects has not yet been clarified.

However, many mathematical models for describing rheological behavior of

blood have been extensively developed in the last decades8,16,19,29,31 (see Ref. 27

for a recent review).

Due to the high nonlinear behavior of these non-Newtonian models, some ap-

propriate simplification in the flow is necessary. The first step in understanding
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mechanics of circulation is the investigation of the flows in straight uniform tubes:

any spurious effect due to the geometry is removed.

Although a lot of work has been carried out in steady flows, only few studies

in unsteady flows are available. Actually, the blood circulation system gives rise to

regions where the fluid is significantly accelerated and therefore to changing flow

rates.

Moreover, there is some evidence that many hemodynamical anomalies are re-

lated to transient flows, and the alteration of the shear stress at the wall is related

to the sudden variation of some physical variables.6,15,18 Therefore, it becomes ex-

tremely important to analyze transient regimes.

The purpose of this work is to describe a new generalized Oldroyd-B model,

used mainly for blood or for similar biological fluids.34 It includes a shear rate

dependent viscosity and has been proved effective in many fluid flows. The model

is first presented in Ref. 35, where a range of values of the material constants is

determined. Starting from those issues, the behavior of such a model in 1-D flow in

a tube of infinite length and circular cross-section, driven by an oscillatory pressure

gradient was studied in Ref. 23. The combined effect of the viscoelasticity and of

the shear rate dependent viscosity was pointed out.

Here the flow driven by an impulsive pressure gradient is considered. Although

this flow appears to be unrealistic to describe the real blood circulation, never-

theless, it offers a useful tool for setting up the model and for understanding the

main characteristic of the unsteady flows, since any pressure pulse can be regarded

as a superposition of a step function with a train of oscillations of the pressure

gradient.17,18

The coupled constitutive and motion equations form a nonlinear system which

is solved numerically. We used a spectral method with collocation in space and a

finite difference method in time.

The flow dependence on the dimensionless parameters in connection with the

unsteadiness is investigated carefully. The numerical results have been compared

first with the analytical solution available in some particular cases, and then with

other numerical studies in literature.

2. The Generalized Oldroyd-B Model

The inadequacy of the classical Navier–Stokes theory in describing rheological com-

plex fluids such as blood, paints, oils, polymeric solutions, led to the development

of several theories in the field of the non-Newtonian fluid mechanics.

Since a time lag in the response of the fluid to changes in applied forces is

observed, rate type models are commonly used to describe such strain and stress

history dependence.

In the classical Oldroyd-B model,20 the relationship between the extra-stress

tensor S and the stretching tensor A1 is given by:
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S + λ1(Ṡ− LS− SLT) = µ[A1 + λ2(Ȧ1 − LA1 −A1LT)] , (2.1)

where

A1 = (grad v) + (grad v)T

µ is a constant viscosity, λ1 and λ2 are two constants having the dimension of time

(λ1 > λ2 ≥ 0), referred to as relaxation and retardation time respectively.a Their

effect is to include into the model two well-known phenomena in unsteady flows

of many fluids: stress relaxation and the creep.4,14 This model combines a relative

simplicity with the ability to predict other properties of some fluid at relatively

low shear rate, such as the normal stress. Actually, experimental results show that,

mostly in unsteady flows, many fluids are not purely viscous, but show significant

viscoelastic properties.8,11,22

Results of simulations are of qualitative interest, and at low flow rate, they also

have quantitative significance.

On the other hand, many inelastic models exist in literature and are able to

describe shear-thinning fluids through a functional dependence of µ from γ̇.2,14 The

function µ(γ̇), which depends on the specific fluid, can be replaced instead of the

constant viscosity µ in (2.1). Thus, the Oldroyd-B model can be easily generalized

with the use of a nonconstant viscosity as follows:

S + λ1(Ṡ− LS− SLT) = µ(γ̇)A1 + η0λ2(Ȧ1 − LA1 −A1LT) (2.2)

with η0 a constant with the dimension of a viscosity (see Sec. 3).

