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Modelling the glycocalyx–endothelium–erythrocyte interaction in the microcirculation:
a computational study
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aIstituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Roma, Italy; bMaterials and Engineering Research Institute,
Sheffield Hallam University, Sheffield, UK; cInstitute for Bioengineering, Brunel University, London, UK; dSchool of Engineering and

Design, Brunel University, London, UK

(Received 23 July 2012; final version received 22 April 2013)

A novel, coarse-grained, single-framework ‘Eulerian’ model for blood flow in the microvascular circulation is presented and
used to estimate the variations in flow properties that accrue from all of the following: (i) wall position variation, associated
with the endothelial cells’ (ECs) shape, (ii) glycocalyx layer (GL) effects and (iii) the particulate nature of blood. We stress
that our new model is fully coupled and uses only a single Eulerian computational framework to recover complex effects,
dispensing altogether with the need for, e.g. re-meshing and advected sets of Lagrangian points. Physically, blood is
modelled as a two-component, incompressible fluid – the plasma and corpuscular elements dispersed in it. The latter are
modelled as deformable liquid droplets of increased viscosity. Interfacial membrane effects are present to mimic key blood
properties and to avoid droplets’ coalescence. The model is encapsulated within a multi-component lattice Boltzmann
method that uses a sub-lattice ‘wavy wall’ closure to represent the ECs. Between this boundary and the flow domain, the
model incorporates a coarse-grained representation of the endothelial GL, which is known to cover microvessel walls. The
endothelial glycocalyx is modelled as a medium of variable and adaptive porosity, with approaching droplets being subject
to a repulsive elastic force. Numerical simulations are presented to show the combined and simultaneous influence on
fundamental flow properties of the EC wall undulation, the glycocalyx compression and repulsion and the particulate nature
of blood. Several characteristic hemodynamical features of microvessel flow are successfully reproduced, including the
deformability of particulates and the Fahraeus–Lindqvist effect. Moreover, the importance of modelling the GL is manifest
in the magnitude of and the temporal variations in the flow rate and wall shear stresses.
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1. Introduction

The endothelium plays an important role in the vascular

system. The shape of the endothelium, or microvessel

boundary, is defined by endothelial cells (ECs henceforth),

causing the arterial wall to undulate (Figure 1). This effect

becomes more pronounced in small-sized vessels, where

the corrugation degree, relative to the vessel diameter,

increases. Dysfunction of ECs may lead to several

pathological states, including, in one example, early

development of atherosclerosis (Yao et al. 2007). Hence,

it is useful to understand flow properties and forces upon

these surfaces. A comprehensive review on the theoretical

models in arterial biomechanics, the role of the endo-

thelium in vascular remodelling and the major challenges

has been recently developed (Waters et al. 2011).

The presence of an irregular EC surface topography

has been addressed by Van Doormal et al. (2009) for

cellular mass transfer. Wada and Karino (2002) also

studied, theoretically, flows over undulating ECs but with

the emphasis on correlating the transport and concen-

tration of low-density lipoproteins at the surface, in

relation to wall shear stress variations. Recently, a study of

blood flow over a regularly undulating wall, made of

uniformly aligned and distributed identical ECs, has been

carried out by Pontrelli, König, et al. (2011), who quantify

the variation of wall shear stress over the ECs. However, it

is well known that the endothelium is coated by long-

chained macromolecules, forming a complex protein

meshwork that forms a thin porous layer, called the

glycocalyx (Figure 2) (Weinbaum et al. 2007). The

glycocalyx has a ‘brush-like’ structure and thickness

which can vary with the vessel diameter. It has been

estimated that the average height of the glycocalyx is

,100 nm for arterioles and capillaries (Pahakis et al.

2007). It has several putative roles: it serves as a transport

barrier, to prevent ballistic red blood cell (RBC)

interactions with the endothelium and as a sensor and

transducer of mechanical forces, such as fluid shear stress,

to the surface of ECs. Actually, it has been recognised that

the glycocalyx responds to the flow environment and, in

particular, to the fluid stress, but the mechanism by which

these cells sense the shearing forces and transduce

mechanical into biochemical signals is still not fully

understood (Pahakis et al. 2007; Weinbaum et al. 2007). It

has been reported that the glycocalyx itself is remodelled

by the shearing flow and by the compression exerted by the
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deformed erythrocytes or RBCs in capillaries (Secomb

et al. 2002).

