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A B S T R A C T   

We develop a lumped parameter model to describe and predict the mass release of (absorption from) an arbitrary 
shaped body of any dimension in a large environment. Through the one-to-one analogy between diffusion- 
dominated mass transfer systems and electrical circuits we provide exact solutions in terms of averaged con-
centrations and mass released. An estimate of the equivalent resistance and of the release time is also given, and 
shown to be inversely proportional to the diffusivity. The proposed electrical analogue approach allows a time 
constant to be defined and provides an easy extension to a multi-layer and multi-phase cases in planar and 
spherical geometries. The simulation results are compared with those obtained from the solution of the corre-
sponding analytical, numerical and experimental solutions, showing a satisfactory accuracy and a good 
agreement.   

1. Introduction 

Diffusion occurs in several physical processes, and involves all scales, 
from transport of chemicals in a cell to the dispersal of pollutants in 
seawater. Diffusive processes occur both in nature and in engineering 
applications and also underlie other phenomena such as solute-solvent 
interaction, solvation and turbulence [1]. 

In most circumstances and in simpler geometries, pure diffusing 
systems can be described by linear equation and often an analytical 
solution is available [2]. When other phenomena are taken into account, 
or the nature of diffusion involves more layers or phases, the complexity 
of the problem may become very difficult and excessively time 
consuming. In some cases, the use of reduced-order model for 
diffusion-controlled release systems has been proposed [3]. Recently, 
the use of fractional-order model for reaction-diffusion problems in 
biological applications has been suggested [4]. Also, the technique has 
been successfully applied for describing calcium dynamics in neuron 
cells [5]. 

Because of computational difficulties, scientists and engineers con-
cerned with the design of such systems have, with increasing frequency, 
made use of analogies. Thus, an electrical system may be analogous to a 
mechanical, thermal, or other system provided there is a “likeness” be-
tween the two systems. Usually such a likeness is not only of appearance 

of the mathematical formulation, but a resemblance of physical 
behavior. If it can be shown that the mathematical descriptions of two 
different systems are similar, then it is usually possible to use one system 
as a means for studying the behavior of the other. The electrical circuit 
analogy offers an effective method for the description, and sometimes 
for the prediction, of various heat and mass transfer processes [6–8]. 

The ease with which electrical circuits can be assembled and their 
behavior have made them particularly useful as analog systems [8]. 
Analogues have long been used by engineers, and hundreds of publi-
cations have appeared on the subject of electric analog technique [6–8]. 
One of the better introductions to the great versatility of analog tech-
niques in the solution of engineering problems is ref [9]. Most works 
concern the extensive use of electrical circuits for analysis of transient 
heat-flow phenomena [10]. Lumped parameter models based on electric 
analogues for the human circulatory system dates back from 60’s. 
Recently this analogy has been used to solve more complicated con-
duction problems, and for the performance analysis of heat exchange 
networks [11]. 

However, to the best of our knowledge, the analogy of mass transfer 
in releasing/absorbing conditions with electrical circuits has not been 
fully exploited. This would allow for the use of characteristic features of 
even complex systems, including the estimation of the release time. In 
this article we fill the gap and we use the thermal-electrical analogy to 
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propose a new sort of models to give deeper information about the 
intrinsic elements of the system, comprising the case of multi-layer and 
multi-component system, that have a counterpart in electrical re-
sistances connected in parallel or in series. When the spatial distribution 
of concentration is not important, but one is more interested in the 
global behavior of a diffusive system and the characteristic time, it is 
common to use electric analogue where two or more compartments are 
connected. In addition, the state space description can be used to design 
advanced controllers with better performance. The method has 
demonstrated the ability to recover the classical analytical solution of 
mass diffusion system [2] and can be adapted to 
multi-layer/multi-phase diffusive systems. 

We develop an electrical analogue model for describing the transient 
mass diffusion with forward/reverse (donor/acceptor) transfer rates. 
The novel idea presented in this article is to build a compartmental 
geometry-independent model based on the one-by-one analogy that 
exists between mass releasing systems and electrical circuits. This 
analogy, that is shared with heat transfer problems, has been already 
mentioned in some heat transfer articles [10,11], and it is basically 
sustained in the similarity of governing equations. The simplicity of the 
method is in contrast with analytical and numerical solutions that, in 
general, are geometry-dependent and become increasingly cumbersome 
and computationally inefficient in complex geometries. 