It can be verified that the model (2.2), as (2.1), satisfies the principle of material

frame invariance.35

Equation (2.2), by combining elastic and viscous terms, can be used to predict,

at least qualitatively, many of the properties observed in viscoelastic fluids. Actually,

the use of a nonconstant viscosity µ(γ̇) in (2.2) allows the model to be representative

of a larger class of fluids which possess a marked shear rate dependence of viscosity.

The model (2.2) reduces to a pure inelastic fluid when λ1 = λ2 = 0 and to the

Navier–Stokes linear model when, in addition, µ(γ̇) = const.

3. The Viscosity of Blood

Let us now confine our attention to the most important biological fluid: the blood.

While the linear theory of Navier–Stokes fluid is acceptable for modeling blood flow

in large arteries, the role of material nonlinearity and the effect of red blood cells

on the viscosity, becomes more important at low shear rates (< 100 s−1) as well

as in smaller vessels, where flows cannot be well described by a simplicistic linear

constitutive equation.7

aThe dot above a variable f (scalar, vector or tensor) denotes the material derivative as in:
ḟ = ∂f

∂t
+ v · grad f .
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In the microcirculation, both the Reynolds and Womersley numbers are small

because of the small size of the vessels and the low flow velocities. Moreover, near

the center of the large vessels, or in separated regions of recirculating flow, the

average value of shear rate will be small. Furthermore, in unsteady flows, the wall

shear stress may be, in some instants, considerably small.

In all these cases, the viscosity cannot be considered as a constant, but as a

decreasing function of the rate of shear γ̇. In the last years, many functions have

been proposed to model the nonlinear dependence of the viscosity of the blood

on the strain rate.8,16,19 Due to the variable behavior and the complex chemical

structure of this liquid, none of the models seem to be completely satisfactory for

all kinds of flow regimes.

Experimental evidence shows that, while the plasma is a fluid with no sig-

nificant departure from Newtonian behavior, when red blood cells are present in

plasma, the viscosity of the whole mixture increases considerably at low shear

rate (shear-thinning fluid).7 Actually, the blood cells tend to move as rigid par-

ticles when the shear stress is small and not sufficient to deform them very much.

As a consequence, they tend to produce a higher apparent viscosity. At a large

shear rate, the stresses are sufficient to deform the cells extensively, so that they

contribute in a smaller dissipation of energy, and hence the apparent viscosity

is lower.

General regression analysis of experimental data suggests the use of some com-

plicated transcendental functions for µ(γ̇). Since the apparent viscosity has two

distinct asymptotic values η0 and η∞ as γ̇ → 0 and ∞ respectively (η0 ≥ η∞), the

analytical function which offers the best fit of experimental data for a quite large

range of flows has been found to be:

µ(γ̇) = η∞ + (η0 − η∞)

[
1 + log(1 + Λγ̇)

1 + Λγ̇

]
, γ̇ =

[
1

2
tr(A2

1)

]1/2

, (3.3)

with Λ ≥ 0 a material constant with the dimension of time representing the degree

of shear-thinning34,35 (for Λ = 0 or for η0 = η∞ a constant viscosity is obtained).

The complex viscosity of blood is approximated here with a three-parameter model,

where the apparent viscosity decreases dramatically as the rate of shear increases

(see Fig. 1). The asymptotic values η0 and η∞ are present in many other inelas-

tic shear-thinning models and their values have set up through experiments (see

Sec. 6).19

Although a pure inelastic model based on (3.3) catches some aspects of the shear-

thinning, but does not address any shear history dependence, it is insufficient to

correctly describe the unsteady blood flow. A more comprehensive model for blood

is given by incorporating the expression of the viscosity (3.3) in the viscoelastic

model (2.2).
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Fig. 1. The shear rate dependent viscosity function (3.3) with η0 = 180 cP, η∞ = 4 cP for three
values of Λ (in sec).

