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4.1 INTRODUCTION

The complete understanding of the physical mechanisms underlying the correct function-
ing of the human body, from the cellular to the organ level, stands out as one of the ma-
jor challenges in modern medicine (Ethier and Simmons, 2007). Indeed, the ultimate goal
is to turn heuristic knowledge into predictive capabilities, via the quantitative modeling
of the fundamental interactions between basic biochemical processes and biomechanical
mechanisms.

In this framework, although cardiovascular diseases are the leading cause of deaths world-
wide, their etiology is still often debated and therapeutic approaches are usually driven by
risk ranges deduced via clinical records (Fuster and Kelly, 2010). Nevertheless, when address-
ing, for instance, arterial diseases (such as atherogenesis and aneurysms), it is well-known
that pathologies are driven by the biological activity of cells in response to both biome-
chanical and biochemical stimuli (Taylor and Humphrey, 2009). Unfortunately, the specific
causative link between biomechanical/biochemical factors and arterial pathogenesis remains
essentially unknown because of the substantial complexity of the biomechanical/biochemical
environment affecting arterial tissues.

Many biochemical substances (such as oxygen, nutrients, hormones, enzymes, proteins,
tissue inhibitor, regulators of growth, and sometimes drugs) are dispersed in a living body
with concentrations controlled by complex regulatory mechanisms (Sagi and Gaffney, 2015;
Lilly, 2014; Taylor and Humphrey, 2009). Alterations in transport phenomena play a crucial
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role in tissue inflammatory states, mechanical dysfunctions and damage. As a matter of fact,
for instance, the synthesis/degradation of the constituents of the extracellular matrix (ECM)
is regulated by cell–cell signaling pathways involving matrix metalloproteinases (MMPs),
transforming growth factor-β (TGF-β) and many other molecules (Deguchi et al., 2005;
Freedman et al., 2015; García-Alvarez et al., 2006; Jones et al., 2009; Kucich et al., 2002;
Rastogi et al., 2013; Sagi and Gaffney, 2015; van der Slot et al., 2005; Visse and Nagase,
2003). In turn, ECM has a major influence on tissue mechanical properties. As a conse-
quence, molecular transport phenomena highly affect the macroscale mechanics of organs
and macrobiological structures. Moreover, since biological cells respond to mechanical stim-
uli by altering the biochemical environment, mechanical quantities have a strong influence
on transport phenomena (Ethier and Simmons, 2007; Freedman et al., 2015). Therefore, me-
chanical and transport mechanisms represent a closed-loop control system characterized by
an internal feedback.

Under this perspective, the analysis of physio-pathological mechanisms in organs and
macrobiological structures should be addressed via a multiphysics strategy taking into ac-
count the two-way interaction between transport processes and mechanics. This would surely
open to a better understanding of the onset of many pathologies, as well as to develop novel
therapeutic and clinical approaches. For instance, addressing the cardiovascular system, al-
teration in the concentration of MMPs have been shown to play important roles during the
development of cardiovascular diseases (such as plaque formation and rupture, restenosis),
highly affecting the mechanical functionalities of cardiovascular structures (Jones et al., 2009;
Visse and Nagase, 2003).

This chapter aims to present a multiphysics computational strategy for modeling the
previously-introduced coupled mechanical-transport system. This is achieved by account-
ing for the two-way interaction between mechanical tissue response and transport mech-
anisms, coupled via biochemically-motivated remodeling laws. The proposed approach
opens to the analysis of pathological arterial behavior. It is worth observing that a num-
ber of well-established models are available in the specialized literature aiming to de-
scribe the evolution of arterial mechanics in disease (Baek et al., 2006; Figueroa et al., 2009;
Humphrey and Rajagopal, 2002; Humphrey, 2009; Volokh and Vorp, 2008; Watton et al., 2009),
and they are generally referred to as growth and remodeling approaches. Nevertheless, in
existing literature, molecular transport mechanisms involved in cell–cell signaling pathways
are not accounted for, despite of their well-documented importance. Moreover, the proposed
strategy would allow to develop novel computational tools, able to gain effective insights
into the physical factors that influence molecular transport processes in otherwise inacces-
sible locations. As a matter of fact, modeling and computational approaches in conjunction
with appropriately designed experiments are helping researchers to better understand the
link between biochemical environment and arterial diseases. This also aids in the design
of novel devices and the development of novel therapies. For instance, numerical and an-
alytical models have been developed to study the transport of drugs (D’Errico et al., 2015;
Pontrelli and De Monte, 2007), of lipoproteins (Dabagh et al., 2009), or of chemoattrac-
tants (Leemasawatdigul and Gappa-Fahlenkamp, 2012) through vascular walls. Neverthe-
less, there are many important transport problems that have not been solved yet or require
further attention, especially referring to those coupled with chemical reactions or integrated
with tissue mechanics.
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The mechanics of arterial tissues is highly nonlinear and anisotropic (Holzapfel et al., 2000;
Humphrey, 2002; Taylor and Humphrey, 2009), due to the presence of crimped collagen fibers,
whose mechanical response at the microscale is strongly affected by nonlinear molecular and
inter-molecular mechanisms at the nanoscale (Fratzl, 2008). A number of constitutive formu-
lations for arterial tissues have been proposed in the literature and remarkable overviews
are provided by Holzapfel et al. (2000) and by Humphrey (2002). In the framework of struc-
tural approaches, aiming to link model parameters with structural properties of the tissue,
the most widely known constitutive model is probably the one by Holzapfel et al. (2000),
based on an orthotropic hyperelastic material description and characterized by a clear dis-
tinction among arterial principal constituents. Nevertheless, in that model, several collagen
nonlinearities (e.g., nanomechanics, cross-link effects, crimped microstructure) are taken into
account by choosing an exponential-like representation for the fiber strain-energy density
(as in a phenomenological approach), disregarding any direct relationship with micro- and
nanoscale mechanisms, and thus losing predictive capability of the model on these issues.

Alternatively, constitutive hyperelastic models of collagenous tissues based on multiscale
homogenization techniques have been recently introduced (Maceri et al., 2013; Marino and
Vairo, 2013, 2014). These models explicitly incorporate nano- and microscale mechanisms,
giving a special insight on the deep link between histology, biochemistry and mechanical re-
sponse of collagenous tissues. Such an approach allows us to straightforwardly incorporate
histological and biochemical alterations and it has been also generalized for including dam-
age evolution at different scales, induced by both mechanical and non-mechanical sources
(Maceri et al., 2012; Marino, 2016).

With the aim of coupling transport processes with mechanical response, multiscale con-
stitutive approaches are the most promising methodology because they allow introducing
only model parameters with a clear physical meaning, avoiding any phenomenological de-
scription. Accordingly, the multiphysics framework proposed in the present work couples a
multiscale constitutive description of arterial tissues with a mechanistic modeling of molecu-
lar transport, through the definition of remodeling laws based on biochemical evidence.

