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Abstract

We are interested in developing a simple model to investigate blood–vessel interactions in a finite arterial segme
cardiovascular tree. For this purpose, we developed a continuum model for a vascular segment, and we coupled
discrete model for the remaining systemic circulation. In working out the modeling, we addressed some main issues
the nonlinearity of blood flow, the compliance of the vessel and the prestress state of the artery walls, that is alway
aside from the filling of blood. Moreover, we set a discrete model capable of providing appropriate boundary conditions to
continuum model, by reproducing the proper waveforms entering the vessel and avoiding spurious reflections.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Our aim is to develop a simple model to investigate blood–vessel interactions in a finite arterial segment of the cardio
tree in such way to take into account high stress to which the artery walls are subjectedat physiological conditions.

Arterial walls are involved in growth and remodelling phenomena for the adaption to changes with physiological conditi
due to ageing or pathological processes. As evidenced by many experiments and measurements (see Fung, 1993
Fung, 1997), the most evident mechanical consequence of such phenomena is the presence in arterial walls of hig
stress states, both in circumferential and longitudinal directions (aside form the presence of the blood flowing within the
Thus, the actions exerted by the fluid on the vessels walls yield a stress state that is added onto an existing stress
evidence has produced in the past years scientific literature aimed at providing appropriate constitutive recipies for t
walls (see Holzapfel et al., 2000; Holzapfel and Ogden, 2003), and at describing the mechanical behaviour of pr
compliance vessels filled with viscous incompressible fluid (see Atabek and Lew, 1966; Kuiken, 1984; Nardinocchi an
2003).

In addition to what has been said, the complexity of the phenomena related to the blood–vessel interaction, due to the fairly
intricate mechanical characteristics of blood vessels, and to the different time and space scales at which different b
phenomena occur, have created a wide spread ofmodels having different levels of descriptive capability (see Quarteroni, 2001
Quarteroni and Formaggia, 2003; Formaggia et al., 1999; Sherwin et al., 2003;Di Carlo et al., 1999; Pontrelli, 2000).
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straight cylindrical configuration and no branchings; encompassing both blood flow and vessel displacement, and to
with a discrete model for the remaining systemic circulation. In particular, we model the blood as an incompressible,
viscous fluid, whose behaviour is described by a cross-average equation derived from the full 3D balance equations
incompressibility constraint. Then, providing that for the present study the bending stiffness of the arterial walls be ne
we model the vessel as an axisymmetric membrane whose response can be predicted by assigning a strain-ener
properly tuned to mimic load-test results, and investigate itsmechanical behaviour due to small deformations superimp
on finite deformations. The latter, having the role of independent parameters, account for the stresses present in t
arteries, whereas the superimposed deformations account for the small effects due tothe pulsatile blood pressure, as propos
in Nardinocchi and Teresi (2003).

It is worth noting that in order to match the fluid and the solid descriptions and, in contrast with the standard usage
mechanics, we describe the fluid flow in a referential form (Di Carlo et al., 1999).

Finally, we set a discrete model that provides a rougher description of the flow variables(Pontrelli,2004), and is able to
yield appropriate boundary conditions to the continuum, by reproducing the proper waveforms entering the vessel and avoidin
spurious reflections.

Eventually, we must tackle a system composed of four partial differential equations, describing pressure and flow
and the vessel’s wall displacements, defined at a time interval multiplied by a (one-dimensional) space interval, coupled with
system of time dependent ordinary differential equations describing the remaining systemic circulation. This problem
solved via numerical techniques for a given range ofinitial conditions and prestress parameters. The results are collected a
discussed.

2. Vascular district modeling

Our aim is to describe blood flow in large arteries in the framework of a fluid-solid interaction problem. In the study
consideration, the blood behaviour is that of an incompressible, linearly viscous fluid, whereas the bending stiffne
vessel wall is so small that prompts us to use an axisymmetric elastic membrane for modeling it.

