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Abstract

The pulsatile flow in a curved elastic pipe of circular cross section is investigated. The unsteady flow of a viscous fluid and the
wall motion equations are written in a toroidal coordinate system, superimposed and linearized over a steady state solution. Being
the main application relative to the vascular system, the radius of the pipe is assumed small compared with the radius of curvature.
This allows an asymptotic analysis over the curvature parameter. The model results an extension of the Womersley’s model for the
straight elastic tube. A numerical solution is found for the first order approximation and computational results are finally presented,
demonstrating the role of curvature in the wave propagation and in the development of a secondary flow.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Flows through curved tubes have been studied by many investigators for several applications, particularly in vascu-
lar fluid dynamics. Most of the arteries are moderately curved and blood flow through them is affected by centrifugal
forces which tend to set up secondary motions, recirculating fluid vortices and cause a non-symmetric distribution of
the pressure and of the wall shear stress. The nature of these secondary flows have been examined in many papers in
the past and an extensive list of references is provided below. However, little attention has been given to address the
effect of the curvature on all the components of the flow velocity and on the pressure.

In Doppler measurements, all the velocity components are expected to contribute to the ultrasound signal: though
the non-axial components do not alter the overall flow rate, their presence may cause a over/under estimation of the
Doppler measurements and may change the waveforms used for clinical diagnosis of various pathological conditions.
Thus it is worth quantifying the expected degree of variation of the Doppler waveform with corresponding varia-
tions in the curvature. Another relevant aspect of the curvature is the influence on wall shear stresses in relation to
atherosclerotic diseases and the examination of time varying flow rates.
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The earliest theoretical studies were conducted by Dean [1,2], who analyzed the steady laminar flow in a rigid
curved pipe by a perturbation method. His study was limited to small values of the Dean number, Dn = (a/R)1/2Re,
where a is the radius of the pipe cross section, R the radius of curvature of the pipe axis and Re is the Reynolds
number. Many further theoretical, numerical and experimental studies on this work have been conducted and have
extended the range of the solution to larger Dean numbers, [3,4].

The problem of unsteady flow is more complicated and the simplification to a pure oscillatory flow has been
considered in many studies. This work was initiated by Lyne [5] who used boundary-layer approximations to solve
linearized Navier–Stokes equations for large values of the frequency parameter α = a(ω/ν)1/2. His results showed the
existence of a four-vortex secondary flow system which could be divided into two regions: a core region in which the
flow is essentially inviscid and a boundary region in which viscous effects dominate. The net effect was the shifting
of the maximum axial velocity towards the inner wall of the curvature. Lyne’s studies were again confined to a rigid
walled tube.

Zalosh and Nelson [6] carried out an analysis using finite Hankel integral transforms and a perturbation solution
to linearize the Navier–Stokes equations and confirmed Lyne’s results. Mullin and Greated [7] carried out a similar
analysis using an analogous solution procedure. Difficulties in these methods were encountered at high frequencies,
due to the lack of convergence of the inverse Hankel transform.

The oscillatory flow with a nonzero mean was investigated by Smith [8] who again used boundary-layer approxi-
mations to derive several different flow attributes ranging between the limiting cases of steady flow in curved tubes to
purely oscillatory flow in straight pipes and later by Wang and Tarbell in a more applied context [9]. Extensive surveys
of the previous works with some critical considerations are given in [10] and [11]. Further numerical investigations
can be found in a couple of subsequent works by Hamakiotes and Berger [12] and [13]. Their results are obtained
with the projection method, apply to tubes of arbitrary curvature and show the importance of frequency parameter in
oscillatory flows, but once again they were relative to a rigid wall.

On the other hand, when considering physiological applications, wall compliance and its interaction with the fluid
constitute essential aspects that cannot be disregarded [14,15]. A mathematical analysis of pulsatile flow in a curved
distensible tube was done by Chandran et al. in Refs. [16,17], where a thin-walled model was used in conjunction with
the linearized Navier–Stokes equations and a numerical solution was given. A subsequent numerical study evidenced
some other aspects of the fluid flow, and focused on the axial velocity flow waveforms and flow rate correction, but
other important issues such as secondary flow and wall shear stress analysis were missing [18].

Based on the previous works, the purpose of this study is to present a unifying consistent and self-contained theory
for such a problem. We extend the works in [16] and [18] by presenting the theory in a more general framework and
deriving the governing equations through a number of simplifying assumptions. All limiting cases are included, and it
is shown how previous theories can be recovered as special cases. In Section 2 the general 3D mechanics formulation
for the fluid–structure problem is presented in its simplest basic form (Newtonian fluid, linear elasticity, thin wall).
Next, the equations are linearized and expressed in a convenient coordinate system suitable to evidence the role of
curvature (Section 3). Being interested in a propagative phenomenon, a wave solution superimposed onto a steady
basic flow is considered (Section 4). This corresponds to apply a Fourier analysis and to split the solution into a
steady and an unsteady components which are separately considered. The equations for the unsteady flow are derived
through a scaling based on the characteristic of the pressure wave in typical physiological flows. A perturbation
analysis over the curvature parameter a/R is presented in Section 5: though limited to small values of curvature, this
approach has the advantage to recast the flow in a curved tube as a small correction due to the curvature over the
flow in a straight elastic pipe. The 0th order solution is the classical Womersley solution [19]. The first order problem
is reduced to a system of ordinary differential equations and a finite difference method is used to find approximate
solutions (Section 6). Finally, in Section 7 several numerical results are presented: the effects of curvature on the
secondary flow, on the pressure distribution and on the velocity patterns are shown.

2. Formulation of the problem

The motion of the blood in a curved vessel is modelled by the flow of a viscous Newtonian fluid through a curved
elastic tube. The fluid flow, by virtue of the contact force, induces a wall deformation and, in turn, the wall deformation
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modifies the fluid domain (fluid–structure interaction). To model the vessel wall, we assume that its thickness is small
and use the theory of elastic membranes. Let us consider the fluid (blood) balance law

divT − ρa = 0, (2.1)

and the solid (arterial wall) balance law

divs S − ρwaw − T n + b = 0, (2.2)

with ρ, ρw the fluid and the wall densities, a, aw the fluid and the wall material accelerations, and n the external
unit normal to the wall. In the above equations T and S are the fluid and the wall stress tensors. The surface force b

describes any kind of interaction of the vascular wall with the surrounding tissues.
In a linear fluid, the response function for the fluid stress tensor is [20]

T = −pI + 2μD, (2.3)

where p is the pressure, μ the viscosity, and

D := sym∇v = 1

2

(∇v + (∇v)T )
.