4. Formulation of the Problem

Let us consider a fluid of constitutive Eqs. (2.2) and (3.3) flowing in a straight long

pipe of circular cross-section having radius R.b

The fluid is assumed to be an isotropic, homogeneous and incompressible con-

tinuum of constant density ρ, and the vessel walls are considered rigid and imper-

meable.

The motion equation is:

ρ
∂v

∂t
+ v · ∇v = div T , T = −pI + S , (4.4)

where v = (u, v, w) is the velocity vector and the external forces are assumed to be

negligible.

Let us now consider a cylindrical coordinate system (r, θ, z) having the z-axis

coincident with the pipe axis. In the hypothesis of laminar flow, the only nonzero

component of velocity is w. Moreover, since the flow is assumed to be axisymmetric

and with no entry effect, the fluid dynamical variables do depend on r and t only,

except for the pressure which depends on z and t only. In such hypothesis the

convective term in (4.4) vanishes.

bHere long means of length much larger than the radius of the pipe.
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We are interested in two opposite step changes in pressure gradient taking place

as follows:

(a) the fluid, initially at rest, is set in motion at t = 0 by a constant pressure

gradient C imposed suddenly and maintained in time (starting or start-up (SU)

flow), i.e.

dp

dz
=

{
0 t ≤ 0 ,

C t > 0 .
(4.5)

(b) A fully developed Poiseuille flow is initially driven by a constant pressure gra-

dient C which is suddenly removed at time t = t∗ (stopping or shut-down (SD)

flow), i.e.

dp

dz
=

{
C t ≤ t∗ ,
0 t > t∗ .

(4.6)

The constitutive equation (2.2), with the expression of viscosity (3.3) coupled

with the motion equation (4.4), gives:

ρ
∂w

∂t
= −dp

dz
+
∂Srz

∂r
+
Srz

r
,

Srz + λ1
∂Srz

∂t
=

[
η∞ + (η0 − η∞)

1 + log σ

σ

]
∂w

∂r
+ η0λ2

∂2w

∂r∂t
,

Szz + λ1

(
∂Szz

∂t
− 2

∂w

∂r
Srz

)
= −2η0λ2

(
∂w

∂r

)2

,

(4.7)

where

σ = 1 + Λ

∣∣∣∣∂w∂r
∣∣∣∣ .

The boundary conditions associated to the physical problem are given by:

w = 0 at r = R (4.8)

(no slip velocity at the wall) and

dw

dr
= 0 at r = 0 (4.9)

(axisymmetry). For the SU flow (4.5), a zero velocity field is considered as initial

condition. Then, the flow develops at some steady state time t∗, and the fully

developed flow pattern is used as initial condition for the SD flow (4.6).

By introducing the following change of variables:

r → r

R
, z → z

R
, t→ Wt

R
,

p→ p

ρW 2
, w → w

W
, Srz →

Srz

ρW 2
, Szz →

Szz

ρW 2
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with W a characteristic velocity and by redefining the following dimensionless

constants:

Re =
RW

ν
, γ =

η∞
η0

, C → CR

ρW 2
, T → TW

R
,

λ1 →
λ1W

R
, λ2 →

λ2W

R
, Λ→ ΛW

R

with ν = η0/ρ a kinematic viscosity, the system (4.7) is nondimensionalized as:

∂w

∂t
= −∂p

∂z
+
∂Srz

∂r
+
Srz

r
,

Srz + λ1
∂Srz

∂t
=

1

Re

{[
γ + (1− γ)

1 + log δ

δ

]
∂w

∂r
+ λ2

∂2w

∂r∂t

}
,

Szz + λ1

(
∂Szz

∂t
− 2

∂w

∂r
Srz

)
= −2

λ2

Re

(
∂w

∂r

)2

,

(4.10)

equations to be solved for 0 ≤ r ≤ 1 where

δ = 1 + Λ

∣∣∣∣∂w∂r
∣∣∣∣ .