We model here a single tube-like vascular district; more precisely, let us denote withE the three-dimensional Euclidea
space and withV the associated translation space. Then, given an orthonormal Cartesian frame with origino ∈ E and basis
iα ∈ V (α = 1,2,3), we consider a cylindrical regionΩ , with axis parallel toe = i1 and having as cross section an open disL
centered ato; in terms of cylindrical coordinates(s,α,�), the cylinderΩ is the set of pointsp ∈ E given by

Ω = {
p = p(s,α,�) = o + se + �c(α), s ∈ I, α ∈ (0,2π), � ∈ (0,R)

}
, (1)

whereI = (0,L) parametrizes the cylinder axis andc(α) = cosαi2 + sinαi3 is the unit vector spanning the cross section.
The blood is modelled as a three-dimensional continuum whose kinematical and dynamical descriptors are defin

interior of Ω ; the vessel wall is modelled as a membrane whose reference configuration is the surface of the cylindeΩ . At
time t , the current configurationC of the membrane is described through the fieldsx, r from I ×R ontoR as

C = {
o + x(s, t)e + r(s, t)c(α), s ∈ I, α ∈ (0,2π)

}
, (2)

or, alternatively, through the fieldsu,w denoting the axial and the radial displacement of the membrane, respectively
I ×R ontoR:

r(s, t) = R + w(s, t), x(s, t) = s + u(s, t). (3)

At the same time, the placep = p(s,α,�) ∈ Ω is mapped into another position

ϕt (s,α,�) = o + x(s, t)e + r(s, t)

R
�c(α); (4)

the mapϕt describes the evolution of the areaΩ , that is, the evolution of the region where the fluid flows. Obviously,
matches with the maps describing the evolution of the membrane in such a way that the image ofϕt (s, �,α) coincide withC
when� = R.

2.1. The fluid flow model

The blood is modeled as an incompressible, linearly viscous fluid. Blood includes many rheological features that c
grasped by a linearly viscous fluid model; nevertheless, our aim is to find an averaged model, and the local viscous effe
recirculation sites, or higher shear rate, are deemed unimportant. The focus of this work is on the blood–vessel interact
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prestress effects and in this respect the use of a constant viscosity model is justified. Moreover, given the peculiar geometry of
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the problem we are interested in, we will derive a one-dimensional, cross-average model of the blood-flow from the fo
main assumptions (Quarteroni and Formaggia, 2003):

• fluid flow is axisymmetric;
• pressure is constant on each cross section of the tube-like region;
• only body forces of inertial type are considered.

Here, to match the fluid and the solid descriptions, and in contrast with the standard usages in fluid mechanics, we de
fluid flow in a referential form, that is, using fields defined on particle points rather than of position, as proposed in (Di C
al., 1999), where a detailed discussion on this topic can be found. Thus, we introduce the axisymmetricreference velocity field

(s, �,α, t) �→ v(s, �,α, t) = va(s, �, t)e + vr (s, �, t)c(α), (5)

giving the velocity possessed in timet by the fluid particle that at that time is inϕt (s, �,α). The axial componentva of the
velocity field is represented in terms of a profile functionf (�) and of the mean axial velocityv(s, t)

va(s, �, t) = f (�)v(s, t), v(s, t) = 1

A

∫
L

va(s, �, t), (6)

with A representing the area of the cross sectionL; the radial componentvr is assumed to have null mean velocity. Moreov
as is usual, we introduce the momentum-flux correction (also known as Coriolis coefficient)β such that

Av2β =
∫
L

v2
a. (7)

2.1.1. The incompressibility condition
If ν denotes the usual spatial flow field, we have

v(·, t) = ν
(
ϕt (·), t

);
then, the incompressibility condition prescribes that Divν = I · Gradν = 0. IntroducedΦ = Gradϕt , it is a straightforward
exercise to verify that the same incompressibility condition may be written in a referential form as

Gradv · Φ−T = 0. (8)

In particular, given that the representation forms are (4) and (5), we find

Gradv = (v′
ae + v′

r c) ⊗ e + 1

�
vrc′ ⊗ c′ + (va,�e + vr,�c) ⊗ c, (9)

Φ−T = 1

d
Î + 1

x′ e ⊗ e − �d ′
x′d e ⊗ c, d(s, t) = 1

R
r(s, t), (10)

where the prime denotes the derivative with respect to the coordinate spanning the tube axis andÎ = I − e ⊗ e.1 Thus, Eq. (8)
assumes the form:

1

x′
(

v′
a − d ′

d
�va,�

)
+ 1

d

(
vr

�
+ vr,�

)
= 0. (11)