Over the years, flow-induced mechano-transduction in

ECs has been studied in order to find correlations between

disturbed flow patterns and atherosclerosis. Such studies

often use ‘simple’ traditional computational fluid

dynamics techniques, which neglect the influence of the

glycoclyx layer and the particulate nature of the blood

flow, above this layer. Recently, sophisticated immersed

boundary methods that combine a lattice Boltzmann (LB)

approach with the deformability of RBCs in a shearing

flow have been presented by Zhang et al. (2008) and by

Krüger et al. (2011) in order accurately to calculate

particulate flow effects. Farhat et al. (2011) propose a

multi-component model with a non-uniform local inter-

face tension, which accounts for the RBC deformability.

Other recent works make use of LB techniques for large-

scale simulations of complex hemodynamic flows

(Bernaschi et al. 2009), with the inclusion of RBCs as

suspended rigid bodies (Janoschek et al. 2010; Melchionna

2011). On the other hand, some modelling work has been

carried out by Arslan (2007) and Vincent et al. (2008),

who used a porous medium approach to model the

glycocalyx layer (GL henceforth). However, none of these

works combines the influence of the effect of the

endothelial roughness, or ‘wavy’ nature, of the wall,

together with the particulate nature of the flow, and the

porous GL. Such a detailed model, combining the above

techniques, would provide an accurate but computation-

ally demanding method. In order to provide what is still an

accurate picture of flows within the microcirculation, these

effects are, here, approximated further and efficiently

combined within a single Eulerian framework, with the

purpose of defining to produce a relatively simple,

accessible and novel coarse-grained model, capable of

investigating, and providing an estimate of, the variations

in microvascular circulation transport properties.

In the following sections, we present the new coarse-

grained model that attempts to include, within a single,

unifying framework, all the pertinent microscale physical

effects, but most novel, the GL attached to the EC surface.

The inherent versatility of the LB method will be seen as

central to our work. We then examine the extent to which

wall shear stress may vary, due to the GL, in addition to the

previously examined EC shape and particulate transport.

To model blood flow in small-sized arteries, the

mesoscopic multiple-immiscible fluid LB method is used

(Pontrelli, Halliday, et al. 2011; Pontrelli, König, et al.

2011). To facilitate the analysis, the present model

includes a representation of the EC’s shape through a

periodic ‘wavy wall’; this geometry is combined with a

multi-component flow model of viscous fluid droplets,

with interfacial surface tension and, finally, with a

representation of the GL that considers both the effect

upon the particles and the fluid transport properties.

2. Blood flow in small-sized arteries and capillaries

In many studies of haemodynamics, blood is assumed to

be an incompressible, Newtonian fluid and the arterial wall

to be flat. The first assumption ignores the non-Newtonian

effects and the particulate nature of the blood, and the

latter neglects the microscale undulation of the wall due to

the shape of the influence of constituent ECs: this does not

imply a significant variation in the flow field, but it is

relevant in computing wall shear stress (WSS), which is

constant in a flat-walled artery. In fact, the internal surface

of the vessel wall is covered by a sequence of ECs,

forming a continuous, wavy layer. A single EC has been

estimated to be about 15mm long by 0.5mm high

(Reichlin et al. 2005) (Figure 1). At such a scale, the wall

may be considered as a smoothly corrugated idealised no-

slip surface, constituted by a regular array of equal,

repeated ECs (Figures 2 and 3). The pressure-driven axi-

symmetric flow of a continuum fluid over such a surface

has been recently modelled by Pontrelli, König, et al.

(2011). It was shown that, despite no significant change in

velocity profiles, significant WSS variations can occur

Figure 1. An experimental (optical microscope) image of the
rough, or ‘wavy’, surface of an arterial wall comprised of
tessellating ECs (courtesy of Reichlin et al. 2005). The no-slip
boundary condition used in this work is a 2D representation of
this surface. The solid arrows point to ECs; the scale bar
corresponds to 5mm.