After a brief overview of some of the main histological–mechanical–biochemical features
of arterial tissues in Section 4.2, the multiphysics model is described in Section 4.3. A case
study is addressed in Section 4.4, analyzing the effects of ECM remodeling mediated by the
transport of MMPs and TGF-β on the compliance of an axisymmetric aortic segment. In de-
tail, proposed results clearly highlight that the alteration of arterial macroscale mechanical
properties straight results from the alteration of the tissue biochemical environment. Finally,
some concluding remarks are drawn in Section 4.5.

4.2 BRIEF ON ARTERIAL TISSUES

An overview of main histological and mechanical features is presented in Section 4.2.1. More-
over, main transport processes within arterial tissues are described in Section 4.2.2 and some
mechanisms involved in tissue remodeling are introduced in Section 4.2.3.
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4.2.1 Histology and Mechanics of Arterial Tissues

Arterial walls are made up of three different tissue layers which are named (from inner
to outer) the tunica intima, the tunica media and the tunica adventitia (Humphrey, 2002).
These three layers are sometimes referred to simply in their shortened version as the in-
tima, the media, and the adventitia. In young and healthy arteries, the intima consists of a
single layer of endothelial cells and its thickening is associated with ageing and onset of arte-
riosclerosis. The media is significantly thicker than the intima and it is made up of concentric
layers (named medial lamellar units) consisting of smooth muscle cells embedded in an or-
ganized network of loose connective tissue (Clark and Glagov, 1985; O’Connell et al., 2008;
Wolinsky and Glagov, 1967). A similar layered structure characterizes the adventitia which in
general is thicker than the intima but thinner than the media (Chen et al., 2011).

The three-dimensional histological structure of a single lamellar unit has been recently in-
vestigated (O’Connell et al., 2008) and described as a thick sub-layer of elastin sheets, sided
by an interlamellar substance made up of water, elastin, smooth muscle cells, and collagen.
Collagen results in about 20–30% of the aortic wall dry-weight (Behmoaras et al., 2005) and is
organized in crimped fibrils with radius varying from 25 to 50 nm (Merrilees et al., 1987). Fib-
rils are in turn arranged in both thick and thin bundles (namely, fibers). Electron microscopy
scan reveals that the fiber period is on the order of 5 μm and the fiber amplitude-to-period
ratio is about 0.2–0.5 (O’Connell et al., 2008).

In both media and adventitia, collagen fibers are arranged in circumferential sub-lamellae.
In each of them, collagen fibers are helically wrapped around the vessel axis, so that the col-
lagen fibers are approximately parallel to one another. Fiber orientation of each sub-lamella
differs from the adjacent ones resulting in a variation of orientations throughout the mu-
ral thickness. Symmetric uni-modal (Chen et al., 2011; O’Connell et al., 2008) and bi-modal
(Schriefl et al., 2012) distributions have been reported for the wrapping angle. In general, fiber
main orientation is close to the circumferential one in the media and close to the axial one in
the adventitia. A schematic representation of arterial histology is depicted in Fig. 4.1.

From a mechanical point of view, the pressure–radius relationship of aortic segments is
characterized by a relatively high distensibility at low pressures (associated with the elastin
content) and a stiffening response for high pressures (related to collagen) (Wolinsky and
Glagov, 1964), see Fig. 4.1. Arterial compliance strongly depends on the highly nonlinear
tissue constitutive response which, in turn, is mainly affected by collagen mechanics (Fratzl,
2008). As a matter of fact, in the case of tissues with collagen fibers mainly aligned along a
single direction and subjected to an along-the-fiber uniaxial traction test, a progressive fiber
straightening and the disappearance of nanoscale kinks within molecules are experienced,
resulting in an increase of the overall tissue stiffness. Accordingly, the stress/strain curves
are typically J-shaped (see Fig. 4.1) and can be subdivided into three main regions (Buehler
and Wong, 2007; Fratzl, 2008; Sasaki and Odajima, 1996):

1. Toe region (strain range, 0–2% circa) is a low stiffness region associated with the removal
of the microscopic crimp in collagen fibers.

2. Heel region (strain range, 2–4% circa) is a region associated with a significant stiffening
response due to the straightening of labile domains of collagen triple-helices (denoted as
molecular kinks) that counteract the entropic forces associated with thermal fluctuations.
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FIGURE 4.1 Multiphysics of arterial response: coupling of arterial micro/nanostructure, mechanics and molec-
ular transport phenomena through the remodeling of tissue constituents: TGF-β , transforming growth factor beta;
MMPs, matrix metalloproteinases; IL, Interleukin; TIMPs, tissue inhibitors of MMPs.

3. Linear region (strain range, greater than 4% circa) is a high stiffness region that is mainly
related to the stretching of collagen triple-helices and to molecular rearrangement mecha-
nisms (i.e., intermolecular sliding highly affected by covalent cross-links among collagen
molecules (Bailey, 2001; Svensson et al., 2013).

Finally, it is worth pointing out that aortic segments in living bodies are pre-stressed and
pre-stretched under zero loads: when the vessel is excised, the aortic segment shortens; when
a ring cross-section of an artery free of external loads is cut radially, an open sector appears
(Kassab, 2006; Rachev et al., 1996; Zhang et al., 2005).
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4.2.2 Molecular Transport in Arterial Tissues

Transport mechanisms are involved in physio-pathological paths that are strictly associated
with an alteration of arterial mechanical response. As a matter of fact, there is clear evidence
that cell–cell communications in the vascular wall can be operated by means of signaling
pathways mediated by diffusion of soluble factors, and that the latter contribute to vascular
physiological activity, pathogenesis, and disease progression (Lilly, 2014). Some important
transport phenomena within arterial tissues are (Lilly, 2014; Taylor and Humphrey, 2009; Sagi
and Gaffney, 2015):

• Oxygen transport. Biological cells require oxygen and other nutrients for their biological
activity which ensure the maintenance of tissue homeostasis. Oxygen diffuses from the lu-
minal surface and, for large blood vessel beyond circa 30 lamellar units, from vasa vasorum
in the outer medial and adventitial layers. Severe vascular diseases that thicken the wall
(e.g., occlusive atherosclerotic plaques) or increase the distance between the flowing blood
and intramural cells (e.g., intraluminal thrombus) affect these transport phenomena and
thus the activity of biological cells. As a matter of fact, these diseases are generally related
to the development of new blood vessels, or neovascularization, which likely occurs due
to chemokines released in response to the local inflammation and/or hypoxic conditions;