The 1-D cross-average incompressibility turns out by integrating Eq. (11) on the cross sectionL and accounting for the kine
matic matching conditions between fluid and membrane:

va(s,R, t) = ẋ(s, t), vr (s,R, t) = ṙ(s, t), (12)

with a superposed dot denoting time derivative. It results

ṙ + 1

x′
(

r ′v + 1

2
rv′ − r ′ẋ

)
= 0. (13)

1 Notice that, given two vectorsa,b ∈ V , we define their tensor producta ⊗ b to be the linear mapping which acts onV as follows: for any
c ∈ V , (a ⊗ b)c = (b · c)a.
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The only relevant balance equation in our problem is the longitudinal one. To obtain the cross-average versio
equation, we first project the full 3D balance equation on the cylinder axise; then, we integrate the resulting scalar equation
the cross section:∫

L

(
(Se · e)′ + d · e

) +
∫

∂L

Sc · e = 0, on (0,L);

∫
L

Se · e = so, on {0},
∫
L

Se · e = −sL, on {L}. (14)

The stressS and the inertial forced have the following constitutive prescriptions (Di Carlo et al., 1999)

S = (−pI + 2µsym
(
(Gradv)Φ−1))

Φ∗, (15)

d = −�̂
(
v̇ + (Gradv)Φ−1(v − ϕ̇t )

)
, (16)

where the scalar fieldp represents the transmural pressure, the scalar parameterµ is the viscosity, and̂� the reference mas
density. The second integral in the bulk balance equation accounts for the actions exerted on the fluid by the vessel wal
s0 andsL represent the actions on the fluid at the inlet and outlet, respectively.

Using the incompressibility condition (13), the constitutive prescriptions(15)–(16), and under the aforementioned condition
assumed for the flow, the integrals of the bulk balance equation yield:∫

L

(Se · e)′ =
(

2µ
A

x′
(
d2v′ + 2

(
f (R) − 1

)
dd ′v

) − Ad2p

)′
; (17)

∫
L

d · e = −�̂A

(
v̇ − ẋ

x′ v
′ + 2

β

x′ vv′ + 2
(
f (R) − 1

)( r ′ẋ
rx′ − ṙ

r

)
v − 2

(
f 2(R) − β

) r ′v2

rx′ + 2
ṙ

r
f (R)v

)
, (18)

∫
∂L

Sc · e = 2µπR

((
R2(d ′)2

x′ + x′
)

f ′(R)v + (
dvr (R)

)′ − rdd ′
2x′ f (R)v′

)
+ 2Add ′p. (19)

Standard additional assumptions (Quarteroni and Formaggia, 2003) are taken into account in order to obtain simp
tions, namely,

• the longitudinal velocity of the wall is considered to be null,ẋ = 0; thus, Eqs. (6)1 and (12)1 imply f (R) = 0;
• the velocity profilef (�) is assumed such to yield a momentum flux coefficientβ = 1.

Thus, the reduced incompressibility and balance equations are

ṙ + 1

x′
(

r ′v + 1

2
rv′

)
= 0, (20)

�̂

(
v̇ + 1

x′ vv′
)

= − r2

R2
p′ + 2µ

1

R2

((
(r2v)′

x′
)′

+ δ2

x′ Rf ′(R)v + (rṙ)′
)

. (21)

In the following, we shall disregard the viscosity term by settingµ = 0. In major arteries the effect of the fluid viscosity in wa
propagation phenomena is negligible (Fung, 1993): the flow is almost steady since the characteristic wavelenghts
greater than the vessel radius. Our opinion is that fluid viscosity influences the local flow pattern, but does not influ
averaged model that we used.

As customary for pipe flow problems, the boundary conditions that we set concern inflow at the inlet and pressure at th
outlet. For the problem we are considering here, such conditions are not known apriori and should be related to the pr
the remaining vascular bed. Among the many mathematical models of the systemic circulation proposed, we chose
model which will be discussed in the following section.

2.2. The wall model

To deal with other main issue, which is to account for the compliance of the vessel and the prestress state of the art
we modeled the vessel as an axisymmetric elastic membrane whose reference configuration may be stressed, and w
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a linearized incremental balance problem. Stresses in the reference configuration, which enter the problem as independent
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parameters, account for the in vivo conditions of large arteries; the small stresses due to the pulsatile blood pressure
unknowns of the problem, sum up with the reference parameters.