Figure 2. The ‘brushlike’ structure of the glycocalyx over the
wavy wall constituted by a sequence of equally aligned ECs
(courtesy of Yao et al. 2007).
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between the EC boundary peaks and throats, especially in

small-sized arteries. Here, we extend this work in two

main ways. First, the particulate nature of the fluid is

included, by considering the fluid plasma to be made up of

separated erythrocytes, each approximated, coarsely but

very efficiently, as deformable, neutrally buoyant immis-

cible liquid drops, with a uniform interfacial tension

relative to the embedding ‘plasma’ fluid. Second, the

endothelial glycocalyx and its coupling to the erythrocyte,

or drop, is also included (see Section 3). In the current

formulation presented here, a single file of erythrocytes

(due to the periodic boundaries) flow in a narrow arteriole,

each with their centre of gravity located on the symmetry

axis and their degree of deformation is seen to be similar to

those geometrically confined within capillaries (Secomb

et al. 2002). We consider a two-dimensional (2D) axi-

symmetric channel, having the same corrugation repeated

along its length, and a semi-height H. For the sake of

simplicity, a single EC is considered and periodic

boundary conditions are imposed, in order to model an

infinitely long channel (Figure 3). In a Cartesian

coordinate system with x-horizontal, y-vertical, the

domain is defined as [0, L ] £ [0, H ]. A single circular

droplet of initial radius RD is placed in the plasma, centred

on the system symmetry line (Figure 3).

3. A coarse-grained model of glycocalyx effects

As mentioned earlier, the endothelial surface is not only

wavy in its geometry, but, at a smaller scale, it is known to

be covered by fibrous filaments and long protein chains,

forming a thin protein meshwork layer, called the

endothelial surface layer or glycocalyx. From a continuum

fluid dynamics point of view, the GL may be modelled as a

porous layer (Arslan 2007; Vincent et al. 2008) nominally

of constant thickness (but see below), which follows the

wall undulation, through which the flow of the continuous

phase (plasma) is possible. This alters the boundary

conditions of the problem, specifically the usual no-slip

condition at the vessel wall has to be replaced, to model

plasma penetration through the GL and endothelial clefts.

We choose to embed the GL in our model within the

framework of LB method, which readily accommodates

multiscale, multi-physics modelling. Essentially, the idea

here is to solve a multiple-domain problem, in which an

‘inner’ or ‘bulk’ multi-component flow, in the microvessel

lumen, is described by the Navier–Stokes equations and

interfacial boundary conditions consistent with a blood

cell representation as a liquid drop and, in the near-wall

region, single-component flow (of the plasma component

only) is described by a porous-medium, Brinkman flow

formulation discussed below. Crucially, one particular

multi-component LB method can be straightforwardly

adjusted to represent both bulk and near-wall flow. At the

microscale, the glycocalyx is not modelled in its detailed

structural form, but its effect on the flow is still properly

addressed (using methods that, for example, are amenable

to subsequent calibration, using more detailed, simulations

and experiments, located on shorter length and time

scales). A ‘two-way coupled’ model can be possible, in

which the drop interface is forced by ballistic contact with

a compression of the GL, and this effect is then

communicated to the flow (Figure 4). In the present

article, however, the latter effect is not included and will be

considered in a future publication that deals in more detail

with the near wall region alone. The nonlinear mechanical

response of the GL to RBC’s ballistic impact is a complex

and challenging issue, and the appropriate approximations

that are made here must eventually be verified by

experimental microscale studies.

4. Formulation of the problem

We employ the meso-scale LB method to solve all the

governing hydrodynamic equations in our model that,

recall, also involves multi-component fluid flow, off-

lattice or sub-grid, boundary surfaces and a porous-layer

representative of the GL.

L

H

RD

Figure 3. Schematic diagram of the model system. Exploiting
axi-symmetry, flow in a half-channel, H, is considered. Periodic
boundaries are used over the length, L, of one EC, so only a portion
of the vessel is considered explicitly (grey region). The hatched
layer near the wall indicates the glycocalyx, and the arrow-headed
line is used to emphasise the periodic boundary conditions for
particles at the inlet–outlet regions implemented in our
simulations. Gradients vanish on the central symmetry axis
(figure not to scale).