The expression for the acceleration term in (2.1) is

a = ∂v

∂t
+ (∇v)v. (2.4)

The fluid incompressibility condition reads as

divv = 0. (2.5)

By substituting the above expressions into the balance law equation (2.1) we get the Navier–Stokes equation [21]

ρ

[
∂v

∂t
+ (∇v)v

]
= −∇p + μ�v. (2.6)

The variables p and v entering the above equations are fields on the fluid domain D which, because of the wall
deformability, changes in time [22]. The evolution of the moving domain is described by a grid deformation function

γ : �D × R → D(t)

transforming a fixed domain �D into the current domain D, at any time t . In �D we have:

v(x̄, t) = v
(
γ (x̄, t), t

)
and, after some computations, the new form of the Navier–Stokes equation in the undeformed domain �D becomes

ρ

[
∂v
∂t

+ ∇vΓ −1
(

v − ∂γ

∂t

)]
detΓ = −Γ �∇p + 2μdiv

[
sym

(∇vΓ −1)Γ �
]

(2.7)

where

Γ := ∇γ , Γ � := (detΓ )Γ −T.

Similarly, the incompressibility condition (2.5) in �D is

divv = tr
(∇vΓ −1) = ∇vT · Γ −1 = 0 (2.8)

Eq. (2.2) is also rewritten in the fixed domain �D, leading to a balance law in terms of Piola–Kirchhoff stress

divs

(∥∥Γ �n̄
∥∥Γ −TS

) − ρ̄w

∂2u

∂2t
− T Γ �n̄ + ∥∥Γ �n̄

∥∥b = 0, (2.9)

where u is the wall displacement, ρ̄w is the mass density of the fixed wall, n̄ is the external unit normal to ∂ �D.
The matching between the wall deformation and the grid deformation on ∂ �D is enforced by

γ (x̄, t) = x̄ + u(x̄, t).
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The no slip condition on the fluid–wall interface is:

v = ∂u

∂t
. (2.10)

3. Linearization and geometry

It is well known that the vascular flow can be decomposed into a steady dominant part and an oscillatory component
over it [23]. As a consequence, it is reasonable to look for a solution made up of an unsteady component superimposed
to a steady (or base) solution. Let us assume the unsteady solution be small enough that it can be linearized over the
steady state solution1

χ = χ̄ + δχ̂, (3.1)

with δ a scaling parameter of the unsteady component.
We assume that �D is the domain corresponding to the steady solution. Hence the grid deformation function and its

gradient can be linearized as

γ = γ̄ + δγ̂ , Γ = �Γ + δΓ̂ ,

where γ̄ is the identity map and, as a consequence, �Γ = I . The linearization of Eqs. (2.7) and (2.9) leads to two
different equations for the steady and for the unsteady flows. The latter contains terms with γ̂ and Γ̂ due to the
nonzero steady solution that cannot a priori be omitted. This was not pointed out in other previous works, for which
some aspects of the linearization procedure is deemed questionable [16,17]. The importance of such terms depends on
the Young modulus E (see below): the higher it is, the stiffer the wall and minor the role of γ̂ and Γ̂ . In other words,
a low wall compliance can justify neglecting the grid deformation terms in Eqs. (2.7), (2.8) and (2.9). This allows
us to consider all variables in Eqs. (2.1), (2.2) and (2.10) as fields on the undeformed domain �D. Some preliminary
results evidenced a minor role of such terms and allow us to cancel them out. A thorough study of the fluid–structure
interaction problem in the general case, will be carried out in a future investigation.

The surface force b in Eq. (2.2) is also linearized as:

b = b̄ + δb̂.

A reasonable assumption is that b̄ balances the surface force exerted by the fluid on the wall, letting the corre-
sponding stress to be zero. On the other hand, the term b̂ describes a wall constrained force known as tethering [23].
In this work this effect is neglected, setting b̂ = 0.

Once the linearization over the steady flow has been carried out, the value of the parameter δ is set equal to one.
Let us now consider the case where �D is a portion of torus having a planar axis, a circular cross section of radius

a and a radius of curvature R (Fig. 1(a)). With such a geometry, it is convenient to parametrize the domain with a
toroidal coordinate system (r,ψ, θ) (see Fig. 1(b)) and to use components in the corresponding orthonormal basis.
Let us denote by (u, v,w) the radial, circumferential and axial components of the fluid velocity v, and by (η, ξ, ζ ) the
corresponding components of the wall displacement u. In the appendix the scalar form of the differential equations
corresponding to Eqs. (2.5), (2.6), (2.2), (2.10) before linearization is given. The axial variable z = Rθ is introduced to
avoid degeneracy when R → ∞, and all the variables are rewritten as functions of z instead of θ , in all the governing
equations.

In Eq. (2.2), a linearly elastic isotropic material for the wall is adopted. Indicating by (εzz, εzψ , εψψ) the compo-
nents of the strain tensor, the membrane stress matrix is given by(

Szz Szψ

Sψz Sψψ

)
=

(
hB(εzz + σεψψ) 2hGεzψ

2hGεzψ hB(εψψ + σεzz)

)
(3.2)

with

B := E

1 − σ 2
, G := E

2(1 + σ)

being E the Young modulus, σ the Poisson ratio and h the wall thickness.

1 From now on, we shortly indicate by χ the global solution of the fluid–structure interaction problem.
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(a) (b)

Fig. 1. A portion of the curved tube between two cross sections (a). Toroidal coordinates (r,ψ, θ ) and Cartesian coordinates (x1, x2, x3) (b).

4. Wave solution

We now assume that, in the linearized solution (3.1), the unsteady part has the form of a fully developed travelling
wave:

ū(r,ψ) + û(r,ψ, z, t) = ū(r,ψ) + ũ(r,ψ) ei(ωt−kz),

v̄(r,ψ) + v̂(r,ψ, z, t) = v̄(r,ψ) + ṽ(r,ψ) ei(ωt−kz),

�w(r,ψ) + ŵ(r,ψ, z, t) = �w(r,ψ) + w̃(r,ψ) ei(ωt−kz),

p̄(r,ψ) + p̂(r,ψ, z, t) = p̄(r,ψ, z) + p̃(r,ψ) ei(ωt−kz), (4.1)

η̄(ψ) + η̂(ψ, z, t) = η̄(ψ) + η̃(ψ) ei(ωt−kz),

ξ̄ (ψ) + ξ̂ (ψ, z, t) = ξ̄ (ψ) + ξ̃ (ψ) ei(ωt−kz),

ζ̄ (ψ) + ζ̂ (ψ, z, t) = ζ̄ (ψ) + ζ̃ (ψ) ei(ωt−kz)

where ω is the circular frequency, k the wave number and c = ω/k the complex wave speed.
After linearization, a further step consists in a scaling procedure concerning the relative magnitudes of some terms,

by means of some hypothesis on the wave characteristics. It is well known that in blood flow propagation phenomena,
the wavelength λ = 1/k = c/ω is large compared with the vessel’s radius a [23]. On the other hand, the flow being
essentially unidirectional, the longitudinal velocity w is much larger than the other two velocity components. This is
expressed by the following scaling:

ũ

w̃
≈ ṽ

w̃
≈ w̃ = O

(
a

λ

)

and leads to a simplification of the unsteady flow equations: only the terms of the lowest order in a/λ in each equation
are retained and those of higher order are neglected.