The remaining sections of this paper are organized as follows. In the 
next section, we present the general concept of the one-to-one analogy 
between electrical and diffusive systems. In section 3, based on this 
analogy, we derive the solution of the problem, either in the general and 
special cases. The approach is extended to the case of multi-layer and 
composite media in Sect. 4 and to the two-phase system in sect. 5. 
Finally in sect. 6 we show how our solution can be viewed in terms of 
classical solutions and reduce to well-known series of exponential type 
for special geometries. More validation is made with other exact or 
approximated solutions, showing a good agreement. 

2. Electric circuit analogue for diffusion-driven mass transfer 

Schematically, a diffusion-dominated mass transfer system (MTS for 
short) relies on a concentration gradient between two points (or regions, 
or compartments), say A and B. The direction of the transfer (absorption 
or release) strictly depends on the relative initial concentrations1 of c0

A 
and c0

B . If c0
A > c0

B, then A is considered as a mass source or donor and B is 
considered as a mass recipient or acceptor (the absorption case), the 
reverse when c0

A < c0
B (the release case) (Fig. 1). Regardless of the specific 

geometry, the mass transport driving force is proportional to the con-
centration difference that generates a mass flux and applies as long as an 
equilibrium (cA = cB) is reached. As such, this process has a close sim-
ilarity with the electric circuits (shortly EC): an electric potential 
gradient between two points of a conductor induces a charge transfer, 
that gives rise to an electrical flux (current). In this section we aim to 
describe this analogy in a systematic way and build a space-free 
compartmental framework (lumped-parameter model) for diffusing 
MTS. 

To start with, let us consider a MTS made up of two contiguous 
bodies, here also referred to as compartments (to fix ideas, the body B is 
immersed in the environment A, with A and B of arbitrary geometries), 
see Fig. 1a–b. The two compartments are fully characterized by volumes 
(VA, VB) and diffusivities (DA, DB). In some circumstances, and in anal-
ogy with electrical conductors, the compartmental volume can be 
considered as a product of its exposed surface a by a characteristic length 
l (V ≈ a l), see Fig. 2. The characteristic length and the surface depend 
on the specific geometrical shapes of the objects; for example in the 
simplest cases of a plane slab or a sphere, l is directly related to the slab 

thickness or the sphere radius, respectively, while a is related to the 
external body surface. It should be noted, however, that the EC analogue 
model does not incorporate any assumption on the source and recipient 
shapes, dimensional geometry and coordinate system, with the excep-
tion of a perfect contact between the bodies A and B2. Typical circuits 
serving as surrogates for the diffusion-driven mass absorption/release 
processes are shown in Fig. 1. 

To further explore analogies between the charge (e) and mass (m) 
transport schemes, first we refer to the 1D Ohm’s and Fick’s I laws, 
which give the electric and mass fluxes as: 

jq = − κe∇φ, (2.1a)  

jm = − D ∇c (2.1b) 

By comparing Eqs 2.1a and 2.1b, a direct correspondence between 
the electrical conductivity and the diffusion coefficient (κe ≡ D) and 
between the electric field potential and concentration (φ ≡ c) emerges. 

In an EC, by setting a zero value for the reference potential (φref = 0), 
the measured voltage equals φ. The electrical charge transfer between 
the donor and the acceptor is due to the electric potential difference 
between the A and B compartments, and leads eventually to the po-
tential equilibrium (φA = φB). Similarly, a concentration difference be-
tween the donor and acceptor compartments (measured with respect to 
an arbitrary value of cref = 0) leads to the diffusive mass transfer as long 
as cA = cB. 

The one-to-one similarity proceeds by setting the correspondence 
between the electrical capacitance C and the mass volume V and be-
tween the electrical resistance Re =

ρe l
a = l

κea, and the mass resistance: 

R=
l

Da
, (2.2)  

which can be defined as the hindrance that molecule encounters passing 
through a medium of diffusivity D, length l and enclosing surface a 
(Fig. 2). 

The release time T of a MTS is defined as the time occurring to reach 
the concentration equilibrium. This is an asymptotic value and the 
estimation of T depends on the accuracy required. On the other hand, in 
the drug release process, the mass release is expressed through a Weibull 
function, written in the form [12]: 

M(t)
M0

= exp
[
−
(t

τ

)]
(2.3)  

where M(t) is the mass at time t, M0 is the initial mass and the parameter 
τ (characteristic time) is associated with the time where approximately 
63% of the drug is delivered.3 The empirical exponential form of Eq. 
(2.3) fits a variety of experimental release data and is commonly used to 
obtain phenomenological insights into the intrinsic mechanisms gov-
erning the dissolution and drug release processes [13]. For a system of 
characteristic length l and diffusivity D, the characteristic time is defined 
as τ = RV = l2

D that corresponds to the analogue time constant4 τe = ReC 
for a RC circuit. By definition, τ measures the response of a body to 
transfer its mass and is linearly dependent on the volume and on the 
resistivity of the medium. The full correspondences between the mass, 
heat transfer parameters and their electric analogues are summarized in 
Table 1. 