Figure 4. A representation of the assumed mechanical
properties of the glycocalyx protein chains, subject to a
streaming flow only (A) and direct interaction with a flow-
advected particulate (B). Note that the principal deformation is
assumed to be confined to the tip of the filaments, adjacent to the
lumen (figure not to scale).
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The governing hydrodynamic equations for flow in a

porous media, with constant or variable porosity, 1ðxÞ, as

presented in Guo and Zhao (2002), are:

7·u ¼ 0; ð1Þ

›u

›t
þ ðu·7Þ

u

1

� �
¼ 2

1

r
7ð1PÞ þ n72uþ Fð1Þ ð2Þ

Here r, u and P are the fluid density, velocity and pressure

respectively, n is the effective fluid viscosity and the

function Fð1Þ is the total body force with several

contributions:

Fð1Þ ¼ 2
1n

K
u2

1F1ffiffiffiffi
K

p u uj j þ 1G: ð3Þ

In Equation (3), K ¼ 13d 2=150ð1 2 1Þ2 is the

permeability, d is the property of the porous structure,

F1 ¼ 1:75=
ffiffiffiffiffiffiffiffiffiffiffiffi
15013

p
is the geometrical function and G is

the additional body force used to incorporate further

details of the GL and the interfacial immersed boundary

force density which acts between the drop and embedding

fluid (Halliday et al. 2007), when the embedding fluid

occupies the GL domain. This force is further discussed

below, and the other terms represent the presence of porous

material.

In a two-way coupled model, any ballistic contact

between the immersed boundary and GL will produce

compression of the latter. By computing the loss of volume

(or, in 2D, of area) in the GL domain which results from

such a contact, it is, in principle, straightforward to

compute a local increase of the GL material density and,

hence, to determine a local perturbation in the porosity,

1ðxÞ, which might be applied in Equations (1)–(3). In this

way, a two-way coupling could be introduced, though the

observation of its effects is likely to require simulations on

smaller scales than those we pursue here. Hence, we

proceed, in this article, with a static porosity, 1ðxÞ.

To solve the governing Equations (1)–(3) and to

include particulate components, we combine the LB

methods of Guo and Zhao (2002), with the model of

Halliday et al. (2007). The latter allows for the

introduction of two immiscible fluid components and the

formation of diffused interfaces that embed correct

kinematic and interfacial surface tension laws to

efficiently approximate the particulate effects. However,

it is noted that this first-order approximation does not

include a cell membrane bending rigidity or surface area

conservation constraint that is associated with erythro-

cytes. Including such effects would obviate the simplicity

and efficiency of the proposed model whilst only making

relatively minor quantitative differences to the subsequent

WSS calculations. Following the notations of those papers,

the resultant LB algorithm for the particle distribution

functions, f iðx; tÞ, at position x, time t and lattice link

direction i, is written as an evolution process comprised of

a collision and a propagation:

fþi ¼ f iðx; t þ DtÞ

¼ f iðx; tÞ2
1

t
ðf iðx; tÞ2 f

eq
i ðx; tÞÞ þ DtFi;

that is further discussed below. In the last equation, the

equilibrium distribution function, f
eq
i , and lattice source

term, Fi, are defined, respectively, as

f
eq
i ðx; tÞ ¼ tir 1 þ

ei·u

c2
s

þ
u u eiei 2 c2

s I
� �

21c4
s

0
@

1
A;

Fiðx; tÞ ¼ tir 1 2
1

2t

� �
ei·F

c2
s

þ
u·F eiei 2 c2

s I
� �

1c4
s

2
4

3
5:

In these equations, I is the identity matrix, ei and ti are,

respectively, the lattice basis vectors and their associated

weights, cs is the speed of sound of the LB model lattice

used, and t is the relaxation parameter, related to the

simulated fluid viscosity (Succi 2001). The 1 2 1=2t pre-

factor and denominator 1 in these equations occur as a direct

result of using the LB method and ensure the correct

recovery of the target macroscopic equations. Full details

are given in Guo et al. (2002) and Guo and Zhao (2002),

respectively. The density, r, final velocity, u, fluid pressure,

P and kinematic viscosity, n, in our particular LB model, are

expressed in dimensionless lattice units, respectively, as:

r ¼
X
i

f iðx; tÞ;

u ¼
v

p0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

0 þ p1 vj j
p ;

P ¼ rc2
s ;

n ¼
Dtc2

s

2
ð2t2 1Þ;

in which the following auxiliary quantities are implicit

(Guo and Zhao 2002):

rv ¼
X
i

eif iðx; tÞ þ
Dt

2
1rG; p0 ¼

1

2
1 þ

1

2

n

K

� �
;

p1 ¼
1

2

F1ffiffiffiffi
K

p

� �
:

To complete our account of the algorithm, we must

mention that, for multiple fluid LB, the propagation step is

augmented by a fluid segregation process (Halliday et al.