Concerning the steady solution, this has been analyzed by Dean who found an analytical solution for a steady flow
in a curved rigid walled tube [1,2]. He used a perturbation approach based on the curvature parameter ε = a/R, which
is supposed to be small, such that the solution up to the first order is χ̄ = χ̄0 + εχ̄1, being χ̄0 the steady state solution
in a straight rigid tube (Hagen–Poiseuille flow [21]), and χ̄1 is the correction due to the curvature. One has:

p̄0 = −4μHz; ū0 = v̄0 = 0; �w0(r) = H
(
a2 − r2) = (dp̄0/dz)(a2 − r2)

4μ
, (4.2)

Then, by assuming:
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p̄1(r,ψ) = p̌1(r) sinψ,

ū1(r,ψ) = ǔ1(r) sinψ,

v̄1(r,ψ) = v̌1(r) cosψ,

�w1(r,ψ) = w̌1(r) sinψ

(4.3)

an exact solution of the first order problem is given in the form [1]:

p̌1(r) = ρH 2r(2r4 − 6r2a2 + 9a4)

12a
,

ǔ1(r) = H 2(a2 − r2)2(4a2 − r2)

288aν
,

v̌1(r) = H 2(a2 − r2)(7r4 − 23a2r2 + 4a4)

288aν
,

w̌1(r) = −3Hr(a2 − r2)

4a
+ H 3r

1152aν2

[
4a6(a2 − r2) − 3a4(a4 − r4) + a2(a6 − r6) − a8 − r8

10

]
(4.4)

with ν = μ/ρ the kinematic viscosity. In the following, such procedure will be extended to the unsteady flow in a
curved tube with elastic walls.

Finally, the unsteady part of the flow equations (A1)–(A4), after linearization and scaling, become:

Incompressibility equation:

∂û

∂r
+ û

r
+ 1

r

∂v̂

∂ψ
+ û sinψ

R + r sinψ
+ v̂ cosψ

R + r sinψ
+ R

R + r sinψ

∂ŵ

∂z
= 0. (4.5)

Flow equations:

ρ

(
∂û

∂t
− 2�wŵ sinψ

R + r sinψ

)
= −∂p̂

∂r
+ μ

(
∂2û

∂r2
+ 1

r

∂û

∂r
+ 1

r2

∂2û

∂ψ2
+ sinψ

R + r sinψ

∂û

∂r
+ cosψ

r(R + r sinψ)

∂û

∂ψ
− û

r2

− 2

r2

∂v̂

∂ψ
− v̂R cosψ

r(R + r sinψ)2
− 2R sinψ

(R + r sinψ)2

∂ŵ

∂z

− û sin2 ψ

(R + r sinψ)2
− 2v̂ sinψ cosψ

(R + r sinψ)2

)
, (4.6)

ρ

(
∂v̂

∂t
− 2�wŵ cosψ

R + r sinψ

)
= −1

r

∂p̂

∂ψ
+ μ

(
∂2v̂

∂r2
+ 1

r

∂v̂

∂r
+ 1

r2

∂2v̂

∂ψ2
+ 2

r2

∂û

∂ψ

+ ûR cosψ

r(R + r sinψ)2
+ sinψ

R + r sinψ

∂v̂

∂r
+ cosψ

r(R + r sinψ)

∂v̂

∂ψ
− v̂

r2

− 2R cosψ

(R + r sinψ)2

∂ŵ

∂z
− v̂ cos2 ψ

(R + r sinψ)2

)
, (4.7)

ρ
∂ŵ

∂t
= − R

R + r sinψ

∂p̂

∂z
+ μ

(
∂2ŵ

∂r2
+ 1

r

∂ŵ

∂r
+ 1

r2

∂2ŵ

∂ψ2
+ sinψ

R + r sinψ

∂ŵ

∂r

+ cosψ

r(R + r sinψ)

∂ŵ

∂ψ
− ŵ

(R + r sinψ)2

)
. (4.8)

Let us note that the axial velocity equation is decoupled from the other motion equations except for the pressure term
in Eq. (4.8) which relates it to the transverse components. Differently from the procedure in [16], the linearization of
the convection term (�wŵ in l.h.s. of Eqs. (4.6), (4.7)) enforces a strong coupling with the base flow. It turns out that
the secondary flow is triggered by the base axial velocity �w �= 0.

The wall motion equations and the fluid–wall interface conditions (Eqs. (A.5)–(A.8)) are rewritten in terms of the
coordinate z and listed here for completeness.
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Wall equations:

ρwh
∂2η̂

∂t2
=

[
p̂ − 2μ

∂û

∂r

]
r=a

− hB

[
η̂ + ∂ξ̂/∂ψ

a2
+ sinψ(η̂ sinψ + ξ̂ cosψ + R∂ζ̂ /∂z)

(R + a sinψ)2

]

− σhB

[
sinψ(2η̂ + ∂ξ̂/∂ψ) + ξ̂ cosψ + R∂ζ̂ /∂z

a(R + a sinψ)

]
, (4.9)

ρwh
∂2ξ̂

∂t2
= −μ

[
1

a

∂û

∂ψ
− v̂

a
+ ∂v̂

∂r

]
r=a

+ hB

[
∂η̂/∂ψ + ∂2ξ̂ /∂ψ2

a2
+ cosψ

(
η̂ + ∂ξ̂/∂ψ

a(R + a sinψ)

− η̂ sinψ + ξ̂ cosψ + R∂ζ̂ /∂z

(R + a sinψ)2

)]
+ σhB

[−ξ̂ sinψ + sinψ∂η̂/∂ψ + R∂2ζ̂ /∂ψ∂z

a(R + a sinψ)

]

+ hG

[
R∂̂2ζ/∂z∂ψ

a(R + a sinψ)
+ R2∂2ξ̂ /∂z2 − R cosψ∂ζ̂/∂z

(R + a sinψ)2

]
. (4.10)

ρwh
∂2ζ̂

∂t2
= −μ

[
R

R + a sinψ

∂û

∂z
− ŵ sinψ

R + a sinψ
+ ∂ŵ

∂r

]
r=a

+ hB

[
R sinψ∂η̂/∂z + R cosψ∂ξ̂/∂z + R2∂2ζ̂ /∂z2

(R + a sinψ)2

]
+ σhB

[
R∂η̂/∂z + R∂2ξ̂ /∂ψ∂z

a(R + a sinψ)

]

+ hG

[
1

a2

∂2ζ̂

∂ψ2
+ R∂2ξ̂ /∂ψ∂z + ζ̂ sinψ + cosψ∂ζ̂/∂ψ

a(R + a sinψ)
+ R cosψ∂ξ̂/∂z − ζ̂ cos2 ψ

(R + a sinψ)2

]
. (4.11)

Interface conditions:

∂η̂

∂t
= û|r=a,

∂ξ̂

∂t
= v̂|r=a,

∂ζ̂

∂t
= ŵ|r=a, (4.12)

5. Perturbation solution

A perturbation method is used to study the influence of the curvature with respect to the straight case. First of all,
Eqs. (4.5)–(4.8) are rewritten in terms of a normalized radial variable y = r/a (0 � y � 1).