Note that (4.10.1) and (4.10.2) constitute a nonlinear autonomous subsystem.

Equation (4.10.3) has no spatial derivative in Szz and the solution can be easily

found once the values of w and Srz are known.

4.1. Special cases

When the parameters attain special values, some simplification of the problem is

possible, because one or more terms in the system (4.10) disappear.

For example, for γ = 1 an analytical solution for the Oldroyd fluids can be easily

recovered as in Ref. 12.

In the case of the Maxwell fluid (γ = 1, λ2 = 0), combination of (4.10.1) and

(4.10.2) leads to the following linear equation in w:

λ1
∂2w

∂t2
+
∂w

∂t
− 1

Re

(
∂2w

∂r2
+

1

r

∂w

∂r

)
= −∂p

∂z
− λ1

∂2p

∂z∂t

and this can be easily solved by separation of variables, expressing the solution with

Bessel functions.24

In particular, the Newtonian case is recovered when, in addition, λ1 = 0. In such

a case, the system (4.10) reduces immediately to just one first-order equation.3,28

Finally, for λ1 = λ2 = 0, we have:

Srz =
1

Re

[
γ + (1− γ)

1 + log δ

δ

]
∂w

∂r
, Szz = 0 . (4.11)
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5. Numerical Method

The complexity of the non-Newtonian flows requires accurate and efficient numerical

techniques, due to the nonlinear nature of the governing equations. The system

(4.10.1) and (4.10.2) is rewritten as:

∂φ

∂t
= L(φ) + f(t) , (5.12)

where φ = (w,Srz) and L is the nonlinear differential operator for spatial terms and

f is the forcing term. Then, the P.D.E. (5.12) is split into two subsequent differential

problems consisting first in discretizing the spatial operator L with an accurate and

efficient method, and in integrating a system of O.D.E.’s in time with a low order

finite difference scheme.5,33 Due to the stronger dependence on the space variables,

the higher order and the nonlinearities, a spectral collocation method has been used

to discretize the spatial operator L.5,13,21,33

The unknown function φ is approximated by a truncated series of polynomials

pj ∈ Pn, where Pn is the space of polynomials of degree ≤ n:

φ ≈ p =
n∑
j=0

cjpj .

Let us denote with ηi, 1 ≤ i ≤ n − 1 the zeros of the derivative of the orthogonal

Legendre polynomial of degree n in [−1, 1], being η0 = −1, ηn = 1 the extrema

points (Legendre Gauss–Lobatto points). If a representation for p is used in the

physical space (canonical Lagrange basis with respect to the set of (ηi)i=0,...,n), we

have:

p(x) =
n∑
j=0

p(ηj)lj(x) , (5.13)

where the basis (lj) is such that:

lj(ηi) = δji .

Expressions for derivatives with respect to the same basis are easily obtainable by

replacing coefficients in (5.13) with other tabulated values.13

Equation (5.12) is then replaced by rescaling the operator L in [−1, 1] and by

collocating φ at (ηi)i=0,...,n, i.e.

∂φ

∂t
(ηi) = L(φ)(ηi) + f(t) , i = 0, . . . , n

and boundary conditions are imposed at η0 and ηn.

Once an approximated solution is written as (5.13), the problem is reduced to

solving the system of first order O.D.E.’s:

dφi

dt
= L(φi(t)) + f(t) with φi = φ(ηi) , i = 0, . . . , n . (5.14)
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We choose the implicit finite trapezoidal scheme for solving the system (5.14):

φk+1
i − φki =

∆t

2
[L(φki ) + L(φk+1

i )] + fk+1 , i = 0, . . . , n (5.15)

where the new solution is computed at time t = (k+ 1) ∆t. It has been proved that

it is unconditionally stable and second order accurate.5

Being L a nonlinear operator, we solve (5.15) by linearized iterations at each

time step, computing the viscosity coefficient [γ + (1 − γ)1+log δ
δ

] explicitly. The

iteration proceeds until convergence is reached.9 Such linearization of L is devised

in such a way that only the terms corresponding to the Laplacian operator L∆ have

been discretized implicitly so that the problem (5.14) is well posed.5

Then, a value for Szz is obtained explicitly by discretizing Eq. (4.10.3).