At this point we are in the position to make an important assumption 

1 Concentration is meant here as volume averaged concentration (c = M/V). 

2 This assumption will be removed in section 4.1. 
3 In general the Weibull function is defined as a stretched exponential func-

tion M(t)
M0

= exp
[
−
( t

τ
)b
]

where the case b∕=1 is usually associated with porosity 
and/or memory effects [20,21].  

4 The counterpart time constant τe = RC is the time required to charge a 
capacitor, through the resistor R, from an initial 0 voltage to a 63% of the value 
of an applied DC voltage. 
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from now on. In a typical MTS, it is common that one of the two com-
partments has a very low resistance to the mass transfer (or very high 
diffusivity D) compared with the other one. This implies that the transfer 
process is entirely dominated by the slowest diffusive medium that, from 
now on, is identified with the B compartment. In other words, we as-
sume that A behaves as an “unresistive” compartment, i.e. τA = RAVA =

lA2

DA
≈ 0, and, as a consequence, the characteristic time of the whole 

transfer process identifies with τB. By keeping this in mind, henceforth 
we set DB ≡ D, lB ≡ l and τB = τ.

3. Solution of the problem 

In this section we will use the one-to-one analogy between MTS and 
RC circuit, based on the Kirchhoff’s voltage (KVL) or current (KCL) laws 
respectively5 [14], to solve the MTS problem analytically. 

Let us consider two bodies, A and B, of volumes VA and VB, in perfect 
contact, as a closed insulated system that has a total mass M, such that a 
variation of mass in the B compartment yields a correspondent opposite 
variation of mass in A, with the total mass remaining constant at any 
time: 

Fig. 1. Analogies between the MTS and EC, where A represents surroundings in which a releasing (a) or an absorbing (b) body B resides. Figs (a1) and (b1) represent 
the correspondent RC circuit diagrams. 

Fig. 2. (a) Schematic representation of a portion of an EC: in correspondence of potential difference at the ends of a “conductor body” of length l and cross-section a, 
a flux j (proportional to a current) is obtained. A similar mechanism occurs in the MTS due to a concentration difference (planar (case b), and spherical (case 
c) geometries). 

5 KVL law states that the sum of voltage in any loop is equal to zero (
∑

U =

0), while KCL law expresses that the sum of currents flowing into a node is 
equal to the sum of currents flowing out of the node (

∑
I = 0) [14]. 
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mA(t) +mB(t) = M (3.1) 

For the following use, let us define the average concentration c = M/

V, with V = VA + VB as the total volume. By recalling that cA(t) =

mA(t)/VA
, the KVL for an RC loop (Fig. 1) is given by φA(t) = ėB(t)Re +

eB(t)/CB, and its MTS analogue reads: 

cA(t)=mA(t)/VA = ṁB(t)R + mB(t)/VB, (3.2)  

with the initial conditions6:  

mB(0)=m0
B = c0

B VB (3.3) 

By Eq. (3.1), a general solution of ODE’s (3.2)–(3.3) is: 

mB(t) = VBcB(t) ; cB(t) = c +
(
c0

B − c
)

exp
(
−

t
τ

)
, (3.4)  

where: τ = RVeq with Veq = VAVB/(VA + VB). This equivalent volume is 
computed as for the electrical analogue of two capacitors in series, i.e. 
1

Veq
= 1

VA
+ 1

VB
. 

The equilibrium quantities are: lim
t→∞

cB(t) = c and m∞ = lim
t→∞

mB(t) =

c VB. For the special case c0
B = 0, Eq. (3.4) reduces to: 

cB(t)= c
[
1 − exp

(
−

t
τ

)]
(3.5) 

For c0
B > c the mass transfers from B to A (release), while for c0

B < c 
one deals with A→B transfer (absorption). Results of the simulations of 
the concentration evolution at donor/acceptor compartments for 
different ratios VA : VB are shown in Fig. 3. 