• Transport of vasoactive molecules. The intimal endothelium produces vasoactive molecules,
such as nitric oxide (NO), a potent vasodilator, and endothelin-1 (ET-1), a strong vasocon-
strictor. Vasoactive molecules are produced strongly depending on local wall shear stress
at the endothelium; they diffuse within aortic thickness and their rate of consumption de-
pends on vascular smooth muscle cells. These molecules play an important role also on ar-
terial growth and remodeling because NO is an inhibitor of smooth muscle cells prolifera-
tion and collagen synthesis whereas ET-1 promotes both proliferation and matrix synthesis;

• Lipid transport. The development of atherosclerotic process is due to the transport of athero-
genic molecules (e.g., low density lipoproteins) between the blood stream and the vessel
wall. In this mechanisms, shear-dependent changes in the endothelial permeability have a
crucial role;

• Transport of other molecules. Cells (e.g., endothelial cells in the intima, smooth muscle cells
in the media and macrophages in the adventitia) respond to alterations in mechanical
loading via altered gene expression producing, among others, growth factors (such as
the transforming growth factor-beta (TGF-β)), cytokines (inflammatory mediators such
as interleukines (ILs)), matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs
(TIMPs). For instance, the local alteration of intramural stress induces the production and
the activation of growth factors (e.g., TGF-β), as well as of MMPs. The latter are also up-
regulated by indirect effects driven by an altered wall shear stress on endothelial cells and
activated by plasmin. In this framework, transport processes are of main importance. As a
matter of fact, the media layer (the most important from a biomechanical point of view) is
poorly accessible to inflammatory cells but remains accessible to soluble mediators (Michel
et al., 2007). A detailed description of signaling pathways involving these molecules is be-
yond the scope of the present work. As illustrative examples, ILs (produced for instance
by macrophages in the adventitia) diffuse up to smooth muscle cells (SMCs) in the me-
dia and induce the secretion of MMPs by SMCs. On the other hand, TGF-β (produced
for instance by endothelial cells) activates SMCs to express TIMPs which, in turn, inhibit
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MMPs. Both TGF-β and MMPs participate in a wide array of cellular responses including:
proliferation, angiogenesis, differentiation, apoptosis, inflammation, and wound healing
(Jones et al., 2009; Sagi and Gaffney, 2015). Moreover, non-homeostatic concentrations of
these molecules affect both composition and organization of constituents of the extracel-
lular matrix. The above-introduced mechanisms (schematically depicted in Fig. 4.1) are
further addressed in Section 4.2.3 in terms of remodeling effects.

4.2.3 Extracellular Matrix Remodeling

Extracellular matrix (ECM) is an acellular component of all tissues and organs which pro-
vides the necessary physical scaffolding and serves as a source of crucial biochemical and
biomechanical signals which, in turn, regulate tissue morphogenesis, differentiation, and
homeostasis (Ethier and Simmons, 2007; Sagi and Gaffney, 2015). ECM remodeling is a change
in tissue structure, achieved by the reorganization of existing constituents (e.g., altered orien-
tation or cross-linking) or by the synthesis of new constituents. Remodeling may or may not
alter the mass density, but it does change tissue stiffness and strength properties which are
mainly conferred by the elastin network and collagen fibers, as recalled in Section 4.2.1.

The dysregulation of the degradation and the deposition of the extracellular matrix (ECM)
leads to pathological remodeling of cardiovascular tissues which represents an open issue
still under investigation (Deguchi et al., 2005; García-Alvarez et al., 2006; Jones et al., 2009;
Kucich et al., 2002; Rastogi et al., 2013; Sagi and Gaffney, 2015; van der Slot et al., 2005;
Visse and Nagase, 2003). For instance, alterations in collagen cross-linking are often related
to connective tissue diseases (such as the Marfan’s syndrome) and common cardiovascular
pathologies (e.g., restenosis after angioplasty, aortic dilation, dissecting aneurysm, Brüel et
al., 1998; Carmo et al., 2002).

Many biochemical pathways intervene in vivo when ECM remodels and most of them are
open-issues still under investigations. In this framework, a major biochemical mechanisms in-
volves the metabolism of TGF-β , MMPs, ILs and TIMPs. Growth factors TGF-β bind to a spe-
cific receptor in SMCs and activates a cascade of events that promote ECM deposition (e.g.,
deposition of collagen and elastin, Jones et al., 2009; Kucich et al., 2002), affect ECM biochem-
ical features (e.g., inducing collagen cross-linking, van der Slot et al., 2005) and repress ECM
degradation (e.g., promoting TIMPs expression, García-Alvarez et al., 2006). On the other
hand, MMPs are proteinases that induce ECM degradation (e.g., proteolysis of collagen and
elastin, Sagi and Gaffney, 2015; Visse and Nagase, 2003) and affect the disorganization of ECM
constituents (e.g., misalignment of collagen fibers, Deguchi et al., 2005; Rastogi et al., 2013).
Under normal physiological conditions, MMPs activity is down-regulated, among other
mechanisms, by endogenous tissue inhibitors (TIMPs) (Visse and Nagase, 2003; Sagi and
Gaffney, 2015). On the contrary, ILs induce the secretion of MMPs by SMC (Lee et al., 1995;
Maiellaro and Taylor, 2007).

Under homeostatic conditions, a balance between these mechanisms is maintained in or-
der to tightly control matrix degradation and matrix deposition. A loss of activity control
may result in diseases such as arthritis, cancer, atherosclerosis, aneurysms, nephritis, tissue
ulcers, and fibrosis (Sagi and Gaffney, 2015; Visse and Nagase, 2003). For instance, within
the aneurysmal aorta, this balance is disrupted by an overproduction of MMPs or an under-
production of TIMPs, favoring an enhanced proteolytic state and driving matrix degradation
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(Jones et al., 2009; Visse and Nagase, 2003). Thus, while the physiological remodeling process
within the arterial wall operates to maintain the physiological arterial function, pathological
dysregulation can result in an excessive degradation of critical ECM components, leading to
loss of mechanical strength and integrity, and resulting in arterial dilatation, dissection, or
rupture (Jones et al., 2009).

Accordingly, the concentration of these molecules within arterial walls are involved in the
etiology of many cardiovascular disease, resulting associated with a coupled system made up
by arterial biomechanics, transport phenomena and molecular biological activity. The afore-
described balance between TGF-β , MMPs, ILs and TIMPs (schematically depicted in Fig. 4.1)
will represent our study case, addressed in Section 4.4.

4.3 ARTERIAL MULTIPHYSICS MODELING

After a brief introduction of geometrical features and of the general notation (see Sec-
tion 4.3.1), the general multiphysics rationale is introduced in Section 4.3.2. In the following,
possible strategies for modeling each ingredient which builds up the proposed multiphysics
approach are described. In detail, arterial mechanics is presented in Section 4.3.3. Thereafter,
molecular transport problem is addressed in Section 4.3.4, and biochemically-motivated re-
modeling laws are defined in Section 4.3.5. Finally, a computational strategy for the coupled
problems involved in arterial multiphysics is presented in Section 4.3.6, moving towards an
analytical solution.