The coefficients p(ηi) in (5.13) are then computed at each time step as a solution

of the algebraic linear system of order n+ 1:(
I − ∆t

2
L∆

)
φk+1
i =

(
I +

∆t

2
L

)
φki + fk+1 , i = 0, . . . , n .

This is the major time-consuming step in the integration procedure, because

of the iteration loop within each time step: the system has been solved by a LU

factorization of the matrix of the coefficients with partial pivoting (routine F04AAF

— NAG Library). Other more efficient ways to solve it are worth being investigated.

Note that the same set of collocation points (ηi) is chosen at each time step and

the solution is computed by interpolation over a set of equidistributed points.

6. Results and Discussion

Nonlinear models turn out to be very sensitive to the choice of the material param-

eters which characterize the specific flow problem. Since we restrict ourselves to the

flow in small vessels, the following parameters have been fixed, being of interest in

a physiological context18:

Re = 0.1 , γ = 0.022 , C = 1

and the others are varied in a typical range to test the sensitivity of the system to

their perturbation.

Simulations have been carried out with ∆t = 10−4 and the spectral method is

implemented over n = 20 collocation points.

The numerical solution obtained setting λ1 = λ2 = Λ = 0 is compared with

the exact solution in the case of Navier–Stokes fluid, to give some estimate on

the accuracy and stability of the numerical method.3 The fine agreement obtained

(‖e‖∞ ≤ 1.E−5) confirms the effectiveness of the scheme used.

To evaluate the importance of the concurrent viscous and elastic forces and in

order to understand the role of each of them in SU and SD flows, two other simple

cases are analyzed:

(a) λ1 = λ2 = 0 (pure shear-thinning fluid) and
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(b) Λ = 0 (Oldroyd-B fluid).

The full model is used when:

(c) λ1 6= 0, λ2 6= 0,Λ 6= 0 (Generalized Oldroyd-B fluid).

Computation of hemodynamical variables is of much importance in the local-

ization of vascular diseases or in clinical procedures, such as remodeling vascular

wall or design of artificial prostheses.

For example, the magnitude and the variation of the wall shear stress (WSS)

are relevant clues for the localization and prediction of diseases in blood vessels.6

Unfortunately, WSS is not easily measurable in unsteady flows.

The centerline velocity (CV) is a representative measure of the inertia of the

fluid, while the flow rate, computed as:

Q = 2π

∫ 1

0

wr dr

is an estimate of the magnitude of the flow and provides an important average

information. No significant difference is found in the evolution of CV and Q.

In case (a), CV increases monotonically up to the steady state value. The asymp-

totic value reached at steady state time increases with Λ for CV, confirming the

results in Ref. 23, but does not change for WSS, which is the value of the Poiseuille

flow (WSS → C/2). In transient regimes, the larger Λ is, the smaller the value of

instantaneous WSS for SU flow, the larger for SD flow.
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Fig. 2. Time histories for CV and WSS in SU and SD flows. Case (a).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
00

.1
0:

18
7-

20
2.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 D
r.

 A
nd

re
a 

T
os

in
 o

n 
10

/2
3/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 25, 2000 12:21 WSPC/103-M3AS 0038

198 G. Pontrelli

The transient time for SD flow is much shorter than for SU (see Fig. 2).

In case (b), the transient regimes are characterized by initial overshooting fol-

lowed by damped oscillations towards a steady state value which is the same as

in the Newtonian case, for all variables (CV → ReC/4; WSS → C/2). This phe-

nomenon, due do the elasticity in the fluid and confirmed by the experiments, was

already observed and discussed in Refs. 11, 12 and 32.