3.1. Special case VA≫VB 

In most situations, one of the compartments has a volume much 
larger than the other, as in the common case of a finite-size body placed 
in a large environment. To fix ideas, let us assume that VA≫ VB such that 
cA can be considered as constant (the percentage variation of concen-
tration/mass of A is very small). Therefore A can be modelled as a DC 
element or a capacitor, with CA≫CB. Then, the Kirchhoff’s II law for 
MTS analogue can be written (cfr. Eqn (3.2)): 

cA = ṁB(t)R + mB(t)/VB, (3.6)  

mB(0)=m0
B = c0

BVB (3.7)  

where cA is a constant. The general solution of Eqs (3.6)-(3.7) is given 
by:  

mB(t)=VBcB(t) ; cB(t)= cA +
(
c0

B − cA
)
exp

(
−

t
τ

)
(3.8)  

where, in this case, 

τ=R Veq = R VB (3.9) 

Eq. (3.8) describes mass transfer for both cases: absorption for cA >

c0
B (Fig. 1a), and desorption for cA < c0

B, (Fig. 1b). Note that the solution 
(3.8) is formally identical to Eq. (3.5) with c = cA and gives the 
asymptotic expressions: lim

t→∞
cB(t) = cA and m∞ = lim

t→∞
mB(t) = cAVB.

Two special cases are noteworthy for the applications: 

3.1.1. Absorption with c0
B = 0 

Eq. (3.8) becomes 

cB(t)= cA

[
1 − exp

(
−

t
τ

)]
(3.10)  

(cfr with eqn. (3.5)). 

Table 1 
Analogy of variables between EC and MTS. For convenience, in the last column the correspondent variables for the heat transfer are listed.  

Transport analogies Electrical (e) Mass (m) Heat (Q) 

Flux (current density) je
→

jm
→

jQ
→

Characteristic variable electric potential φ mass concentration c temperature θ 

Driving force electric potential gradient ∇φ =
Δφ
Δl 

concentration gradient ∇c =
Δc
Δl 

temperature gradient ∇θ =
Δθ
Δl 

Proportionality factor electrical conductivity κe diffusivity D thermal conductivity 
κQ 

RC parameters 

Voltage U Δφ Δc Δθ 
Current I ė = je a ṁ = jm a Q̇ = jQ a 

Resistance R 
l

κea 
l

Da 
l

κQa 
Capacitance C e/Δφ m/Δc = V Q/Δθ 
Characteristic time τ ReC R V = l2/D lQ/κQaΔθ  

Fig. 3. Concentration profiles (Eq. (3.5)) for cB(t) (solid lines) and cA(t)
(dashed lines) for various ratios of VA : VB (VA =20, c0

B = 0, M = 20, τ = 1). 

6 An equivalent way is to consider the current as proportional to the potential 
difference between A and B, yielding I(t) ≡ ṁB(t) = VBċB(t) =

cA(t)− cB(t)
R , which, 

after some algebra, yields Eq. (3.2). 
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3.1.2. Release with VA→∞ cA = 0 
The depletion of the B compartment is given by: 

cB(t)= c0
Bexp

(
−

t
τ

)
(3.11)  

and the correspondent release profile is: 

mA(t) =m0
B

[
1 − exp

(
−

t
τ

)]
(3.12) 

The symmetric case of VA≪VB can be obtained in a similar way, by 
swapping the role of A and B compartments. 

4. Mass diffusion through shells 

Let us extend the results of the previous section to the case when the 
body B is separated from A by one or multiple thin shells or membranes 
(Fig. 4a) that provide a protective cover and a mechanical barrier 
(coating) for mass diffusion [15]. 

First, let us consider the body B (donor or acceptor) of characteristic 
length l and resistance R covered with a single thin coating, shell or 
membrane S, of thickness lS, diffusivity DS and resistance RS, and 
immersed in a very large or infinite medium A (VA≫VB). In the general 

case, one has to enrich the EC model by adopting another capacitor 
mimicking the shell presence (Fig. 4b). To find the concentration evo-
lutions at the B and S compartments for the A→B transfer case, it is 
convenient to switch to the current representation (KCL), yielding the 
set of ODE’s: 

ṁS(t) =VSċS(t) =
cA − cS(t)

RS
−

cS(t) − cB(t)
R

, (4.1a)  

ṁB(t)=VBċB(t) =
cS(t) − cB(t)

R
(4.1b) 

To find the exact solution for cB(t) one has to solve a second-order 
differential equation. The solution does not provide a simple charac-
teristic time formula, as obtained earlier for a perfect contact donor/ 
acceptor systems. In particular, the insertion of an additional shell 
compartment yields a multi-layer transfer system, where the concen-
tration evolution at the intermediate layer (shell) is influenced by the 
concentrations at the neighbouring compartments (see eqn (4.1a)). 