A detailed presentation of the nonlinear model for the axisymmetric membrane, together with the linearized incr
problem can be found in Nardinocchi and Teresi (2003). We assume that the stress state of the reference configurΩ is
characterized by longitudinal and circumferential stressesT o

1 andT o
2 , respectively, balanced by a constant pressure fieldpo

and a tractionFo

RT o
2 = po, T o

1 = Fo. (22)

Then, we introduce the parametersλo
1 and λo

2, representing the longitudinal and circumferential stretches of the refe
configuration with respect to a stress-free configuration.

Following Zhou and Fung (1997), we assume that the mechanical response of the membrane is well describe
following strain energy density function

σ(λ1, λ2) = c

2

(
eQ(λ1,λ2) − 1

)
, (23)

Q(λ1, λ2) = b1
(
E1(λ1)

)2 + 2b4E1(λ1)E2(λ2) + b2
(
E2(λ2)

)2
, Eα(λα) = 1

2

(
λ2
α − 1

)
, α = 1,2, (24)

whereλ1 andλ2 measure the longitudinal and circumferential stretches, respectively, of the current configuration with
to the stress-free state,c is a material constant ([c] = Nm−1) andb1, b2, andb4 are nondimensional constants. The values
the constants can be inferred by experimental tests. Here we use a data set coming from tests on the canine thoracic a
and Fung, 1997). The Cauchy stressesT1 andT2 corresponding to the function (23)–(24) are

T1 = T̂1(λ1, λ2) = 1

λ2

∂σ

∂λ1
= c

λ1

λ2
(b1E1 + b4E2)exp(Q), (25)

T2 = T̂2(λ1, λ2) = 1

λ1

∂σ

∂λ2
= c

λ2

λ1
(b4E1 + b2E2)exp(Q). (26)

In the following analysis, we assume the stretches(λo
1, λo

2) as assigned parameters and study the small motions from
reference configuration. Let us note that, once the stretches(λo

1, λo
2) are fixed, by using Eqs. (25)–(26), we obtain the refere

stresses

T o
1 = T̂1(λo

1, λo
2), T o

2 = T̂2(λo
1, λo

2), (27)

and from these latter, through Eqs. (22), the corresponding reference loadspo , Fo.
Therefore, whenu andw are small enough, the longitudinal and circumferential stretches at the present configurat

given by

λ1 = (1+ u′)λo
1, λ2 = (1+ w/R)λo

2. (28)

Using (28), we can linearize the constitutive relation (25) and (26) around the reference stress stateT o
1 , T o

2 , obtaining the
linearized constitutive laws relating the stressesT1 andT2 to u′ andw/R

T1 = (
T o

1 + D11(λ
o
1, λo

2)
)
u′ + (−T o

1 + D12(λ
o
1, λo

2)
)w

R
, (29)

T2 = (−T o
2 + D21(λ

o
1, λo

2)
)
u′ + (

T o
2 + D22(λ

o
1, λo

2)
)w

R
, (30)

with

D11(λ
o
1, λo

2) = c
(λo

1)3

λo
2

(
b1 + 2(b1Eo

1 + b4Eo
2)2

)
exp(Qo),

D22(λ
o
1, λo

2) = c
(λo

2)3

λo
1

(
b2 + 2(b4Eo

1 + b2Eo
2)2

)
exp(Qo), (31)

and

D12(λ
o
1, λo

2) = D21(λ
o
1, λo

2) = cλo
1λo

2
(
b4 + 2(b1Eo

1 + b4Eo
2)(b4Eo

1 + b2Eo
2)

)
exp(Qo). (32)

The linear constitutive laws (29), (30) dependnonlinearly on the stretchesλo
1 andλo

2; moreover, forλo
1 = λo

2 = 1 (that is,
the reference configuration is stress and strain free) they reduce to the standard linear constitutive relations of an a
membrane.
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The balance equations for the membrane, linearized with respect to the stressed configuration, are
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−T o
1 w′′ + 1

R
(−T o

2 + Do
21)u

′ + Do
22

w

R2
= br − �ẅ, (33)

(T o
1 + Do

11)u
′′ + (−T o

2 + Do
12)

w′
R

= −bs + �ü, (34)

are valid for anys ∈ (0,L). Here,br andbs are the radial and longitudinal actions exerted by the blood on the vessel
respectively, andDo

αβ = Dαβ(λo
1, λo

2), α,β = 1,2.
Together with these bulk equations, we could have a boundary (balance) condition for the longitudinal stressT1 in s = 0

and/ors = L.