2007), which ensures the correct kinematics and dynamics

as well as the integrity of the emergent interface between

the completely immiscible fluid components used to

G. Pontrelli et al.354
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represent our particulates, as discussed above. The

appropriately extended propagation step is expressed as:

Riðxþ eiDt; t þ DtÞ ¼
R

r
fþi þ tib

RB

r
n̂·ei;

Biðxþ eiDt; t þ DtÞ ¼
B

r
fþi 2 tib

RB

r
n̂·ei;

ð4Þ

where the density of each fluid component is given by

R ¼
P

iRiðx; tÞ and B ¼
P

iBiðx; tÞ and the combined

particle distribution function is f iðx; tÞ ¼ Riðx; tÞ þ Biðx; tÞ,
b is an interfacial segregation parameter, and n̂ is an

interfacial unit normal vector. We also note that, if only

one fluid component exists, Equation (4) reduces to the

standard LB propagation step.

Returning to the definition of the extra body force

term, G in Equation (3), this incorporates both particulate

and glycocalyx forces and is defined as

G ¼
s

2r
p7rN þ E:

The left-hand side term imposes interfacial tension,

s, on deformable particles (i.e. droplets). Here, p ¼ 7·n̂

is the local curvature and rN ¼ ðR2 BÞ=ðRþ BÞ is a

phase field indicator. The right-hand term, E, is a

glycocalyx force that acts upon the particles as defined

in Section 5.

It is important to point out that the necessary off-

lattice, no-slip endothelial surface boundary condition uses

continuous bounce back lattice closure conditions

(Bouzidi et al. 2001), and the pressure-driven flow is

enforced at the inlet–outlet by use of extended periodic

boundary conditions (Kim and Pitsch 2007) that allow a

pressure step to be defined. A symmetric condition is

imposed at the centerline.

It is noted that, in contrast to other methods, the

approach and approximations adopted here dispense with

the need to track explicitly the RBC membranes and

result a computationally inexpensive and simple algorithm

within a single framework.

5. A model of erythrocytes–glycocalyx interaction

In our model of the GL as a porous layer, one consequence

of ballistic contact with an erythrocyte is that the GL is

squashed, transporting the same protein filament mass into

a smaller volume, decreasing its porosity. As discussed in

Section 4, a geometrical model of what is an easy-to-

model volume exclusion effect could be used to construct

a local, contact-induced GL porosity variation. However,

we adopt a ‘light encounter’ model and assume that such

an effect is small on the spatial and temporal scales of

interest here.

Even in the simplest situation, the GL-lumen boundary

should not be regarded as sharp, and there is an ‘uncertainty’

region between bulk, lumen and glycocalyx material. For

this reason, a variable porosity, 1(x, y), is defined. This

quantity tends to a value of 1 in the lumen region and

gradually reduces, on entering the GL region, where it

approaches a minimum value, 1G. This porosity transition is

modelled through the increasing smooth function:

1ðx; yÞ ¼ 1G þ
1 2 1G

2
½1 þ tanh ½jðs2 lÞ��; ð5Þ

where l is the mean GL thickness and the parameter 1=j
determines the distribution of (i.e. the effective standard

deviation of) protein chain lengths, while s(x, y) denotes the

distance measured in the direction perpendicular to the

endothelial boundary. Note that 1G # 1ðx; yÞ # 1 (Figure 5)

and that for 1! 1, we have F ! G and Equations (1)–(3)

reduce the multi-component LB Navier–Stokes equations

for incompressible fluids.

Consider a drop interface impinging on the GL from the

lumen. As the model GL is squashed, an additional,

fictitious, repulsive body force density acts on any part of

the interface which enters the GL region. This force

distribution is so designed that its accumulation produces an

effective Hookean force, acting at the centre of the local

volume. Put another way, the drop-erythrocyte surface is

locally subjected to a surface force distribution, effective in

the GL only, which is directed everywhere in the drop-

surface normal direction. This force device effectively

models the glycocalyx as a continuum of elastic springs,

1

0.8

0.6

0.4

0.2

0

–0.2
0 1

GL Bulk fluid

E(s)