In the general A→B multi-layer case (layers 1,2, …n, with n = B), Eq. 
(4.1) can be generalized to a system of ODE’s: 

ṁ1(t) = V1ċ1(t) =
cA − c1(t)

R1
−

c1(t) − c2(t)
R2

,

ṁ2(t) = V2ċ2(t) =
c1(t) − c2(t)

R2
−

c2(t) − c3(t)
R3

,

………

ṁn(t) = Vnċn(t) =
cn− 1(t) − cn(t)

Rn
.

(4.2)  

4.1. Fast-equilibration conditions 

If the shell undergoes fast equilibration ( τS ≪ τ or l2S
DS

≪ l2
D), the shell 

capacitor can be omitted, and the equivalent resistance of the system 
corresponds to the resistors connected in series, i.e: Req = R+ RS = l

Da+

lS
DSa = 1

a

(
l
D + lS

DS

)
. Then, the characteristic time of the system (see Eq. 

(3.9)) is given by: 

τ=ReqVB =
l

Da
al+

lS

DSa
al= l

(
l
D
+

lS

DS

)

(4.3) 

Similarly, if B is surrounded by n homogenous thin layers of thick-
ness li, and diffusivity Di, (i = 1,2,..,n, Fig. 4c), the equivalent resistance 

experienced by the diffusing mass with l ≡ l0 is: Req =
∑n

i=0
Ri and Eq. (4.3) 

extends to: 

τ= l0

∑n

i=0

li

Di
(4.4)  

4.2. General equilibration conditions – approximated solution 

In the case of the mass transfer through a non-zero capacitance shell, 
under: cA = 1, c0

B = 0 and c0
S = 0, the approximated characteristic time 

can be given as: 

τ=RSVS +(R+RS)VB =
lS

DSa
alS +

1
a

(
l
D
+

lS

DS

)

al=
l2
s

DS
+ l

(
l
D
+

lS

DS

)

,

(4.5)  

which corresponds to the sum of the shell characteristic time τS =
l2s
DS 

and 
the single donor/acceptor τ given by Eq. (4.3). 

Two cases are considered as examples: i) the shell and the B 
compartment have similar characteristics (R = RS = 1, VB = VS = 1), 
and ii) the shell provides a rate limiting compartment for the mass 
transfer (R = 1, RS = 100, VB = 100 , VS = 1). Fig. 5 shows the 
correspondent concentrations. 

Fig. 4. Schematic illustration of the multi-layer mass diffusion (a), the EC 
circuit for an absorbing single-shell case with a slowly-equilibration conditions 
(b), and the corresponding multi-resistance electrical circuit under fast- 
equilibration conditions (c). 
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5. Two-phase diffusion 

Let us generalize the problem described in section 2 in another di-
rection, by considering that the B compartment is composed of two 
distinct phases, i.e. a network of permeable channels (volume I, phase I) 
in a solid matrix (volume II, phase II) (i.e. a porous material) or a 
composite medium having a microstructure made of two differently 
permeable materials (Fig. 6). The mass diffuses in B over these two 
phases: with resistance RI in phase I and with resistance RII in phase II. 
By incorporating a homogenization procedure (i.e. by averaging the 
system characteristics over a certain representative volume), the 
equivalent resistance in B under no-intermixing conditions corresponds 
to the two resistors connected in parallel. Assuming that the cross- 
section area of the source a is split into I and II contributions (a =

aI + aII), the equivalent resistance of B can be written as: 

Req =
RIRII

(RI + RII)
=

l2

DIaIDIIaII

1
l

(
DIaI + DIIaII

DIaIDIIaII

)− 1

=
l

DIaI + DIIaII
(5.1) 

By denoting the porosity by p = VI/VB = aI/a, the sub-areas are 
given by: aI = pa and aII = (1 − p)a. Then, Eq. (5.1) can be written in 
terms of the total cross-section area as: 

Req =
l

aD̃
(5.2)  

with D̃ = pDI + (1 − p)DII as a volume averaged diffusivity. 
In case of a very large or infinite medium (VA ≫VB), the concentra-

tion evolution under the condition c0
B = 0 obeys the exponential kinetics 

(as in Eq. (3.8)) with the characteristic time τ = l2/D̃. In the special case 
DI = DII, Eq. (5.2) yields Req = l

DIa = R, that recovers the previous result 
for the homogeneous case (Eq. (2.2)). 