3. Governing equations and boundary conditions

The blood–vessel interaction model we propose consists of Eqs. (20) and (21) for blood flow, and of Eqs. (33),
the vessel. We assume the pressure field to be the sum of the constant termpo plus a varying onẽp, representing addition o
the pulsatile pressure of the blood flow. This, together with the small amount of the membrane displacements fields, yields
simplification in the pressure term of the fluid balance law

− r2

R2
p′ = − (R + w)2

R2
(po + p̃)′ = −p̃′.

Moreover, being interested in phenomena for which the blood viscosity and the inertia of the arterial wall have minor e
the following it is assumedµ = 0, ü = 0, andẅ = 0; then, the actions exerted by the blood on the vessel wall reduce tobr = p̃

andbs = 0, and we must solve the problem represented by the following equations:

ṙ + 1

x′
(

r ′v + 1

2
rv′

)
= 0, r = R + w, x′ = 1+ u′, (35)

�̂

(
v̇ + 1

x′ vv′
)

= −p̃′, (36)

−T o
1 w′′ + 1

R
(−T o

2 + Do
21)u

′ + Do
22

w

R2
= p̃, (37)

(T o
1 + Do

11)u
′′ + (−T o

2 + Do
12)

w′
R

= 0, (38)

where the unknown fields are the displacementsw andu of the wall, the velocityv and the pressurẽp of the fluid. It is worth
noting that the system (35)–(38) describes small motions of the membrane due to the blood pressure pulsating of a sm
p̃ around a mean, although high, pressurepo , but no hypothesis on the smallness ofv has been done, and the fluid balan
equation (36) remains nonlinear with respect tov.

The above system of differential equations models flow and wall dynamics in a finite arterial segment, and has to be
with appropriateboundary conditions. For the vessel, we assume that atboth the ends the radial displacement of the wa
related to the pressure and that the axial displacement is null:

D0
22w = p̃R2, u = 0 in {0}, {L}. (39)

For the fluid flow, we chose as boundary conditions the upstream pressurepu = p̃(0) and the downstream flow rateQd =
v(L)A(L), but we do not assign them explicitly. We considered a closed-loop system that couples two different models: a fi
one, the continuum model described above, which deals with the finite arterial segment, and a rougher one that accou
systemic circulation.

Many simplified models of the closed-loop cardiovascular system are available in literature. Here we chose thos
mimic electrical circuits, for which flow rate and pressure have the role of current and voltage. The whole vascula
modelled as a closed network, whose behaviouris characterized by a set of given parametersRk,Ck,Lk such as resistance
compliance and inductance, each of them labelled with an indexk and whose state is represented by the pair flow rate
pressure at each node (see Avanzolini et al., 1988; Ottesen et al., 2004). Among the many adjectives used to label the
as lumpedor zero-dimensional, here we shall refer to them asdiscretemodels to highlight the dichotomy with the continuu
models.

Here, we used the network proposed by Avanzolini et al. (1988) consisting of six sections for the circulatory syste
another which represent theventriclepumps (see Fig. 2). The balance laws of the network yield the following system of
dependent ordinary differential equations:
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Fig. 1. Insertion of the continuum model in thediscrete one. The vascular compartments are connected to form a closed loop, in analogy w
electrical circuits. Pressure and flow data of the network become theboundary conditions for the continuum model (by courtesy of Formaggi
et al., 1999).

C1ẋ1 = s1z1/(Rl + R1) − x2,

L1ẋ2 = x1 − R2x2 − x3,

C2ẋ3 = x2 − x4,

L2ẋ4 = x3 − R3x4 − x5,

C3ẋ5 = x4 − s2z2/R4,

ẋ6 = s2z2/R4 − s3z3/(Rr + R5), (40)

C4ẋ7 = s3z3/(Rr + R5) − x8,

L3ẋ8 = x7 − R6x8 − x9,

C5ẋ9 = x8 − x10,

L4ẋ10 = x9 − R7x10 − x11,

C6ẋ11 = x10 − s4z4/R8,

ẋ12 = s4z4/R8 − s1z1/(R1 + Rl).