The amplitude of this pulse grows with the ratio λ1/λ2 (it can reach 400% of

the terminal value for CV, less for WSS), and its damping strengthens at larger

λ2. These results are in accordance with those in Ref. 34, where a first analysis has

been developed and a comparison with real data coming from measurements has

been carried out. Note that the peaks of CV are attained at times different from

those of WSS (Fig. 3).
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Fig. 3. Time histories for CV and WSS in SU and SD flows. Case (b).

In both (a) and (b) the steady state time is larger than in Navier–Stokes case.

When the complete model (c) is used, a combination of the effects present in (a)

and (b) is observed. The amplitude of oscillations about the terminal value can be

smaller or larger depending on the size of λ1, λ2,Λ. These oscillations are reduced

in number or disappear (see Fig. 4). The final value of CV rises with Λ, while no

effect of Λ is reported on the terminal value of WSS.

As in (a) the SD process is faster than that of the SU, and the symmetry between

the SU and SD cases is lost.
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Fig. 4. Time histories for CV and WSS in SU and SD flows. Case (c).

Other physical phenomena have some clinical implications: as expected, the

velocity near the wall exhibits smoother oscillations than CV, due to the fact that

the viscosity is confined to a narrow layer near the wall. As a consequence, the effect

of unsteadiness is more evident at the center, because this region responds more

promptly to variations in the driving pressure gradient. Phenomena of backflow can

be present (Fig. 5).

While in case (a) Szz = 0 (cf. (4.11)), in the other cases the normal stress Szz is

not zero, being greatly enhanced in case (c) and showing characteristics of a plug

flow (Fig. 6).
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Fig. 5. Velocity profiles shifted in time in SU flow. Comparison between cases (b) and (c).
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Fig. 6. Szz profiles shifted in time in SU flow. Comparison between cases (b) and (c).

It is worth noting that differences with the Newtonian case are emphasized for

a smaller Re.

7. Conclusions

Computational biofluid mechanics play an important role in the understanding of

the development and the progression of vascular pathologies.

Though the detailed knowledge of the dynamical variables is possible and pro-

vides useful elements, the mechanism of influence of the hemodynamical factors in

the arterial diseases is not yet clear.

In large vessels, the specific nature of the blood may be ignored and, as a

consequence, it can be considered as an incompressible Newtonian fluid. In smaller

vessels, the inertial terms become negligible, but the nature of the red blood cells

must be taken into consideration, by including a shear-rate dependent viscosity in

the diffusion terms.

Blood circulation is dominated by unsteady flow phenomena. It is found that a

pure inelastic model is not representive of the rheological behavior of blood, since

the role of viscoelasticity becomes important in time-dependent flows.

We presented both a viscoelastic and shear-thinning continuum model able to

describe a pipe flow even from a quantitative point of view. The formulation of

such a model is derived from the elastic properties and the structure of the red

blood cells. Also the distribution and the interaction of cellular constituents is an

important factor to assess the fundamental rheological properties of the blood.

A preliminary study on the impulsive flow in a straight arterial segment has

been carried out, under the assumption of rigid vessel walls. The vessel diameter

change is approximately 5–10% in most of the major arteries, smaller in capillaries

and, as a first approximation, this hypothesis is acceptable, in the limit of small

Reynolds numbers.

This work offers a basis for a better understanding of blood flow unsteady phe-

nomena in small arteries, constitutes a necessary first step in the development of
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the computational framework, and gives some hints on the mechanical forces and

physical phenomena occurring in more complex flows.

The results presented show that a combination between a viscoelastic and a

shear-thinning fluid induces effects which may not be present in each of them alone.

According to the mutual size of the parameters, one may be dominant or may

enhance the other one. The most evident are the overshooting of the dynamical

variables and the increased magnitude of their terminal values.

All these fluid mechanical aspects are revealed as extreme importance in blood

flow and need to be further refined. The important mechanism of the diffusion of

the viscosity has to be explored in other realistic geometries. A great deal of work

will be devoted to understand the connection and the influence of such aspects with

the biological and clinical facts.
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