4.3.1 Geometric Description and General Notation

An arterial segment, A, is regarded as a set of continuously distributed material points X ∈A,
namely a continuum-body, undergoing a deformation mechanism along the time-path gov-
erned by the variable t ∈ R

+, with R
+ denoting the set of non-negative real numbers (and

with R
++ = R

+ \ {0}). Moreover, let x = x(X, t) ∈ R3 denote the position of a material point
X in a three-dimensional Euclidean space at time t , with R

n denoting an n-dimensional real
coordinate space.

For what follows, it is useful to introduce the following terms:

• The mechanical state is described by the current configuration Ω =Ω(t) (namely, the re-
gion occupied by A at time t ), the second-order right Cauchy–Green deformation tensor
C=C(x, t) and the second-order Cauchy stress tensor σ = σ (x, t);

• The biochemical environment is defined by the occurrence of M active molecules in Ω

and is described by the vector c = c(x, t) ∈ R
M where the qth component of c (namely,

cq = cq(x, t)) represents the concentration of the qth biologically active molecule in Ω ;
• The structural (histological, biochemical, and biophysical) features relevant to tissue con-

stitutive response, sj , are collected in the set S = {s1, . . . , sS}. Due to possible remodeling
mechanisms, space-/time-dependency of the values of sj ∈ S is accounted for, namely
sj = sj (x, t).

As general notation rules, let Σ = ∂Ω be the boundary of Ω and n be the outward normal
unit vector to Σ . Moreover, let I be the second-order identity tensor, Div(·) and Grad(·) (resp.,
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FIGURE 4.2 Multiphysics strategy for arterial behavior: coupling of mechanical M, transport T, and remodeling
R problems for obtaining mechanical state {Ω,C,σ }, biochemical environment c, and structural features S . Sets I∗
and B∗ respectively collect initial and boundary conditions for problem ∗ = {M,T,R}.

div(·) and grad(·)) be the divergence and gradient operators with respect to the reference
(resp., current) configuration. As subscript/superscript notation, the subscript o indicates
quantities in the reference configuration, the superscript T denotes the transpose operator,
the subscript q implies values in {1, . . . ,M}, and the subscript j implies values in {1, . . . , S}.
Finally, 〈·〉 denotes the Macaulay brackets, that is, 〈x〉 = (x + |x|)/2.

4.3.2 Multiphysics Modeling Rationale

The multiphysics strategy is based on the following ingredients (schematically depicted in
Fig. 4.2):

1. Description of arterial mechanics. Arterial mechanics is obtained by solving problem M (de-
fined in Section 4.3.3) giving the mechanical state {Ω,C,σ } starting from reference config-
uration Ωo, structural parameters S and the set of mechanical boundary conditions BM,
namely

{Ω(t),C(x, t),σ (x, t)} =M(Ωo,S(x, t),BM) . (4.1)

Tissue constitutive properties within problem M are defined from a strain-energy density
ΨT which depends on deformation C and structural features S , namely ΨT = ΨT (C,S);

2. Description of molecular transport. The biochemical environment c is obtained by solving the
transport problem T (defined in Section 4.3.4) starting from current configuration Ω , struc-
tural features S , strain C and the set of transport initial IT and boundary BT conditions,
namely

c(x, t)= T(Ω(t),S(x, t),C(x, t),IT,BT) ; (4.2)

3. Description of remodeling laws. Tissue remodeling is obtained by solving problem R (defined
in Section 4.3.5) which gives the values of structural features in S starting from current
configuration Ω , biochemical environment c, and the set of initial IR and boundary BR
conditions, namely

S(x, t)=R(Ω(t), c(x, t),IR,BR) . (4.3)
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FIGURE 4.3 Collagen-related nonlinearities in arterial tissues – multiscale coupled mechanisms. Symbols are
defined in Section 4.3.3.1.

4.3.3 Arterial Mechanical Problem

Arterial mechanics is here described by firstly introducing the nonlinear behavior of collagen
fibers in Section 4.3.3.1 which is coupled with a macroscale constitutive description in Sec-
tion 4.3.3.2, employed in the solving equations for arterial macroscopic response, presented
in Section 4.3.3.3.

4.3.3.1 Collagen Multiscale Nonlinearities
Collagen fibers in arterial tissues are characterized by a nonlinear mechanical behavior, re-
lated to multiscale coupled mechanisms (see Fig. 4.3). Fibers are assumed to have a circular
cross-section of radius rF (and area measure AF = πr2

F ). The crimped structure of collagen
fibers is taken into account by considering locally periodic fibers of along-the-chord period
length LF and amplitude HF in the current configuration (resp., LF,o and HF,o in the refer-
ence configuration).

In turn, collagen fibers are bundles of densely-packed fibrils wherein collagen triple-helical
molecules (of cross-sectional area Am and length �m) are mutually interconnected into a head-
to-tail arrangement through intermolecular covalent cross-links, described by their average
occurrence per molecule Λc. Therefore, fibril mechanics can be described as related to molec-
ular sliding (counteracted by cross-links with stiffness kc) in series with molecular elongation
(Maceri et al., 2012; Marino, 2016).

At the nanoscale, the elongation of collagen molecules is governed by in-series entropic
and energetic mechanisms (Buehler and Wong, 2007; Fratzl, 2008; Maceri et al., 2012; Marino,
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2016). The former are associated with thermal fluctuations (depending on temperature T ,
molecular persistence �p and contour �c lengths, as well as on molecular length �m,o in the
reference configuration), and the latter with the uncoiling and the stretching of collagen triple
helices (depending on low-strain Êo and high-strain Ê tangent moduli, molecular uncoiling
strain εho , and uncoiling resistance η).

Accordingly, the set SF of histological, biochemical and biophysical features, describing
collagen fiber mechanical behavior, results in

SF = {Sf , HF,o, LF,o, rF } , (4.4a)
Sf = {Sm, kc, Λc} , (4.4b)

Sm = {�m,o, �p, �c, Am, T , Êo, Ê, εho } , (4.4c)

where the multiscale nature is highlighted by the inclusions Sm ⊂ Sf ⊂ SF .
By following the Maceri–Marino–Vairo multiscale rationale (Maceri et al., 2013; Marino

and Vairo, 2013, 2014) (summarized in Appendix A for the sake of completeness), collagen
fiber mechanics is defined in terms of their along-the-chord tangent modulus CF , equal to
(Marino and Wriggers, 2016)

CF =Ef

�2
F +H 2

F√
�2
o +H 2

o

[
�F + 4H 2

F

3r2
F �F

(
�2
F +H 2

F

)]−1

, (4.5)

where �F = LF/4 and Ef is the tangent modulus of collagen fibrils (see Eqs. (A.1) in Ap-
pendix A).