EG

e(s)

eG

2 3 4 5 6 7 8 9 10

Figure 5. The porosity (continuous line) as a function of s,
dimensionless perpendicular lattice distance from the endothelial
surface. The former increases from a minimum value 1G (in the
GL), to the bulk fluid (1 ¼ 1) (see Equation (5)). Similarly, the
elasticity modulus E (dashed line) varies from a maximum value
EG in the GL to 0 (no elastic force) out of it (see Equation (6)).
Note the smooth transition area (due to the uncertain GL
thickness) that is controlled by the parameter j.
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with a modulus E, the value of which gradually decays from

a maximum value, EG (in the GL) to 0 in the lumen, or bulk:

Eðx; yÞ ¼
EG

2
½1 2 tanh½jðs2 lÞ��; ð6Þ

where all notations correspond to Equation (5) (see Figure 5).

It is important to note that the above force acts solely on the

supernatant fluid (drop) and not upon the plasma. Hence, the

relative density of the material which comprises the drop

may be modelled by appropriate choice of the spring

constant EG in Equation (6).

6. Numerical results and discussion

As discussed earlier, it is clear that the model and,

therefore, its data depend on several parameters. Some

relate to the key physical, geometrical or physiological

details in the model (note, all are, in principle, obtainable

from experiments).

For purposes of systematic analysis, we model a

capillary flow after Secomb et al. (2002) by considering a

channel with the following regularly corrugated surface

that corresponds to a uniform sequence of ECs of length l

and height A:

HðxÞ ¼ Hm þ A cosðlxÞ;

Hm ¼ 3:2mm; A ¼ 0:5mm; l ¼ 10mm:
ð7Þ

Hence, the boundary is a smooth profile constituted by

a series of peaks and valleys: the channel has a varying

diameter 2H in the range 5.4–7.4mm and a corrugation

degree of A/Hm ¼ 0.15 (Secomb et al. 2002). The

simulated domain has a length L ¼ l and the GL thickness

is l ¼ 0:7mm. A single droplet of radius RD ¼ 3:278mm is

placed in the middle of the channel and subjected to a

horizontal pressure gradient, F ¼ 0.05 1024 dyn/mm3,

acting in a tube with diameter 2H ¼ 5mm and a

Newtonian fluid flow, a mean flow velocity of U ¼

128mm=s (see Section 2 and Figure 3) is set. The

kinematic viscosity of the plasma is assumed to be

n ¼ 0:01 cm2=s.

To obtain the same flow regime, the classical single

relaxation time D2Q9 LB lattice scheme designated

Lattice Bhatnagar-Gross-Krook (LBGK) (Succi 2001) in a

multi-component form (Halliday et al. 2007) is chosen,

with the following dimensionless lattice parameters:

t ¼ 1:25; r ¼ 1:8; b ¼ 0:67; L ¼ 300;

H ¼ 111; U ¼ 7:2 £ 1023; RD ¼ 98:3;

while the porous medium coefficients used are those

exactly given as in Guo and Zhao (2002), with a Darcy

number Da ø 1024. We note that, since in the present

application the fluid velocity is quite small, the contribution

from the nonlinear drag term in Equation (2) will be

negligible, thus reducing Equation (2) to the Brinkman-

extended Darcy equations. Certain other parameters are

artefacts of the numerical method of our ‘coarse-grained’

mesoscale glycocalyx model. They are thus designated as

‘microscopic’ and quantified as follows:

j ¼ 3; l ¼ 21; EG ¼ 0:01; 1G ¼ 0:6:

Of course, all of the latter might be estimated by fitting

experimental/microscale simulation data. For example, the

standard deviation j could, with appropriate effort, be

measured from a representative sample of protein chain

lengths, l, obtained from microscope images; the effective

elasticity constant from fits to explicit microscale

simulation data. All the above parameters are chosen to

be of a correct order to approximate a physical glycocalyx.

These parameters are seen to produce an observable effect

on the flow in the region of the drop and must be further

quantified (or, at least, bounded within an appropriate

range) to produce quantitative data. It is important to note

that the stability of simulations may be affected by the

combination of the parameters as chosen, which limits the

Figure 6. The droplet’s centre of mass coordinates versus time
[with GL (continuous black line) and without GL (dashed red
line)] (LB units). Note the centre of mass coordinates is
calculated only over the half space of the simulation domain. In a
flow driven by a constant pressure gradient, the oscillation
depends on the wall profile undulation and the alternation of sign
is a model artefact due to the periodic boundary conditions. The
steepest positive slope of the X curve corresponds to the drop’s
transit over the peak, and the steepest negative slope corresponds
to the drop’s transit in the valley. In the case with the GL, the
reduced slope of X(t) (in a transit segment) estimates the droplet’s
decreased mean speed, and the larger value Y indicates a drop’s
lifting over the GL.
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available parameter space for simulation. However, tests

indicate an encouragingly robust simulation system, with a

large and accessible parameter space, probably as a

consequence of the small Re.