The system describes the time evolution of a discrete set of values of flow rate and pressure, that represent mean
different compartments:xi for i = 1,3,5,7,9,11 indicate pressure, fori = 2,4,8,10 the flow rates; the pairx6, x12 denotes
the volume variation in the right and the left ventricle, respectively, as compared to a reference volume. Finally, the varsi
(i = 1,4) represent the state of two diodes simulating the cardiac valves and are such that:

si =
{

1, zi > 0,

0, zi < 0,

depending on the sign of pressure gradientzi (i = 1,4) at their ends. The cardiac activity is modelled through the assigne
of a given functionPv(t), inferred by linearizing the pressure-flow relation concerning the systolic and diastolic phase
Avanzolini et al., 1988, for further details).

The rough model described here and the finer one presented in previous sections can be coupled using the followin
We insert another node in the discrete model, and relate the two new state variables of the added node with the
conditions of the continuum model. Moreover, we allow for the development of the evolution of the new variables to b
implicitly by the PDE system (35)–(38).

Following Formaggia et al. (1999) we add a node at the point shown in Fig. 1, corresponding to the descendin
Then, we identify the two additional state variables with the upstream flow rateQu = v(0)A(0) and the downstream pressu
pd = p̃(L). Meanwhile, the upstream pressurepu is identified withx3, and the downstream flow rateQd with x4. Accordingly,
everywhere in the discrete model we have the substitution

x3 �→ pu, x4 �→ Qd ; (41)
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Fig. 2. Time histories ofr = R + w andu = x − s at the center of the vessel (s = L/2 ) for three values of the circumferential prestress (
λo

1 = 1.4 fixed).

moreover, to account for the added node, Eqs. (40)3, (40)4 are replaced by:

C2ṗu = x2 − Qu, (42)

L2Q̇d = pd − R3Qd − x5. (43)

Eventually, we have two coupled models that consist in a uniqueclosed-loop system, and the fine model is implicitly provid
with boundary conditions that reproduce the proper waveforms entering the vessel andavoid spurious reflections (Pontrel
2004).

4. Numerical results

We are obliged to solve the PDE problem (35)–(38), with theboundary conditions (39), togetherwith the ODE system (40)
with the substitutions (41), (42) and (43).

We use the following values for the continuum model:2

c = 2 · 105 dyne/cm, c1 = 0.38, c2 = 0.26, c3 = 0.046,

R = 1.2 cm, L = 8 cm, ρ̂ = 1.05 g/cm3;
while the discrete value has the same numerical parameters as in Pontrelli (2004).

The PDE system is solved using a staggered grid technique. We divide the domain(0,L) with n + 1 equispaced point
xi , i = 0, . . . , n, on which the main fields are computed; then, we usen intermediate nodes atx = (xi + xi+1)/2 to evaluate
membrane strains and stresses.

Time integration is performed using a second order Runge–Kutta scheme for both the systems. In order to guarante
cal stability and independence from discretization, we use grid intervals with length�x = 0.01 cm, and a time step�t = 10−4 s.
A brief sketch of the algorithm follows

• Updating from instanttk to tk+1 = tk + �t :
the statexi (t

k) of the discrete system is known: we use the valuesx3(tk) = pu and x4(tk) = Qd as flow boundary
conditions to solve the PDE problem; thus, knowing the solution, we computeQu(tk) andpd(tk). The right-hand term o
the ODE system is now completely known att = tk and we can integrate it. We can updatexi (t

k) to xi (t
k+1).

2 Note thatc in (23) is obtained by integration across the wall thicknessof the analogous density energy function in Zhou and Fung (199
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Fig. 3. Time histories forr = R + w andu = x − s at the center of the vessel (s = L/2) for three values of the longitudinal prestress (
λo

2 = 1.75 fixed).

Fig. 4. PV loop curves at the center of the vessel (s = L/2) for λo
1 = 1.4.

• The start up:
we assign an initial guess for the valuesxi (0) of the ODE system; then, we repeat the updating procedureuntil the initial
state stabilizes.