It is worth pointing out that, due to multiscale mechanisms, Ef , �F , and HF are functions
of the fiber along-the-chord stretch λF = LF/LF,o. In particular, it results in �F = �F (λF ) =
λFLF,o/4, while functions Ef = Ef (λF ) and HF = HF (λF ) are determined from inter-scale
compatibility relationships, expressed by the system of differential equations (A.6) in Ap-
pendix A.

Moreover, it is worth noticing that fibril modulus Ef in Eqs. (A.1) is fully defined in
terms of structural parameters Sf . In order to highlight the explicit dependence of fiber me-
chanical response by the set of structural parameters SF in Eqs. (4.4), the functional form
CF = CF (λF ,SF ) is conveniently employed in what follows.

4.3.3.2 Tissue Constitutive Model
Arterial tissue is regarded as a three-phase substance comprising crimped collagen fibers
with volume fraction VC , a non-collagenous matrix with volume fraction VM and other
non-bearing-load constituents of volume fraction V0 = 1 − VC − VM . It is remarked that
VM comprises the volume fraction VEL of the elastin network that bears load (i.e., not in-
cluding the fragmented elastin), and other constituents of similar stiffness (e.g., cells). Ac-
cordingly, V0 represents the amount of fragmented elastin, degraded collagen as well as
other possible non-bearing-load constituents (Maceri et al., 2013; Marino and Vairo, 2013;
Rezakhaniha et al., 2011).

Accounting for the lamellar structure of the arterial tissue (see Section 4.2.1), the main di-
rection of collagen fibers in a single sub-lamella is described by the unit vector eF , in the
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following referred to as the fiber-chord direction. Disregarding any curvature effect, collagen
fibers are organized in thin planar sheets identified by the orthonormal basis (eF ,nF ,kF )

where kF is the normal direction to the tissue plane identified by (eF ,nF ). Due to arterial
lamellar structure, both volume fractions and collagen orientation are space-dependent func-
tions, even when remodeling mechanisms do not occur (Fig. 4.1).

In the context of nonlinear hyperelasticity, the passive mechanical behavior of the arterial
tissue is described by introducing the tissue strain-energy function ΨT per unit reference
volume from which the Cauchy stress tensor σ is obtained as:

Jσ =−pI+ 2F
∂ΨT

∂C
FT , (4.6)

where J = √I3 with I3 = det(C), F is the deformation gradient, C = FT F and p acts as a
Lagrange multiplier introduced to enforce the incompressibility constraint (namely, J = 1)
(Auricchio et al., 2013).

In agreement with a constrained mixture approach (Humphrey and Rajagopal, 2002;
Humphrey, 2009), tissue strain-energy density ΨT is split in collagen-related ΨC and non-
collagen-related ΨM contributions (Holzapfel et al., 2000; Wriggers, 2008). Accordingly, it
results in

ΨT (C,S)= VCΨC(C,S)+ VMΨM(Ĉ) , (4.7a)

where Ĉ= I
−1/3
3 C is the isochoric part of deformation. Collagen-related strain-energy contri-

bution is defined as

ΨC(C,S)=
∫ 1+〈λF−1〉

1

∫ 1+〈ξ−1〉

1

CF (η,SF )

η
dηdξ , (4.7b)

where CF is given in Eq. (4.5) and fiber along-the-chord stretch λF results in

λF =
√

Tr(CM)= ‖F eF,o‖ . (4.7c)

Furthermore, a standard neo-Hookean approach for incompressible materials is employed
for non-collagen-related strain-energy contribution ΨM , resulting in

ΨM(Ĉ)= kM(Î1 − 3) , (4.7d)

with kM being a material constant and Î1 = I
−1/3
3 Tr(C).

Accordingly, arterial tissue mechanical response depends on set S of biophysical, biochem-
ical, and histological parameters,

S = {SF , eF,o, VC, VM, kM} , (4.8)

where SF (defined in Eqs. (4.4)) accounts for collagen nonlinearities.
It is worth pointing out that cells in arterial tissues (i.e., SMCs) may contract and relax, af-

fecting the in vivo tissue response. SMCs active contraction is here neglected, although present
formulation can be straightforwardly generalized by following well-established approaches
(e.g., Nardinocchi and Teresi, 2007).
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4.3.3.3 Mechanical Equilibrium

Arterial mechanical equilibrium is associated with the solution of problem M (see Eq. (4.1))
which is here defined. In general, arterial mechanics is a fluid–structure interaction problem,
with boundary conditions BM on the arterial luminal surface related to blood flow. In this
work, the problem is simplified by considering stationary conditions for the fluid. Therefore,
apart from possible kinematic constraints, a given uniform luminal pressure is considered,
neglecting any unsteady fluid–structure interaction effects. Accordingly, boundary condi-
tions are defined by:

BM :
{

a given surface traction t̂ ∈R3 on Σσ,o,

a prescribed displacement û ∈R3 on Σu,o,
(4.9)

with Σu,o ∪Σp,o =Σo and with t̂ describing the assigned luminal pressure.
The Mechanical Problem M is defined as follows:

Mechanical Problem M. Find

Ω = {x(X, t) with X ∈A, t ∈R+} , S=√
I3F−1σF−T ,

such that

Div(FS)= 0 in Ωo , with
{

FSno = t̂ on Σσ,o,

u= û on Σu,o,

where F= I+Grad u is the deformation gradient, u= x−xo is the displacement field, and S is
the second Piola–Kirchhoff stress tensor defined from the Cauchy stress tensor σ in Eq. (4.6),
with ΨT = ΨT (C,S) in Eq. (4.7), C= FT F and I3 = det(C).

4.3.4 Molecular Transport Problem

The biochemical environment c in arterial tissue is obtained defining the Transport Problem T
(see Eq. (4.2)) as an advection–diffusion–reaction problem for each active molecule q (Truskey
et al., 2010). To this aim, let us introduce:

• The diffusivity Dq that generally results in a space dependent second-order tensor with
non-negative elements and accounts for possible anisotropy effects. It can be a function of
tissue microstructure (described by S) and of the existing biochemical environment (rep-
resented by c). Accordingly, it becomes Dq =Dq(x,S, c);

• A reaction term Rq that is split in a source term R+q and a consumption term R−q , namely
Rq = R+q − R−q . These terms include possible sources, sinks, or interactions among the
substances. For example, a substance can bound to cell receptor and can activate a signaling
effect that acts as a source or sink for other species (see Section 4.2.3); an anomalously
stretched tissue can promote or can inhibit microchannels formation, paving the way to
chemical agent reactions. Accordingly, the reaction term generally depends on the existing
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biochemical environment (described by c) and on tissue strain1 (namely, C), resulting in
R±q =R±q (c,C);

• The filtration velocity v that is associated with seepage. Vessel walls are indeed perme-
able to blood plasma, resulting in a filtration flux over the entire luminal surface, in-
duced by the occurrence of transmural pressure gradients (Wada and Karino, 1999). As
a consequence, the molecules are also transported in the vessel radial direction, with a
filtration velocity that can be considered almost constant and, for physiological trans-
mural pressure gradients, on the order of 10−6 cm/s (Pontrelli and De Monte, 2007;
Vairo et al., 2010).