We shall consider the flow-induced effects due to the

presence (or absence) of the GL with the above chosen

parameters of elastic coefficient EG (see Equation (6)), and

the porosity function 1G (see Equation (5)). As one may

expect, the average velocity of the drop is smaller in the

presence of the glycocalyx, which constitutes a hindrance

on the lumen flow. Figure 6 clearly illustrates this fact.

Moreover, the mean deformation of the drop is more

pronounced in the presence of the glycocalyx force

(Figures 7 and 8). This is apparent in the difference

between the average y coordinates recorded for the drops

with and without the glycocalyx force present. Hence,

when the drop is in the GL influence region, it is subjected

to the elastic force, which squeezes and lifts it, away from

the boundary, whilst making its shape more elongated

(Figures 7 and 8).

Concerning forces acting on the endothelium, there are

various classes of mechanical stresses associated with the

undulated wall and suspended RBCs. The vessel wall is

sheared by the RBC and compressed by the pressure

exerted by plasma and cells. The shear stress fluctuates in

magnitude and direction from point to point and changes

in time. In considering the action of the glycocalyx as a

sensor of mechanical forces, it is interesting to compute

the shear stress at the GL/lumen interface (GSS). Figure 9

shows the differences for WSS in the cases without and

with glycocalyx: it evidences, in the latter case, a reduction

of the shearing stress, either at the wall (WSS, due to the

plasma only) and at the GL top (GSS, due to the particulate

fluid). It is possible that the GL would be more likely to

protect the ECs from WSS fluctuations associated with

particulate cell transits.
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Figure 7. The flow field for the ‘aggregate’ fluid (drop and supernatant fluids combined) in the region of the endothelium (case without
GL) at the eight instants [20:4:48] £ 104.
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Consider the volumetric flow rate Q in the 2D wavy

channel (in the case of particulate fluid and drop only

fluid), which are computed, respectively, as:

Qb ¼

Ð L
0
dx
ÐH2

H1
vðx; yÞ dy

L
;

Qc ¼

Ð L
0
dx
ÐH2

H1
vðx; yÞH

*
ðx; yÞ dy

L
;

ð8Þ

where H1(x) and H2(x) are the lower and upper wall

boundaries, respectively, and

H *ðx; yÞ ¼
1; if ðx; yÞ is in a RBC;

0; otherwise:

(

Similarly, the averaged velocities of blood and of RBC

are, respectively, as follows:

~vb ¼

Ð L
0
dx
ÐH2

H1
vðx; yÞ dyÐ L

0
dx
ÐH2

H1
dy

;

~vc ¼

Ð L
0
dx
ÐH2

H1
vðx; yÞH

*
ðx; yÞ dyÐ L

0
dx
ÐH2

H1
dy

:

ð9Þ

These quantities depend on the relative position of the

deforming drop with respect to the undulated endothelium,

and, hence, have an oscillatory behaviour. Taking, for

definiteness, the image of a drop travelling across peaks

and valleys, the flow rate Q is a maximum when the drop

passes over a peak, whereas it reaches a minimum value
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Figure 8. The flow field as before in the presence of GL (the extent of the GL is indicated by the dashed line) at the eight instants
[20:4:48] £ 104 (cf. with Figure 7). The single deformable drop travelling over the endothelium has been acted on and deformed by
encountering the GL body force field. The flow appears to be deflected up which would tend to protect the EC surface from increased
WSS.
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when the drop is above the throat (Figure 10(a)): this

aspect is often not explicitly resolved at all, or it appears to

be underestimated in other works, particularly those

which uses the continuum approximation.