As the curvature parameter ε = a/R is assumed to be small (	 1), the tilded quantities (amplitudes) in Eqs. (4.1)
are expanded as a power series of ε over an axisymmetric solution χ0(y). We have:

p̃(y,ψ) = p0(y) + εp1(y,ψ) + ε2p2(y,ψ) + · · · ,
ũ(y,ψ) = u0(y) + εu1(y,ψ) + ε2u2(y,ψ) + · · · ,
ṽ(y,ψ) = v0(y) + εv1(y,ψ) + ε2v2(y,ψ) + · · · ,
w̃(y,ψ) = w0(y) + εw1(y,ψ) + ε2w2(y,ψ) + · · · ,
η̃(ψ) = η0 + εη1(ψ) + ε2η2(ψ) + · · · ,
ξ̃ (ψ) = ξ0 + εξ1(ψ) + ε2ξ2(ψ) + · · · ,
ζ̃ (ψ) = ζ0 + εζ1(ψ) + ε2ζ2(ψ) + · · ·

(5.1)

similarly to the procedure described in Section 4 for the steady solution χ̄ . These expansions are substituted in
Eqs. (4.5)–(4.12), and terms of the same power of ε, up to the first order, are equated.

5.1. Zero-th order solution

In the asymptotic expansion equation (5.1), χ0 corresponds to the axisymmetric solution in a straight tube. The
procedure to compute it is shortly reminded here. The interested reader is referred to the Womersley paper for a full
description and for further mathematical details [19]. Being v0 = 0, ξ0 = 0, ∂/∂ψ = 0, we have:
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Incompressibility equation:

du0

dy
+ u0

y
− ikaw0 = 0. (5.2)

Flow equations:

d2u0

dy2
+ 1

y

du0

dy
− u0

y2
− iα2u0 = a

μ

dp0

dy
, (5.3)

d2w0

dy2
+ 1

y

dw0

dy
− iα2w0 = − ika2

μ
p0. (5.4)

Wall equations:

−ω2η0 = B

ρw

(
ikσ

ζ0

a
− η0

a2

)
+ 1

ρwh
[p0]y=1, (5.5)

−ω2ζ0 = − B

ρw

(
k2ζ0 + ikσ

η0

a

)
− 1

ρwh

μ

a

[
dw0

dy

]
y=1

(5.6)

where the terms u0 and du0/dy at the wall are small and have been neglected, α = a
√

ω/ν (Womerseley number).

Interface conditions:

iωη0 = u0|y=1, iωζ0 = w0|y=1. (5.7)

Eqs. (5.2)–(5.6) form an eigenvalue problem and provide a couple (ω, k) which corresponds to an admissible solution.
We now assume that:

p0(y) = AJ0(βy)

with A a constant and β is to be determined. By using a number of approximations due to the relative order of
magnitude (i.e. k2a2 	 α2), we obtain that β = ika and:

p0(y) ≈ AI0(βy) ≈ A. (5.8)

Then, we can easily integrate the fluid equations (5.3) and (5.4) obtaining [19]:

u0(y) = ika

2

[
C

2J1(αi3/2y)

αi3/2J0(αi3/2)
+ Aky

ρω

]
, (5.9)

w0(y) = C
J0(αi3/2y)

J0(αi3/2)
+ Ak

ρω
(5.10)

where J0 and J1 denote the first kind and 0th and 1th order Bessel functions respectively. Pressure and fluid velocities
(5.8)–(5.10), evaluated on the wall, are finally substituted in Eqs. (5.5), (5.6) and in the matching conditions (5.7). The
set of the four algebraic equations (5.5)–(5.7) constitute a homogeneous algebraic system in the four unknowns A, C,
η0, ζ0. The determinant of such system equated to zero leads, after some algebraic manipulations, to the following so
called frequency equation:

4(1 − F10)

(
c0

c

)4

− 2

[
2 + γ (1 − F10) + F10

(
1

2
− 2σ

)](
c0

c

)2

+ (F10 + 2γ )
(
1 − σ 2) = 0 (5.11)

where

F10(α) = 2J1(αi3/2)

αi3/2J0(αi3/2)
, γ = hρw

aρ
, c2

0 = Eh

2aρ
.

Eq. (5.11) admits two values for k2 as solution and, because of the large wavelength of pressure waves, the smaller
one is chosen. The ∞2 dimensional space of solutions (p0, u0,w0, η0, ζ0) is then determined in correspondence of ±k.

It is worth noting that for a rigid wall tube (E → ∞), k → 0 and c → ∞. Such a case is inconsistent with the wave
propagation assumption equations (4.1) and has not been considered here (see Section 7.1 for a discussion).
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6. First order solution

By equating the 1st order terms in the governing fluid–structure equations (4.5)–(4.12), we get the first order
equations for a moderately curved tube:

Incompressibility equation:

∂u1

∂y
+ u1

y
+ 1

y

∂v1

∂ψ
− ikaw1 = (−ikayw0 − u0) sinψ. (6.1)

Flow equations:

∂2u1

∂y2
− u1

y2
+ 1

y

∂u1

∂y
+ 1

y2

∂2u1

∂ψ2
− 2

y2

∂v1

∂ψ
− iα2u1 − a

μ

∂p1

∂y
= −

(
du0

dy
+ 2ikaw0 + 2

a�w0

ν
w0

)
sinψ, (6.2)

∂2v1

∂y2
− v1

y2
+ 1

y

∂v1

∂y
+ 1

y2

∂2v1

∂ψ2
+ 2

y2

∂u1

∂ψ
− iα2v1 − a

μy

∂p1

∂ψ
= −

(
u0

y
+ 2ikaw0 + 2

a�w0

ν
w0

)
cosψ, (6.3)

∂2w1

∂y2
+ 1

y

∂w1

∂y
+ 1

y2

∂2w1

∂ψ2
− iα2w1 + ika2

μ
p1 = −

(
dw0

dy
− ika2y

μ
p0

)
sinψ. (6.4)

Wall equations:(
1 − ρwa2ω2

B

)
η1 + ∂ξ1

∂ψ
− ikaσζ1 = a

Bh

[
ap1 − 2μ

∂u1

∂y

]
y=1

− [
2ση0 + ika(σ − 1)ζ0

]
sinψ, (6.5)

∂2ξ1

∂ψ2
+ ∂η1

∂ψ
−

(
k2a2G

B
− ρwa2ω2

B

)
ξ1 − ika

(
G

B
+ σ

)
∂ζ1

∂ψ

= aμ

Bh

[
∂u1

∂ψ
+ ∂v1

∂y
− v1

]
y=1

−
[
η0 + ika

(
1 + G

B

)
ζ0

]
cosψ, (6.6)

(
ρwa2ω2

B
− k2a2

)
ζ1 + G

B

∂2ζ1

∂ψ2
− ikaση1 − ika

(
G

B
+ σ

)
∂ξ1

∂ψ

= aμ

Bh

[
∂w1

∂y
− sinψw0

]
y=1

−
[

ika(σ − 1)η0 +
(

2k2a2 + G

B

)
ζ0

]
sinψ. (6.7)

Interface conditions:

iωη1 = u1|y=1, iωξ1 = v1|y=1, iωζ1 = w1|y=1. (6.8)

Note that the homogeneous part of the 1st order problem equals the 0th order equations (except for axisymmetry).