Boundary conditions are defined by

BT :

⎧⎪⎨⎪⎩
a given concentration ĉq ∈R+ on Σc,

a prescribed concentration flux Ĵq ∈R on ΣJ ,

a permeable surface with permeability λ̂q ∈R+ on Σr,

(4.10)

with Σc ∪ ΣJ ∪ Σr =Σ , and associated respectively to Dirichlet-, Neumann- and Robin-type
conditions (Farlow, 1982; Tarbell, 2003). An initial concentration profile coq(x) at time t = 0
defines the initial condition IT.

The Transport Problem T is defined as follows:

Transport Problem T. Find cq(x, t) such that

∂cq

∂t
+ div(−Dq(x,S, c)grad cq + vcq)=R+q (c,C)−R−q (c,C) in Ω ,

with cq(x,0)= coq(x), and⎧⎪⎨⎪⎩
cq(x, t)= ĉq on Σc,

−Dq grad cq(x, t) · n= Ĵq on ΣJ ,

−Dq grad cq(x, t) · n= λ̂qcq + Ĵq on Σr.

4.3.5 Remodeling Laws

The Remodeling Problem R (see Eq. (4.3)) is here presented as a non-local problem and by
taking inspiration from the logistic function which finds application in a range of fields in-
cluding biology, chemistry, medicine, and biomathematics (Vandermeer, 2010). To this aim,
the following quantities are introduced:

• An homeostatic value for the j th structural feature, denoted by s̄j = s̄j (x), corresponds to
a set of values (collected in C̄j ) for the concentration profiles c not activating remodeling;

1 Alternatively (or in conjunction), reaction terms might depend on tissue stress σ . This is not considered in
what follows, although the present approach can be straightforwardly generalized.
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• The homeostatic imbalance, denoted by Ij , represents the imbalance from the homeostatic
state induced by remodeling such that, roughly speaking, one has

sj → s̄j + Ij (c) . (4.11a)

The quantity Ij depends on biochemical mechanisms (described by c), resulting in Ij =
Ij (c), and it activates for non-homeostatic concentrations, namely Ij (c) = 0 if c ∈ C̄j and
Ij (c) �= 0 if c /∈ C̄j . A general expression for Ij (c) cannot be provided because of high
case-by-case variability. In fact, experimental observations (see, for instance, the ones re-
ported in Section 4.2.3) highlight that the same structural feature can be altered in a
very different way by different molecules, cell–cell signaling pathways can be involved,
and biochemistry-dependent up- and down-regulations often occur. As a general rule-
of-thumb and assuming an additive decomposition of the remodeling mechanisms, Ij (c)
could be defined as

Ij (c)=
M∑
q=1

iqj (cq) , (4.11b)

with iqj (cq) being the remodeling law which drives sj as a function of cq . For instance,
a linear threshold-based activation law is obtained by defining iqj (cq) as

iqj (cq)=±KR
qj 〈cq −CR

qj 〉 (4.11c)

where CR
qj is the threshold value activating remodeling, KR

qj is a positive remodeling con-
stant, and the sign depends on the biochemical activity (namely, it is positive if cq induces
the synthesis of sj and negative for its degradation);

• The set Kj of admissible values for sj accounts for physical constraints;
• The remodeling diffusivity Aj accounts for non-local and possible anisotropic effects as-

sociated with the influence area of the remodeling stimulus. In general, Aj is a space-
dependent second-order tensor with non-negative elements and can be a function of tissue
microstructure (described by S) and biochemical environment (described by c), namely
Aj =Aj (x,S, c);

• The remodeling viscosity νj ∈R++ accounts for the biochemical resistance to remodeling.

In general, a prescribed flux Qj ∈ R can be imposed as a boundary condition BR on Σ in
order to account for possible external agents (e.g., chemical, electromagnetical, radioactive
factors) acting on the boundary surface and inducing remodeling. An initial value soj (x) at
time t = 0 defines the initial condition IR.

The Remodeling Problem R is defined as follows:

Remodeling Problem R. Find sj = sj (x, t) ∈Kj such that

∂sj

∂t
− div[Aj (x,S, c)grad(sj − s̄j )] = −

(
sj

s̄j + Ij (c)
− 1

)
sj

νj
in Ω ,

with sj (x,0)= soj (x) and −Aj grad(sj ) · n=Qj on Σ .
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The solution of Problem R gives the implicit relationship S = S(c). In particular, consider-
ing an initial homeostatic state (namely, c= c̄j and soj = s̄j ), it is immediate to observe that R
gives sj = s̄j (since Ij (c̄j )= 0). On the other hand, when c �= c̄j , the remodeling is activated
and it induces a variation of sj .

It is worth highlighting that the description of remodeling through problem R does not
allow us to consider the natural turn-over of ECM constituents but it represents an effective
strategy for describing tissue pathological remodeling associated with alterations in tissue
biochemical environment.

4.3.6 Integrated Computational Strategy: Towards an Analytical Solution

From the complex interplay of the afore-described ingredients, arterial multiphysics is gov-
erned by a nonlinear and strongly-coupled system of partial differential equations, resulting
in a closed-loop system (see Fig. 4.2). As a matter of fact, Transport Problem T (Section 4.3.4)
affects the Remodeling Problem R (Section 4.3.5) and vice versa. Moreover, remodeling mech-
anisms alter S and thus the solution of the Mechanical Problem M (Section 4.3.3) which, in
turn, affects the Transport Problem T because the latter is solved in the current configura-
tion Ω and the reaction terms R±q depend on C (namely, a mechanical feedback mechanism
occurs).

Rigorously, the solution of Problems M, T and R should be faced via a monolithic ap-
proach. Accordingly, the development of a solution strategy for arterial multiphysics is not a
trivial task. Nevertheless, it is worth highlighting that, due to arterial adaptation processes,
remodeling laws are characterized by large time scales (i.e., months to years) which can be
believed to be significantly higher than the ones of microscale transport (i.e., hours to days)
and of arterial mechanics (i.e., seconds due to the characteristic times of the cardiac cycle).