6. Validation 

We now validate our model predictions against analytical and nu-
merical data on drug kinetics and method efficacy, thus providing 
confidence on the current modeling approach. 

Fig. 5. The shell and acceptor compartment absorption curves cB , cS with cA = 1, c0
B = 0 and c0

S = 0. Fig. a) shows the concentration evolution when S and B have 
similar thickness and diffusivity, while b) show the concentration evolutions in the presence of thin, resistive shell (cB(t), cS(t) and the approximated cB(t) (Eq. (4.5), 
blue, dotted), all are overlapping). 

Fig. 6. Schematic illustration of the two-phase mass diffusion (a) and the correspondent multi-resistance electrical circuit (b).  

P. Rochowski and G. Pontrelli                                                                                                                                                                                                               



Computers in Biology and Medicine 148 (2022) 105774

7

6.1. Recovering classical solutions 

In his comprehensive book on diffusion [2], Crank provides the exact 
solutions for the diffusion-driven mass problems that arise from systems 
with various geometries. In particular, three examples of drug-loaded 
bodies of various geometry releasing in A are considered:  

a) plane sheet of thickness 2d with constant surface concentration ([2], 
Eq. (4.18)): 

mA(t)
m∞

= 1 −
∑∞

j=0

8
(2j + 1)2π2

exp

[
− D(2j + 1)2π2t

(2d)2

]

; (6.1a)    

b) cylinder of radius r with constant surface concentration ([2], Eq. 
(5.23)): 

mA(t)
m∞

= 1 −
∑∞

j=1

4
r2β2

j
exp

[
− Dβ2

j t
]
, (6.1b)  

where βj are the roots of J0(rx) = 0, with J0 the Bessel function of the 
first kind and zero order;  

c) sphere of radius r with constant surface concentration ([2], Eq. 
(6.20)): 

mA(t)
m∞

= 1 −
6
π2

∑∞

j=1

1
j2 exp

[
− Dj2π2t

r2

]

(6.1c) 

To recover these solutions with our electrical analogue approach, we 
generalize Eq. (3.12) with a correction as: 

mA(t)
m∞

= 1 −
∑∞

i=1
Fi exp

[

− αi
Dt
l2

]

= 1 −
∑∞

i=1
Fi exp

[
− αi

t
τ

]
, (6.2)  

where Fi and αi are the geometry-correction coefficients. A direct com-
parison between (6.2) and (6.1) leads to the expression for Fi and αi for 
any specific geometry. For example, in the case c) we have: 

τ = r2

D
; αi = i2π2 ; Fi =

6
i2π2 =

6
αi

; (6.3) 

Computationally, the series presented in eqs. (6.1)-(6.2) are trun-
cated to some finite n that guarantees convergence in the specific ge-
ometry. Similar procedures can be found in the literature concerning 
analysis of pharmacologically-relevant systems, where the absorption/ 
release processes are characterized by a certain order kinetics [16]. To 
find F and α parameters for the mass release problems governed by 
mono- and bi-exponential kinetics, a best-fit procedure of Eq. (6.2) over 
Eq 6.1a-c with D = 1 and l = d = r = 1 has been applied. For the models 
provided by Eq (6.1), the summation over j s has been limited to n = 5 
terms. In the case of Eq. (6.2), only two first terms are considered; for n 
= 2, the additional condition F1 + F2 = 1 has been imposed. The results 
of the best-fit procedure are presented in Fig. 7, while the optimal pa-
rameters are given in Table 2. 

6.2. Drug diffusion through a two-phase membrane 

In their work, Bodzenta et al. analysed drug transport into a com-
posite dodecanol-collodion membrane (i.e. plane sheet geometry) by 
means of Fick’s II law diffusion model [17]. The experimental part of the 
work relied on the time-dependent FTIR-ATR spectra acquisition of the 
membrane (of thickness l = 25 ± 5 μm) in contact with a semisolid 
formulation containing dithranol as a drug. The normalized magnitude 
of the ATR signal corresponding to the dithranol amount in the mem-
brane is provided in Fig. 8 (blue circles). As shown by the authors, the 
diffusion-based model was in good agreement with the experimental 

data, yielding a drug diffusion coefficient of D = (2.1±0.4)⋅10− 10 

cm2s− 1. 
The same dataset has been analysed by means of the EC model given 

by Eq. (6.2) (the homogeneous membrane absorption with zero-initial 
drug concentration), as the drug source has been considered as con-
stant during the whole experiment. The best-fit procedure applied to the 
data has revealed the characteristic time of the process τ = 3.5 ± 0.1 
hours, while the computed goodness-of-fit parameter, the squared cor-
relation coefficient, has been found to be 0.99. By keeping in mind the 
measured membrane thickness l, the magnitude of the characteristic 
time τ, and considering the correction coefficient α1 (see Table 2), the EC 