6.1. Separation of variables

Based on the form of r.h.s. of the previous Eqs. (6.1)–(6.8), we look for a solution of the form:

p1(y,ψ) = p̆1(y) sinψ,

u1(y,ψ) = ŭ1(y) sinψ,

v1(y,ψ) = v̆1(y) cosψ,

w1(y,ψ) = w̆1(y) sinψ,

η1(ψ) = η̆1 sinψ,

ξ1(ψ) = ξ̆1 cosψ,

ζ1(ψ) = ζ̆1 sinψ.

(6.9)

By replacing such expressions in Eqs. (6.1)–(6.8) the problem reduces to a linear system of ordinary differential
equations (by omitting the ˘ accent):
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Incompressibility equation:

du1

dy
+ u1

y
− v1

y
− ikaw1 = −(ikayw0 + u0). (6.10)

Flow equations:

d2u1

dy2
+ 1

y

du1

dy
−

(
2

y2
+ iα2

)
u1 + 2v1

y2
− a

μ

dp1

dy
= −

(
du0

dy
+ 2ikaw0 + 2

a�w0

ν
w0

)
, (6.11)

d2v1

dy2
+ 1

y

dv1

dy
−

(
2

y2
+ iα2

)
v1 + 2u1

y2
− ap1

μy
= −

(
u0

y
+ 2ikaw0 + 2

a�w0

ν
w0

)
, (6.12)

d2w1

dy2
+ 1

y

dw1

dy
−

(
1

y2
+ iα2

)
w1 + ika2

μ
p1 = −

(
dw0

dy
− ika2y

μ
p0

)
. (6.13)

Wall equations:(
1 − ρwa2ω2

B

)
η1 − ξ1 − ikaσζ1 = a

Bh

[
ap1 − 2μ

du1

dy

]
y=1

− 2ση0 + ika(1 − σ)ζ0, (6.14)

−
(

1 + k2a2G

B
− ρwa2ω2

B

)
ξ1 + η1 − ika

(
G

B
+ σ

)
ζ1

= aμ

Bh

[
u1 + dv1

dy
− v1

]
y=1

− η0 − ika

(
1 + G

B

)
ζ0, (6.15)

−
(

G

B
+ k2a2 − ρwa2ω2

B

)
ζ1 − ikaση1 + ika

(
G

B
+ σ

)
ξ1

= aμ

Bh

[
dw1

dy
− w0

]
y=1

− ika(σ − 1)η0 −
(

G

B
+ 2k2a2

)
ζ0. (6.16)

Interface conditions:
Because of the continuity of the physical variables in y = 0, the following boundary conditions are imposed at the

origin:

u1(0) = v1(0), u′
1(0) = v′

1(0) = 0, p1(0) = 0, w1(0) = 0 (6.17)

(see [1,2]) and the following fluid–wall matching velocity conditions are set at the wall (cf. Eqs. (6.8)):

iωη1 = u1(1), iωξ1 = v1(1), iωζ1 = w1(1). (6.18)

The fluid–structure interaction first order problem is similar to the zero-th order problem, but lack of geometrical
symmetry makes the search for analytical solutions hard. Therefore the nonhomogeneous system is solved numeri-
cally. The flow and the continuity equations (6.10)– (6.13) are discretized in [0,1] by upwind finite differences [24].
Coupled with the flow equations, the wall motion equations (6.14)–(6.16) are solved together with the boundary condi-
tions (6.17) in y = 0 and with the interface conditions (6.18) in y = 1. The value of k turns out to be very close to zero,
which corresponds to a pure oscillating solution for a rigid wall (see Section 7.1). This is a cause of ill-conditioning
of the first order problem whose numerical solution turns out to be dominated by a solution close to the rigid one. In
order to get rid of this spurious solution, a procedure has been devised which, via a spectral decomposition, cancels
out the projection onto the subspace of the least eigenvalue. This treatment turns out to be computationally very ef-
fective. An alternative way to overcome the ill-conditioning is to modify the original problem by adding the so-called
tethering, as made in [25,16].

7. Computational results and discussion

Once the 0th order solution is obtained analytically and 1st order solution is computed numerically, the full solution
is then reassembled as:

χ = χ̄ + χ̃ ei(ωt−kz) = (χ̄0 + εχ̄1) + (χ̃0 + εχ̃1) ei(ωt−kz)
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(see Eq. (4.1)). An harmonic form of the previous expression is:

χ = χ̄ + [
Re(χ̃) cos

(
ωt − Re(k)z

) − Im(χ̃) sin
(
ωt − Re(k)z

)]
eIm(k)z (7.1)

or equivalently:

χ = χ̄ + |χ̃ | cos
(
ωt − Re(k)z + φ

)
eIm(k)z with φ = arg(χ̃). (7.2)

From Eq. (7.2), it follows that each variable has an oscillatory evolution in time, superimposed over the steady state
solution, with amplitude |χ̃ | and a phase lead or a phase lag φ. Both amplitude and phase are independent of time
and depend on the modulus and argument of the complex number χ̃ . The amplitude has an attenuation factor given
by eIm(k)z.

The physical problem depends on a large number of parameters, each of them may vary in a quite wide range,
and there is an enormous variety of different limiting cases. In the present work we will focus the attention on the
influence of curvature – parametrized by ε – and letting all the others fixed. In the simulations, we take the following
numerical parameters, referred to the vascular flow in a medium sized arterial segment:

ω = 2π s−1, a = 0.5 cm, h = 0.05 cm, E = 107 dyne/cm2,

μ = 0.04 poise
(
g cm−1 s−1), ρ = ρw = 1 g/cm3, σ = 0.5,

A = 26000 dyne/cm2 (
see Eq. (5.8)

)
,

dp̄0

dz
= 7 dyne/cm3 (see Eq. (4.2)).

With such parameters, the Womersley number is α = 6.266 and the Dean number is

Demax = √
2ε

dp̄0

dz

a3ρ

μ2
≈ 244.5,

corresponding to εmax = 0.1. The mesh size has been taken as �y = 0.02.
A cross section of a curved tube with the inner wall at the left side is considered (Fig. 1). Either Eq. (7.1) or

Eq. (7.2) are used to plot the flow pattern, the pressure distribution and wall deformations for a given time (t = 0) and
a fixed axial coordinate (z = 0).

The effect of the curvature is examined by letting ε vary as ε = 0,0.05,0.1, and the corresponding amplitudes of
the unsteady solution χ0 + εχ1 are depicted in Fig. 2. Note that in a curved tube the solution becomes asymmetric and
the degree of skewness (magnitude of secondary motion, location of peaks of axial velocity) increases with ε.

In Fig. 3, the transverse velocity in a curved tube is depicted in the section z = 0 and at time t = 0 for four values
of curvature ε. It appears that the flow is axisymmetric for a straight tube (ε = 0), but lose the axisymmetric pattern
as soon as ε > 0. In such regime a circulatory motion develops at the point where, in the axisymmetrical case, u0
vanishes (Fig. 3 top right). Due to the centrifugal forces, such circulatory motion strengthens and the flow undergoes
a transition with the closure of a vortex at the inner wall side (Fig. 3 bottom left).