Taking advantage of the separation of time scales, Problem i (with i = M,T,R) can be
solved by considering its own time-variable ti and a characteristic time Ti in which the so-
lution of Problem i attains a steady-state, with TR
 TT
 TM. Accordingly, the principle of
separation of time-scales might be exploited for obtaining an effective solution strategy. Nev-
ertheless, a solution strategy for the fully-coupled formulation is beyond the scope of present
work. Here a number of simplifying assumptions are introduced in order to move towards
a quasi-analytical solution strategy and to show the effectiveness of the present approach. In
detail, the following assumptions are considered:

1. Dq in T does not depend on tissue microstructure S ;
2. R±q in T does not depend on C (i.e., no mechanical feedback is accounted for);
3. T is solved on the arterial configuration Ω̄ corresponding to the homeostatic state, associ-

ated with S̄ = {s̄1, . . . , s̄S};
4. R is solved assuming that remodeling is a local phenomenon (namely, Aj = 0);
5. Since TR 
 TT, R is solved employing steady-state concentration profiles c̃(x) =

(c̃1(x) . . . c̃M(x));

In agreement with previous assumptions, Reduced Transport T̃ and Remodeling R̃ Prob-
lems are introduced such that

c̃(x)= T̃(Ω̄,BT) , S(x, t)= R̃(c̃(x),IR) . (4.12)
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FIGURE 4.4 Arterial multiphysics modeling: the fully-coupled system reduces to the open-loop one by neglecting
the mechanical feedback on molecular transport (crossed right-oriented arrow) and the dependence of the transport
on the remodeling (crossed left-oriented arrow) obtained from the fully-coupled system.

Problems T̃ and R̃ are defined as follows:

Reduced Transport Problem T̃. Find c̃q (x) such that

div(−Dq(x, c̃)grad c̃q + vc̃q )=R+q (c̃)−R−q (c̃) in Ω̄

with ⎧⎪⎨⎪⎩
c̃q (x)= ĉq on Σ̄c,

−Dq grad c̃q (x) · n= Ĵq on Σ̄J ,

−Dq grad c̃q (x) · n= λ̂q c̃q(x)+ Ĵq on Σ̄r .

Reduced Remodeling Problem R̃. Find sj = sj (x, t) ∈Kj such that

∂sj

∂t
=−

(
sj

s̄j + Ij (c̃)
− 1

)
sj

νj
,

with sj (x,0)= soj (x).

It is worth pointing out that, assuming Kj ≡ R, problem R̃ can be solved in an analytical
way, obtaining

sj (x, t)=
soj (x)[s̄j (x)+ Ij (c̃)] exp(t/νj )

s̄j (x)+ Ij (c̃)+ soj (x)[exp(t/νj )− 1] , (4.13a)

where it is immediate to verify that

lim
t→+∞ sj (x, t)= s̄j (x)+ Ij (c̃) . (4.13b)

Accordingly, under the afore-introduced assumptions, M does not affect the solution of T
and R (apart from the computation of the homeostatic configuration). Clearly, the solution
of T affects R which, in turn, affects M. As schematically depicted in Fig. 4.4, an open-loop
multiphysics system is obtained, opening to the investigation of the effects of biochemical
processes on mechanics but not vice versa.

In this case, open-loop arterial multiphysics can be obtained from the pseudocode in Ta-
ble 4.1. The proposed solution strategy opens a way to develop analytical solutions, which
allow the implementation of extensive parametric analyses aiming to furnish insights into the
effects of pathological/healing biochemical stimuli on arterial mechanics. This is the aim of
the case study addressed in the following Section 4.4.
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TABLE 4.1 Pseudocode of the algorithm for open-loop arterial multiphysics
1. {Ω̄, C̄, σ̄ } =M(Ωo, S̄(x),BM),
2. c̃(x)= T̃(Ω̄,BT),
3. S(x, t)= R̃(c̃(x),IR),
4. {Ω(t),C(x, t),σ (x, t)} =M(Ωo,S(x, t),BM).

4.4 AN AXISYMMETRIC CASE STUDY

In agreement with the evidence in Section 4.2.3, a model for the physiopathological con-
trol system involved on ECM remodeling in aortic tissues is described in what follows, by
addressing the effects of microscale transport phenomena of MMPs (produced by SMCs in
the media), TGF-β (produced by endothelial cells in the inner intima), and IL (produced by
macrophages in the outer adventitia) on the aortic response.

Only the media layer is addressed, since it is the most important from the mechanical point
of view. Under axisymmetrical geometric assumptions, the arterial segment (characterized by
internal and external radii ri and re , respectively) is loaded by a uniform internal pressure Pi .
The effects of ECM remodeling mechanisms on arterial compliance is analyzed, by obtaining
the pressure–radius relationship of arterial segments associated with the transport and the
biochemical activity of MMPs, TGF-β and ILs which alter, as structural features: elastin and
collagen volume fractions (VEL and VC ), collagen fiber radius (rF ), inter-molecular cross-links
density (Λc), and fiber orientation distribution (see Fig. 4.5). In the following, subscript a

takes values in {2,3}, q in {1,2,3}, and j in {1, . . . , S}.

4.4.1 Arterial Geometry and Structure

A single-layer thick-walled right cylinder (La long) is addressed, modeling the media layer
of an aortic segment. By following the opening angle method (see Fig. 4.5) and denoting
by α the opening angle (Auricchio et al., 2014; Holzapfel et al., 2000), the material points in
the reference configuration Ωo (assumed to be load-free and stress-free) are identified by the
cylindrical coordinates xo = (ro, θo, zo) where

ri,o ≤ ro ≤ re,o , 0≤ θo ≤ 2π − α , 0≤ zo ≤La,o , (4.14a)

for the radial, circumferential, and axial coordinate, respectively. On the other hand, the cur-
rent configuration Ω is described by the cylindrical coordinates x= (r, θ, z) where

ri ≤ r ≤ re , 0≤ θ ≤ 2π , 0≤ z≤La . (4.14b)

Introducing κ = 2π/(2π −α) and λz as a constant axial stretch, function x= x(xo) results in

r = r(ro)=
√

r2
o − r2

i,o

κλz
+ r2

i , θ = θ(θo)= κθo , z= z(zo)= λzzo , (4.14c)
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FIGURE 4.5 Axisymmetric case study for arterial multiphysics. Reference (with opening angle α and radial co-
ordinate ro) and current configuration (with radial coordinate r , internal and external radius ri and re , and luminal
pressure Pi ). It is sketched the transport of matrix metalloproteinases (MMPs), transforming growth factor-beta
(TGF-β), interleukines (ILs), the remodeling of elastin and collagen volume fractions (VEL and VC ), collagen fiber
radius (rF ), inter-molecular cross-links density (Λc), and fiber orientation distribution.

due to the incompressibility condition. The inverse function ro(r) can be also straightfor-
wardly defined as

ro = ro(r)=
√
κλz(r2 − r2

i )+ r2
i,o . (4.14d)

Moreover, the deformation gradient expressed in the cylindrical coordinate system results
in

F= ∂x
∂xo
= diag[λr, λθ , λz] = diag

[
∂r

∂ro
,
r

ro

∂θ

∂θo
,
∂z

∂zo

]
(4.15a)

with

λr = λr(r)= ro(r)