The goal of this numerical investigation is to analyze the dependence of the smaller displacementsu andw of the membrane
and of the flow variablesv andp̃ on the assigned prestessed states, parametrized by the stretchesλo

1 andλo
2 characterizing the

stretch state of the reference configuration of the vessel. Ithas been observed that, under the pulsatile blood pressure (gov
by the parameter setting in the discrete model), the wall expands and begins to oscillate periodically in time around a m
value. As evident from Eqs. (29) and (30), the relation between the small elastic deformationsu′ andw/R and the stresse
T1 andT2 is anisotropic both from the elastic and geometric point of view. Thus, longitudinal and circumferential ref
stretches affect the response of the vessel differently. In particular, the radial displacementw is much more sensitive to th
stretchλo

2 than toλo
1.
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parametersλ2 (with λ1 fixed); Fig. 3 shows the analogous behavior in correspondence to three different values ofλ1 (with λ2
fixed). In both the figures, the fieldsr = R + w andx = s + u are evaluated ats = L/2 (the center of the vessel).

Our results show that the vessel displacements are sensitive to the reference stretches, but their dependence on(λo
1, λo

2) is
very different. The radiusr = R + w strongly depends upon the circumferential reference stretch. In particular, it dec
monotonically withλo

2. The same radius is less sensitive to the longitudinal stretch and, more importantly, whenλo
1 increases,

it attains a maximun and then decreases. The longitudinal displacements are less affected by the variation of the refer
stretches andx = s + u is much more sensitive toλo

1 than toλo
2.

As far as the flow variables̃p andv are concerned, only minor changes have been observed in the values they attain,
phase velocity of pressure waves shows a noteworthy sensitivity to reference stretches. The phase velocities can be m
way of the method suggested in Khir and Parker (2002) by measuring the slopes of the PV-loop curves, that is to say, t
parametrized with time in the pressure-velocity plane. For a typical PV loop, as in Fig. 4, the phase velocity is in ag
with the physiological values; at the center of the vessel, the velocity varies between 3.8 m/s and 5 m/s, depending upon th
value of prestressλo

2.

5. Conclusions

Mathematical models aimed at predicting wave propagation characteristics for arterial vessels – such as velocity
pedance – may be of clinical interest. The outcome of such efforts is to give physiological indicators of diagnostic sign
and to detect anomalies that could be used to address pathological states in the vascular system.

The technique we propose is capable of predicting gross propagation features, that will have relevant significanc
modest computational effort.

The behaviour of compliance vessels conveing blood flow has been studied in relation to the elastic nonlinear p
of the vessel wall and to the presence of high prestress states. The mechanical blood–vessel interaction is describe
dimensional continuum model and is expressed by a set of four nonlinear partial differential equations. The hyperbolic nat
of the propagation phenomenon has been analyzed in the linearized case.

To account for global circulation features, the continuum model has been coupled with a comprehensive discre
which provides the proper boundary conditions by reproducing thecorrect waveforms entering the vessel and avoid unphysic
reflections at the outlet. This constitutes an improvement of the previous studies where a simple Windkessel model
used to approximate the arterial termination.

For its multiscale structure, the present model depends on many physical, geometrical and material parameters. To discrimi
nate among them, the emphasis has been put on the wall elasticity, that greatly affects the wave propagation. On the o
the fluid viscosity has been disregarded because of its small influence.

The model has some limitations: one is due to the mechanics of the wall, approximated as a thin shell with negligib
and no bending stiffness. Nevertheless, by including the longitudinal deformation, it reproduce the waveforms and the
pulse quite well, and offers a predictive insight in propagation phenomena. The model is adaptable for variable elastic p
of the vessel and could be used to analyze the modified flow and structure pattern consequent to a prosthetic insertion
we plan to apply such a technique to study the effect of local narrowing and stiffening of the artery on the flow and th
propagation patterns.

Numerical simulations have focused on the effect of the elastic properties on the flow and on the wall deformati
the results, within a limited range of parameters, agree withphysiological measurements with a good level of accuracy.
solution turns out to be much sensitive to the parameters of both the continuum and the discrete models and a mor
estimate of them should be done on the basis on experiments and clinical data. The numerical algorithm allows us
some results just for a precise class of initial state; so, the next step will consist in improving such an algorithm so to av
limits.

Finally, the geometrical, physical and biomechanical parameters need to be carefully identified according to a spe
problem.
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