For higher values of ε all the streamlines close, and such recirculating secondary flow pattern is approximately
symmetrical about the line ψ = 0 and persists for larger curvature. The stagnation point stabilizes around a fixed point
near the vertical axis and its location does not change with increasing ε.

To measure the strength of the secondary motion, an index given by the maximum modulus of the cross section
velocity is introduced as Σ = maxr,ψ

√
(Re ũ)2 + (Re ṽ)2.

Another local indicator of the secondary flow is the vorticity having the following expression:

Ω(y,ψ) = 1

ay

(
∂u

∂ψ
− v

)
− 1

a

∂v

∂y
. (7.3)

Being related to the flow field, Ω is sum of a steady part and a time dependent component:

Ω = �Ω + Ω̃(y,ψ) ei(ωt−kz)

and the amplitude Ω̃ is easily computed by combining the corresponding 0th and the 1st order expansions, namely:

Ω̃(y,ψ) = Ω̃0 + εΩ̃1 = εΩ̃1 = ε
(

ŭ1 − v̆1 − dv̆1
)

cosψ. (7.4)

a y dy
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Fig. 2. Amplitude of the unsteady solution χ0 + εχ1 for ε = 0 (continuous line), ε = 0.05 (dashed line) and ε = 0.1 (dotted line) along [−1,1].

It follows that, apart the dependence of ψ , the maximum of Ω̃ with respect to y is computed by searching the
stationary points of the discrete function:

Ω̃∗(yi,0) = 1

a

(
ŭ1(yi) − v̆1(yi)

y
− v̆1(yi+1) − v̆1(yi)

�y

)
. (7.5)

Ω̃∗ shows a profile different than the correspondent vorticity of the steady flow. Moreover in the unsteady case,
Ω̃∗ shows the evolution of the vorticity and the location of the stagnation points (see Fig. 9).

To understand the influence of the curvature on the axial velocity and pressure, the contour lines for p̃1 and for w̃1
are depicted in Fig. 4. Note the boundary layer at ψ = ±π

2 , where a reversing of w̃1 takes place and the presence of
an asymmetric flow in the full solution is evident (cf. Fig. 2) [5].

Wall shear stress τ : The two components of the wall shear stress are obtained from the flow field (see Eq. (2.3)) as:

τψ = (T er ) · eψ = μ

a

(
∂v

∂y
− v + ∂u

∂ψ

)∣∣∣∣
y=1

and

τz = (T er ) · ez = μ

(
1

a

∂w

∂y
+ R∂u/∂z − w sinψ

R + a sinψ

)∣∣∣∣
y=1

.

By neglecting the steady state component τ̄ , the time dependent shear stress has a wave evolution similarly to the all
the other variables (see Eqs. (3.4)):

τ = τ̃ (ψ) ei(ωt−kz)

and the amplitudes τ̃ are easily computed by summing up the 0th and the 1st order shear stresses, namely:



G. Pontrelli, A. Tatone / European Journal of Mechanics B/Fluids 25 (2006) 987–1007 999
Fig. 3. Secondary flow (ũ, ṽ) at t = 0, z = 0 in the upper cross-section of a curved tube for four values of ε. The maximum amplitude of the
transverse velocity Σ is shown in each figure. For a critical ε = εc ≈ 4 × 10−4 (top right) a recirculating flow starts to develop inwards and for
ε � εc moves inwards (bottom left). For an increasing ε the vortex stabilizes around a stagnation point located near the vertical diameter and the
streamlines projected on the section appear closed (bottom right). A similar pattern is found at larger ε.

τ̃ψ = τ̃ 0
ψ + ετ̃ 1

ψ = ετ̃ 1
ψ = με

a

[
ŭ1 + dv̆1

dy
− v̆1

]
y=1

cosψ, (7.6)

τ̃z = τ̃ 0
z + ετ̃ 1

z = μ

a

[
dw̃0

dy
+ ε

(
dw̆1

dy
− w̆0

)
sinψ

]
y=1

. (7.7)

From Eq. (7.6) if follows that τ̃ψ is present only in a curved tube and varies over a zero mean. Its maximum (resp.
minimum) values are attained at ψ = 0 (resp. ψ = π ). On the other hand, from Eq. (7.7), the axial wall shear stress τ̃z

varies over the correspondent value for the straight tube τ̃ 0
z and its extrema are attained at to ψ = ±π

2 , in agreement
with the boundary layer depicted in Fig. 4. Both of them vary linearly with ε, are opposite in sign, and the magnitude
of the τ̃ψ is smaller than τ̃z (Fig. 5).

In Fig. 6, the pure oscillatory flow pattern in a curved elastic tube is shown at four instants. For the values of
the parameters considered, a single vortex appears at most times, but a secondary clockwise vortex develops at the
end of each half-cycle (see also Fig. 9). Contour lines for w are concentric circles and there are instants where the
flow reverses. Plots at correspondent times in the second half-period show opposite values for w and the circulation
reversed, while the value of Σ and the location of the vortices stay unchanged.

The structure of the secondary flow changes when the steady state solution is summed up (Figs. 7 and 8). The
lowering of the primary vortex and the appearance of a second one of opposite sign detaching from the wall are
clearly shown. Such double vortex structure, evidenced in other analytical and experimental works [5,26], is better
characterized here and put in relation with the wall elasticity and the wave propagation characteristics. Axial velocity
peak is shifted alternately inwardly and outwardly, and a flow reversal is displayed.
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Fig. 4. Contour lines at equispaced levels for the first order solution in an half cross-section (continuous lines indicate positive levels, dashed lines
negative levels, bold line zero levels). Pressure p̃1 (half-top) and axial velocity w̃1 (half-bottom) (cfr. Fig. 2). The 0th order pressure p0 is constant
on the cross section (see Eq. (5.8)), and the 0th order axial velocity w0 is axisymmetric (see Eq. (5.10)).

Fig. 5. Amplitude at t = 0, z = 0 of the axial (τ̃z) and hoop (τ̃ψ ) wall shear stresses as functions of ε. The plots refer to the maximum values with
respect to ψ .

Similarly to all the flow variables, the wall displacements are trigonometric functions of ψ (see Eq. (6.9)): as
consequence |η̃| and |ζ̃ | are maximum at ψ = ±π

2 , while |ξ̃ | reaches its peaks at ψ = 0 and ψ = π varying over their
0th order mean: the maximum displacement amplitudes (at t = 0, z = 0) are given in Table 1.

It is worth noting that ζ̃ is at least one order of magnitude larger than η̃ and three order larger than ξ̃ : this con-
siderable high axial deformation disagrees with experiments reported in other studies which show ζ̃ approximatively
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Fig. 6. Streamlines of secondary flow (above) and contour equispaced lines for axial velocity (below – continuous lines indicate positive levels,
dashed lines negative levels, bold line zero levels) at four times in a half-period at z = 0. The plot refers to the unsteady solution χ̃ ei(ωt−kz), with
ε = 0.1.

zero [25]. This discrepancy can be avoided by considering a model with a tissue tethering effect as suggested in
Ref. [25]. For a E � 106, the axial displacement amplitude becomes excessively large and this model is not consistent
with the theory of linear elasticity and hence no longer representative.