Fig. 7. Best fits of the EC model (mono- (n = 1) and biexponential (n = 2) 
fitting functions) to the predictions of the diffusion-driven mass release models 
(exact solutions provided by Eq (6.1)) for various system geometries. The 
characteristic lengths and the diffusion coefficients have been set to unity. 

Table 2 
The best-fit parameters of Eq. (6.2) to the diffusion-driven mass release models 
for various system geometries.  

Eq. (6.2) geometry 

plane sheet cylinder sphere 

n = 1 
F1 0.86 ± 0.01 0.83 ± 0.01 0.82 ± 0.01 
α1 2.62 ± 0.02 6.81 ± 0.15 12.9 ± 0.35 

n = 2 
F1 0.82 ± 0.01 0.72 ± 0.02 0.64 ± 0.04 
α1 2.49 ± 0.01 5.92 ± 0.13 10.2 ± 0.5 
F2 0.18 ± 0.01 0.28 ± 0.02 0.36 ± 0.04 
α2 47.9 ± 2.71 70.4 ± 11.1 90.8 ± 23.6  
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diffusion coefficient, provided by D = l2/α1τ, equals (1.9±0.6)⋅ 10− 10 

cm2s− 1, which is comparable with the value reported in Ref. [17]. 
By referring to the membrane synthesis procedure described in 

Ref. [18], it is possible to roughly estimate the dry collodion/dodecanol 
membrane compounds mass ratio to be 2/3. On the other hand it is 
known that the drug penetrates only through dodecanol-filled pores of 
the membrane, while the collodion matrix provides an impermeable 
phase for drug diffusion [19]. As such, the membrane can be considered 
as porous (as such, D ≡ D̃ for the diffusion coefficient examined earlier), 
with the porosity of p = 60%, and the EC membrane resistance is given 
by Eq. (5.2). Finally, the drug diffusion coefficient through the 
membrane permeable structures, Dp, can be estimated as Dp = D̃/ p ≈

(3.2±1.0)⋅10− 10 cm2s− 1. 

6.3. Diffusion through multi-layer systems 

The EC model has been validated for different two-layer systems. 
First, we compare the exact solutions for the homogeneous case 
(i.e. release from a plane sheet and a sphere - Eqs (6.1a) and (6.1c) with 
the EC model (Eq. 4.1 – general equilibration conditions). This has been 
simulated over a heterogeneous-like system, comprising two subsystems of 

equal diffusivities of D = 3⋅10− 10 m2s− 1. The EC simulations are per-
formed using the following conditions: c0

B = c0
S = 1 and cA = 0. 

In particular, the overall characteristic length of an object (plane sheet/ 
sphere of l0 = r0 = 10− 3 m, see Fig. 9) is split into two characteristic 
lengths at various ratios (9:1, 1:1, 1:9). The inner B compartmental 
parameters are: R = α l

Da and V = al, whilst the outer body (S shell) 
characteristics are set as: Rs = α lS

Da and V = alS, with the α factor related 
to the planar and spherical geometry (see Table 2 for n = 1 case). The 
results of simulations are shown in Fig. 10. It appears that EC model 
predictions are in good agreement with the results of the exact solutions, 
especially when lS/l ratio is far from unity. 

It should be pointed out, that for heterogeneous-like systems 
comprising thin/thick shells (lS/l = 1/9 and 9) the overall release is 
dominated by one compartment only (quasi-homogeneous case). 
For lS/l = 1 one deals with a considerable mismatch between the shell EC 
(V∝lS) and actual (V ∝ l3o − l3) volumes (Fig. 10). 