The apparent viscosity of the particulate flow can be

obtained by assuming a Poiseuille relation between the

applied constant pressure gradient F ¼ ðDp=LÞ, and the

flow rate, Q. We have the following general relation:

F ¼ kQn; ð10Þ

where k is a constant depending on the geometry only,

while Q and n depend on the flow configuration. In the case

of the same geometry with plasma only (starred case),

driven by the same pressure gradient F:

F ¼ kQ*n*: ð11Þ

From Equations (10) and (11), we have the familiar

relationship (Pries and Secomb 2008):

n

n*
¼

Q*

Q
: ð12Þ

In fact, from simulation, it appears thatQ * is constant in

space and time in both cases, with a glycocalyx (subscript

G) and without it (subscript NOG) having the values:

Q*
G ¼ 0:207; Q*

NOG ¼ 0:439;

In the case of a particulate fluid, Q changes with

time (Figure 10(a)) and its average over a ‘period’ is

measured as:

~QG ¼ 0:13; ~QNOG ¼ 0:33:

The relative ratio is:

Q
*

G

~QG

¼ 1:59;
Q

*

NOG

~QNOG

¼ 1:33:

It turns out that the presence of cells increases the

apparent viscosity and this effect is further enhanced by

the GL. Because resistance in a viscous flow is defined as

Dp=Q, it follows that the ratio Q*=Q in the Equation (12)

measures also the increase in resistance, for the case of

particulate flow, over that of plasma only (Figure 10).

Another issue worth consideration in our explicitly

resolved suspension is the tube hematocrit, HT, represent-

ing the fraction of RBC’s volume (Vc) over the total blood

volume (Vb) (Pries and Secomb 2008). In this case:

HT ¼
Vc

Vb

¼ 0:39:

The discharge hematocrit HD is defined as

HD ¼
Qc

Qb

¼
HTvcH

vbH
;

that is

HT

HD

¼
vb

vc

:

This ratio, which oscillates as long as the RBC travels

over the endothelium, is always ,1 (Figure 10(b)). The

consequence of this fact is a reduced RBC concentration in

the slow-moving regions adjacent to the wall and a lateral
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Figure 9. The GSS and WSS over the periodic surface of an EC
in the case with GL (top) and without GL (bottom) (LB units).
There is a sensible reduction of the value at the endothelium in
the first case, due to the protective action of the GL. The two
figures are relative at instants such that the drop is in the same
position during its transit.
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Figure 10. The blood flow rate (Q) (top), the hematocrit ratio
(HT/HD) (bottom) with GL (continuous black line) and without
GL (dashed red line). These quantities depend on the relative
position of the drop with respect to the undulated wall and hence
show an oscillatory behaviour.
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migration towards the centre (Fahraeus–Lindqvist effect)

(Pries and Secomb 2008). These results are in agreement

with those in Secomb et al. (2002) and Farhat et al. (2011),

and they demonstrate that our model, though restricted to a

2D case, is able to capture important effects in

microvascular flows. Contrary to large-scale simulations,

where blood cells can be adequately modelled as rigid

particles (Melchionna 2011), the present analysis proves

that the wall corrugation, together with the cell

deformability, plays an important role in micro-hemody-

namics.

7. Conclusions

The endothelial glycocalyx is often seen as a sensor and

transducer of mechanical forces. Its role is posited as

crucial in enabling the ECs to respond to fluid shear

forces. In this work, a single-framework, highly flexible

coarse-grained model, able to investigate flow properties

and shear stress variations over the interacting endothelial

surface, GL and the erythrocyte surface, in the

microvascular circulation, has been presented and

demonstrated. Our fully coupled model includes,

specifically, the wall’s EC shape, a porous medium

representation of the glycocalyx that follows the EC

shape and a representation of the particulate effects of

blood. The model has been implemented within the

efficient multi-component LB framework (alone) and has

been used to highlight the differences that arise if flow

parameters and forces, such as the flow rate, shear stress

and hematocrit, are considered in the presence and

absence of a modelled GL. It is seen that a modelled GL

alters both the magnitude and temporal variations in the

flow parameters and, as such, should always be

considered when interpreting flow data from the

microcirculation for clinical use.

Further work on the model can be carried out by

performing simulations at a larger scale, in three

dimensions, by including many particles, and by imposing

membrane physics on the drop interface. Currently, we

have certain of these developments in hand. However, all

extensions increase the computational demand of the

model. We observe, also, a clear need to formulate a

theory, based on supporting experiments, to shed light on

the relationship between the way in which the microscopic

glycocalyx’s constituent complex protein chains are

compacted and their subsequent effect on the effective

porous viscosity and, hence, on flow.
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