Moreover, k � O(
√

1/E ), η and ξ � O(1/E), while ζ � O(
√

1/E ).

Wall tension:
It is of interest to analyze the wall tension components, given by:

Szz = Bhσ

a

(
η + ∂ξ

∂ψ

)
+ Bh

R + a sinψ

(
η sinψ + ξ cosψ + R

∂ζ

∂z

)
,

Sψz = Gh

[
1

a

∂ζ

∂ψ
+ 1

R + a sinψ

(
R

∂ξ

∂z
− ζ cosψ

)]
, (7.8)

Sψψ = Bh

a

(
η + ∂ξ

∂ψ

)
+ Bhσ

R + a sinψ

(
η sinψ + ξ cosψ + R

∂ζ

∂z

)
(see Eq. (3.2)). Similarly to the shear stress components, the amplitudes of the unsteady wall tensions are:

S̃zz = S̃0
zz + εS̃1

zz =
(

Bhσ

a
+ ω2ρwh

)
η0 − iBhkζ0

+ ε

[
Bh

a
η0 + iBhkζ0 +

(
Bhσ

a
+ ω2ρwh

)
η̆1 − Bhσ

a
ξ̆1 − iBhkζ̆1

]
sinψ, (7.9)

S̃ψz = S̃0
ψz + εS̃1

ψz = ω2ρwhη0 + ε

[
Gh

(
−ζ0 + ζ̆1 − ikξ̆1

)
cosψ + ω2ρwhη̆1 sinψ

]
, (7.10)
a a
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Fig. 7. Streamlines and secondary flow (above) and contour equispaced lines for axial velocity (below – continuous lines indicate positive levels,
dashed lines negative levels, bold line zero levels) at eight times in a period at z = 0. The plot refers to the steady state solution summed up to
unsteady solution χ̄ + χ̃ ei(ωt−kz), with ε = 0.1. A double vortex develops at the end of each half-cycle in correspondence of a small Σ .

S̃ψψ = S̃0
ψψ + εS̃1

ψψ =
(

Bh

a
+ ω2ρwh

)
η0 − iBhσkζ0

+ ε

[
Bhσ

a
η0 + iBhσkζ0 +

(
Bh

a
+ ω2ρwh

)
η̆1 − Bh

a
ξ̆1 − iBhσkζ̆1

]
sinψ. (7.11)

Note the different order of magnitude of S̃zz and S̃ψψ compared with S̃ψz. They vary linearly with ε and their
extrema are attained at ψ = ±π

2 .

7.1. The limit case E → ∞

When E → ∞, it turns out that k → 0, the wall tends to be rigid and the unsteady flow is damped out (|v| → 0).
All the displacements tend to zero and the normal wall tensions to an asymptotic value (see Table 1). In such a limit
case, the wave speed c and the wavelength λ both tend to be infinite.

Nevertheless, due to the absence of wall constraint, apart from the axisymmetry solution, another solution of the
0th order problem exists:

u∗(ψ) = C sinψ, v∗(ψ) = C cosψ, w∗ = 0, p∗(y,ψ) = −Ciρωa sinψy,

η∗(ψ) = −C

ω
i sinψ, ξ∗(ψ) = −C

ω
i cosψ, ζ ∗ = 0

(7.12)

for any constant C. This solution is independent of the radial coordinate y (except the pressure that is linear in y) and
represents a rigid motion with velocity C in the curvature plane. In other words, the fluid and the wall move jointly
transversally as a rigid body and no travelling wave is present. Because of the axisymmetry condition, the translation
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Fig. 8. Continuing of previous figure (same caption).

Fig. 9. Vorticity curves (see Eq. (7.5)) at four instants (as in Fig. 7) in an half-period (z = 0). Dashed line is the vorticity curve for the steady state
solution. The stationary points of such curves indicate the location of the stagnation points and their values the strength and direction of vortices.
The primary vortex moves at the center of the tube and, in the second quarter of the cycle a secondary vortex develops in the opposite direction
from the wall. The magnitude of vorticity depends linearly on ε.
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Table 1
Amplitudes of flow and wall variables at t = 0, z = 0 as function of the Young modulus E (with ε = 0.1). All the variables, except pressure and
wall tensions, tend asymptotically to 0 as E → ∞
– E = 5 × 105 E = 107 E = 109 E = 1011 E = 1013

k 0.0422 0.0095 9.45 × 10−4 9.45 ×10−5 9.45 × 10−6

maxψ |η̃| 0.2349 1.172 × 10−2 1.172 × 10−4 1.172 × 10−6 1.172 × 10−8

maxψ |ξ̃ | 0.00512 2.72 × 10−4 2.76 × 10−6 2.76 × 10−8 2.76 × 10−10

maxψ |ζ̃ | 1.7836 0.3988 0.0398 3.98 × 10−3 3.98 × 10−4

Σ 17.430 3.902 0.390 0.039 0.0039
maxy,ψ |w̃| 200.64 45.061 4.511 0.451 0.0451
maxy,ψ |p̃| 26213 26048 26005 26000 26000
maxy |Ω̃∗(·,0)| 4234.67 946.80 94.675 9.4671 0.9467
maxψ |τ̃ψ | 16.93 3.787 0.378 0.037 0.0037
maxψ |τ̃z| 58.35 13.125 1.3146 0.1315 0.0131
maxψ |S̃zz| 0.1839 × 104 0.1817 × 104 0.1810 × 104 0.1810 × 104 0.1810 × 104

maxψ |S̃ψψ | 1.3961 × 104 1.3637 × 104 1.3648 × 104 1.3649 × 104 1.3649 × 104

maxψ |S̃ψz| 2.030 0.3971 0.0382 0.0041 0.0016

(7.12) is absent in the 0th order solution (see Section 5.1), but enters spuriously, smearing the first order solution, even
for a finite values of E and becomes dominant as much as E → ∞.

8. Conclusions

The unsteady flow of a viscous fluid in curved conduits has been studied by several authors. Although a number
of areas of application are possible, the most relevant remains that of physiological flows, which provides the main
motivation for this research.

On one hand the steady flow in a toroidal rigid tube has been the object of a thorough investigation by Dean. Most
of the literature on flows in curved tubes refers to this basic work and concerns various extensions to the unsteady
case, but is confined to rigid wall conduits. On the other hand, the classical works of Womersley shed light on the
flow through an elastic straight tube and opened a series of subsequent studies on the characteristics of the wave
propagation in arteries. In the present work a combined approach has been used to extend the theory of Womersley to
an elastic curved tube in a comprehensive and consistent framework. In the paper of Chandran et al. [16], the problem
has been faced with a model which includes wall tethering forces. However, the linearization process is hidden inside
the perturbation expansion which is mixed up with the scaling procedure making it hard to separate the role and the
influence of each single process.