A second test involved release simulations from two-compartmental 
spherical capsule of radius r0 = 1.7⋅10− 3 m, comprising a core and a shell 
of diffusivities D = 3⋅10− 10 m2s− 1 and DS = 2⋅10− 11 m2s− 1 respectively, 
into an infinite environment (cA = 0). Two cases were considered: 1) 
c0

B = c0
S = 1 and 2) c0

B = 1 and c0
S = 0, with distinct characteristic lengths: 

l = r = 1.3⋅10− 3 m and lS = rS = 0.4⋅10− 3m 
(

lS
l = 0.3 ,DS

D = 0.06
)

, with 

comparable volumes: V = 0.92⋅10− 8 m3 and VS = 1.14⋅10− 8 m3 (Fig. 9 
right). Due to the identified simple EC approach issues, the release model 
characteristics are given by: R = α l

Dl2 and V = l3 for the core, and 

RS = α
(

lo
DS l2o

− l
D l2

)
= α

DS lo − R and VS = l3o − l3 = Vo − V for the shell 

compartment. As such, the shell is considered as a homogeneous sphere 
with a simple correction factor for the resistance of the core. Results of 
the simulation are shown in Fig. 11b. 

The release data for the c0
B = 1 and c0

S = 0 case (Fig. 11c) were 
confronted against analytical results obtained by means of the release 
model by Kaoui et al. [15]. The authors considered a Fickian transport 
through a multi-layered system under various boundary conditions. For 
our purposes, the simulations are carried out with perfect contact con-
ditions, implying continuity of fluxes and concentrations on each 
interface. The release curves obtained by means of the exact model and 
EC approach revealed good agreement. In particular, the characteristic 
times predicted by the two models are similar: τexact = 1.20 h vs τEC =

1.11 h for the cases a) and c) in Fig. 11, and τexact = 2.86 h vs τEC = 2.85 
h for the cases b) and d). 

7. Conclusions 

Predicting the release performance of a mass transfer system is an 
important challenge in pharmaceutics and biomedical science. In this 

Fig. 8. Experimental data (blue circles) for dithranol diffusion into collodion- 
based membrane studied by means of FTIR-ATR (from Ref. [17]) and the 
mono-exponential EC model best-fit (Eq. (6.3), red curve) with c0

B = 0. 

Fig. 9. The planar (a) and spherical (b) two-layer (B–S) systems used in the simulations.  
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paper, inspired by drug delivery systems, we consider a multi-layer 
diffusion model of drug release/absorption from an arbitrary-shaped 
body into an external surrounding medium. Actually, in the absence of 
direct experiments or when it is too complicated to compute an 
analytical or approximated solution, it is shown that a simple expo-
nential type solution can describe the global transport mechanisms and 
the most important features of the transfer process. In most circum-
stances, for example, rather than using the full space-time concentration 
field, it is sufficient to estimate the dynamics of the released drug mass 
as a function of time. 

Similarly, the estimation of the time constant is of great importance in 
the design of delivery systems, because it allows product manufacturers 
to adjust certain properties to ensure a precise release within a 

determined time window. To this aim, we have exploited the similarity 
between mass and charge transport models to link the releasing system 
characteristics to classical quantities of the circuit theory – capacitance 
and resistance. The established one-to- one analogy allowed us to model 
the mass transfer through systems of whatever complexity (single- and 
multi-layer systems, porous media) by means of Fourier’s voltage and 
current laws applied to electrical circuits comprising a set of resistor- 
capacitor elements. The numerical predictions for a single compart-
mental system evolution were validated against the exact solutions of 
the corresponding mass transfer problems, subject to a geometry 
correction coefficients. As such, the analogue electrical circuit model 
provides a relatively friendly framework for the analysis of drug 
releasing systems of pharmacological relevance (i.e. transdermal 

Fig. 10. Comparison of the release profiles from a heterogeneous-like systems (plane sheet and sphere) of characteristic length l = r = 1⋅10− 3 m and diffusivity of D =
3⋅10− 10 m2s− 1 into an infinite (c = 0) medium – exact solutions vs EC multi-layer approach predictions (Eq. (4.5)). The horizontal line marks the concentration value 
related to the release characteristic time. 

Fig. 11. Release profiles from heterogeneous spherical capsules of l0 = 1.7⋅10− 3 m, involving a core (l = 1.3⋅10− 3 m) and a single shell (ls = 0.4⋅10− 3 m) of distinct 
diffusivities, into an infinite medium (cA = 0); a) and b) - c0

B = 1, c0
S = 1, c) and d) - c0

B = 1, c0
S = 0. Solid lines represent corresponding release profiles predicted by 

the model presented in Ref. [15]. 
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patches, drug-eluting stents, polymeric capsule, pellets, tablets). 
The proposed methodology, which accounts for simple indicators 

related to relevant geometrical and physical parameters, has shown to 
capture the drug kinetics and provides a simple tool to measure drug 
delivery system performance. 
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