In this work, the formulation starts from some basic principles of continuum mechanics and, under general as-
sumptions, a formal complete procedure is clearly described and fully detailed to get the final form of the fluid–wall
interaction model equations. In a wave propagation context, the dependence of the model on four independent pa-
rameters is outlined: the pressure amplitude A, the pulse frequency ω, the elasticity modulus E and the curvature
parameter ε. In particular, the role of the latter is highlighted, and the character of the secondary flow addressed. All
the scalar equations in this article have been derived anew with the aid of Mathematica�, starting directly from
the basic equations in Section 2.

Some of the apparent limiting assumptions (wall isotropy, unconstrained tube, Newtonian fluid, fully developed
flow) have been considered to make the model essential, and some others (small curvature, linearly elastic wall) are
justified by the specific application. However, some restrictions can be removed, and the model can be extended in
several directions.

Acknowledgement

The authors are grateful to L. Myers for stimulating the work and for his useful comments on this paper.



G. Pontrelli, A. Tatone / European Journal of Mechanics B/Fluids 25 (2006) 987–1007 1005
Appendix A

The fluid–structure interaction problem described in Section 2 in vector form is written in the toroidal coordinate
system (r,ψ, θ ) depicted in Fig. 1. The transformation from toroidal coordinates to Cartesian coordinates (x1, x2, x3)
is:

x1(r,ψ, θ) = (R + r sinψ) cos θ − R,

x2(r,ψ, θ) = (R + r sinψ) sin θ,

x3(r,ψ, θ) = r cosψ

where R the radius of curvature.

Fluid equations
Denoting by v = (u, v,w) the radial, the circumferential and the axial components of the fluid velocity respectively,

the flow equations (2.6), (2.5) are written in scalar form as:
Continuity equation:

∂u

∂r
+ u

r
+ 1

r

∂v

∂ψ
+ u sinψ

R + r sinψ
+ v cosψ

R + r sinψ
+ 1

R + r sinψ

∂w

∂θ
= 0. (A.1)

Flow equations:

ρ

(
∂u

∂t
+ u

∂u

∂r
+ v

r

∂u

∂ψ
− v2

r
+ w

R + r sinψ

∂u

∂θ
− w2 sinψ

R + r sinψ

)

= −∂p

∂r
+ μ

(
∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂ψ2
+ sinψ

R + r sinψ

∂u

∂r
+ 1

(R + r sinψ)2

∂2u

∂θ2
+ cosψ

r(R + r sinψ)

∂u

∂ψ
− u

r2

− u sin2 ψ

(R + r sinψ)2
− 2

r2

∂v

∂ψ
− 2v sinψ cosψ

(R + r sinψ)2
− vR cosψ

r(R + r sinψ)2
− 2 sinψ

(R + r sinψ)2

∂w

∂θ

)
, (A.2)

ρ

(
∂v

∂t
+ u

∂v

∂r
+ uv

r
+ v

r

∂v

∂ψ
+ w

R + r sinψ

∂v

∂θ
− w2 cosψ

R + r sinψ

)

= −1

r

∂p

∂ψ
+ μ

(
∂2v

∂r2
+ 1

r

∂v

∂r
+ 1

r2

∂2v

∂ψ2
+ 2

r2

∂u

∂ψ
+ uR cosψ

r(R + r sinψ)2
+ sinψ

R + r sinψ

∂v

∂r

+ 1

(R + r sinψ)2

∂2v

∂θ2
+ cosψ

r(R + r sinψ)

∂v

∂ψ
− v

r2
− v cos2 ψ

(R + r sinψ)2
− 2 cosψ

(R + r sinψ)2

∂w

∂θ

)
, (A.3)

ρ

(
∂w

∂t
+ u

∂w

∂r
+ v

r

∂w

∂ψ
+ uw sinψ

R + r sinψ
+ vw cosψ

R + r sinψ
+ w

R + r sinψ

∂w

∂θ

)

= − 1

R + r sinψ

∂p

∂θ
+ μ

(
2 sinψ

(R + r sinψ)2

∂u

∂θ
+ 2 cosψ

(R + r sinψ)2

∂v

∂θ
+ ∂2w

∂r2
+ 1

r

∂w

∂r
+ 1

r2

∂2w

∂ψ2

+ sinψ

R + r sinψ

∂w

∂r
+ 1

(R + r sinψ)2

∂2w

∂θ2
+ cosψ

r(R + r sinψ)

∂w

∂ψ
− w

(R + r sinψ)2

)
. (A.4)

Wall equations. Let u = (η, ξ, ζ ) be the components of the wall displacement in the direction (r,ψ, θ ) respectively.
The three equations of the wall dynamics (see Eqs. (2.2)-(2.3)-(3.2)) are:

ρwh
∂2η

∂t2
=

[
p − 2μ

∂u

∂r

]
r=a

− hB

[
η + ∂ξ/∂ψ

a2
+ sinψ(η sinψ + ξ cosψ + ∂ζ/∂θ)

(R + a sinψ)2

]

− σhB

[
sinψ(2η + ∂ξ/∂ψ) + ξ cosψ + ∂ζ/∂θ

]
, (A.5)
a(R + a sinψ)
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ρwh
∂2ξ

∂t2
= −μ

[
1

a

∂u

∂ψ
− v

a
+ ∂v

∂r

]
r=a

+ hB

[
∂η/∂ψ + ∂2ξ/∂ψ2

a2
+ cosψ

(
η + ∂ξ/∂ψ

a(R + a sinψ)
− η sinψ + ξ cosψ + ∂ζ/∂θ

(R + a sinψ)2

)]

+ σhB

[−ξ sinψ + sinψ∂η/∂ψ + ∂2ζ/∂ψ∂θ

a(R + a sinψ)

]

+ hG

[
∂2ζ/∂θ∂ψ

a(R + a sinψ)
+ ∂2ξ/∂θ2 − cosψ∂ζ/∂θ

(R + a sinψ)2

]
, (A.6)

ρwh
∂2ζ

∂t2
= −μ

[
1

R + a sinψ

∂u

∂θ
− w sinψ

R + a sinψ
+ ∂w

∂r

]
r=a

+ hB

[
sinψ∂η/∂θ + cosψ∂ξ/∂θ + ∂2ζ/∂θ2

(R + a sinψ)2

]

+ σhB

[
∂η/∂θ + ∂2ξ/∂ψ∂θ

a(R + a sinψ)

]

+ hG

[
1

a2

∂2ζ

∂ψ2
+ ∂2ξ/∂ψ∂θ + ζ sinψ + cosψ∂ζ/∂ψ

a(R + a sinψ)
+ cosψ∂ξ/∂θ − ζ cos2 ψ

(R + a sinψ)2

]
. (A.7)

Interface conditions
Finally, the fluid–wall conditions (2.10) are imposed by requiring the matching of the fluid and wall velocities:

∂η

∂t
= u|r=a,

∂ξ

∂t
= v|r=a,

∂ζ

∂t
= w|r=a. (A.8)
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