κλzr
, λθ = λθ (r)= κ r

ro(r)
. (4.15b)

Moreover, introducing θ and z as the unit vectors in the circumferential and axial direction,
respectively, the unit vector identifying the direction of collagen fibers is described by

eF = cosβ θ + sinβ z , (4.16a)

where β represents collagen fiber angle in the current configuration with respect to the cir-
cumferential direction. Accordingly, from Eq. (4.7c), one has
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λF =
√
λ2
θ cos2 βo + λ2

z sin2 βo , (4.16b)

where βo represents the angle of collagen fibers in the reference configuration.
Addressing arterial microstructure (see Section 4.2.1), media lamellar units (MLUs) are

explicitly considered and each MLU is regarded as made up of a thick elastin sub-layer and
a composite interlamellar substance with elastin and collagen fibers (see Appendix B for a
detailed description). In order to account for the heterogeneous lamellar structure of aortic
media layer and for remodeling mechanisms, structural features S in Eq. (4.8) are assumed
to vary on the radial coordinate r only, namely S = S(r, t).

As a model assumption, structural features SR = {VEL,VC, rF ,Λc,βo} ⊂ S are assumed to
undergo remodeling, while the remaining model parameters SNR = S \SR are assumed to be
constant in time.

4.4.2 Quasi-Analytical Arterial Mechanics
Under the afore-introduced assumptions on arterial geometry and microstructure, the solu-
tion of Problem M in Section 4.3.3 becomes axisymmetric and it can be solved through simple
analytical relationships. In particular, arterial configuration is fully described by the line seg-
ment connecting internal and external radii, namely Ω ≡ [ri , re]. Moreover, Cauchy stresses
σr and σθ (respectively in the radial and circumferential directions) and the luminal pressure
Pi have to satisfy the following equilibrium equation:

Pi =
∫ re

ri

σθ − σr

r
dr =

∫ re

ri

[
λθ

∂ΨT

∂λθ
− λr

∂ΨT

∂λr

]
dr

r
. (4.17a)

Here Eq. (4.6) has been accounted for, and the Lagrange multiplier p has been straight-
forwardly eliminated due to the appearance of stress difference σθ − σr . Accounting for
Eq. (4.16b) and referring to the constitutive model in Eqs. (4.7), we obtain

∂ΨT

∂λr
= VM

∂ΨM

∂λr
+ ∂λF

∂λr
VC

∫ 1+〈λF−1〉

1

CF (η,SF )

η
dη= VM

∂ΨM

∂λr
, (4.17b)

∂ΨT

∂λθ
= VM

∂ΨM

∂λθ
+ ∂λF

∂λθ
VC

∫ 1+〈λF−1〉

1

CF (η,SF )

η
dη=

= VM

∂ΨM

∂λθ
+ VC

λθ cos2 βo

λF

∫ 1+〈λF−1〉

1

CF (η,SF )

η
dη . (4.17c)

Accordingly, Eqs. (4.17) provide the quasi-analytical relationship

Pi = Pi(ri,S(r, t)) . (4.18)

Therefore, the homeostatic state can be computed as

Ω̄ ≡ [r̄i , r̄e] s.t. Pi(r̄i , S̄)= P̄i , (4.19)

where P̄i represent a stationary physiological pressure.
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4.4.3 Analytical Arterial Molecular Transport

Let c1, c2, and c3 respectively denote the concentrations of MMPs, TGF-β , and IL, where

• IL activates the synthesis of MMPs by SMCs;
• TGF-β inhibits the synthesis of MMPs by SMCs.2

The steady-state (axisymmetric) concentration profiles c̃q = c̃q (r) are obtained from the Re-
duced Transport Problem T̃ (Section 4.3.6) by assuming an isotropic diffusion with constant
diffusivity (namely, Dq = D̂qI). Moreover, curvature effects and convective-terms are ne-
glected. Furthermore, nontrivial reaction terms are defined as:

R
+
1 (c̃)= η1VS R

+(c̃3) (C1 − c̃1) , (4.20a)

R
−
1 (c̃)= [ζ1 + ξ1VS R

−(c̃2)]c̃1 , (4.20b)

R−a (c̃)= ζa c̃a , (4.20c)

where

• VS ∈ [0,1] is the volume fraction of smooth muscle cells (SMCs), assumed to be constant in
time and space;

• R+(c̃3) (resp., R−(c̃2)) is MMPs source (resp., consumption) dimensionless function, acti-
vated by the molecular species IL (resp., TGF-β) through SMCs. Simple linear expressions
are herein employed, by assuming a dependence on the average concentration within the
media layer, namely R±(c̃a)= c̃av

a /γa , c̃av
a being

c̃av
a =

1

r̄e − r̄i

∫ r̄e

r̄i

c̃a(r) dr , (4.21)

and γa representing a reference concentration value corresponding to a unitary stimulus;
• C1 is the saturation limit of MMPs production by SMCs;
• η1 (resp., ξ1) is MMPs source (resp., consumption) rate mediated by SMCs;
• ζq are MMPs/TGF-β/IL consumption rates associated with molecular natural decay.

Accordingly, introducing ρ ∈ [0,1] as the normalized radial coordinate ρ = (r − r̄i )/δ̄ with
δ̄ = r̄e− r̄i , the Reduced Transport Problem T̃ (Section 4.3.6) reads: find c̃1, c̃2, and c̃3 such that

∂2c̃1

∂ρ2
+B − h2

1c̃1 = 0 , (4.22a)

∂2c̃a

∂ρ2
− h2

ac̃a = 0 , (4.22b)

2 It is worth pointing out that TGF-β promotes the synthesis of TIMPs which, in turn, reduce the activity
of MMPs. In the present model, TIMPs are not explicitly modeled but their effect is taken into account by
introducing a negative feedback of MMPs synthesis activated by TGF-β .
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in ρ ∈ [0,1], with

B = η1δ̄
2 VS c̃

av
3 C1

D̂1 γ3
, (4.22c)

h2
1 =

δ̄2

D̂1

(
ζ1 + ξ1

VS c̃
av
2

γ2
+ η1

VS c̃
av
3

γ3

)
, (4.22d)

h2
a =

δ̄2ζa

D̂a

. (4.22e)

The solution of Eqs. (4.22) can be obtained analytically: firstly, the independent Eqs. (4.22b)
are solved and c̃av

a are computed; then, average concentrations c̃av
a are employed for obtaining

the solution of Eq. (4.22a). Accordingly, it results in

c̃1(ρ)= k11 exp(−h1ρ)+ k21 exp(h1ρ)+ B

h2
1

, (4.23a)

c̃a(ρ)= k1a exp(−haρ)+ k2a exp(haρ) , (4.23b)

where constants k1q and k2q can be determined from boundary conditions BT. The latter are
assumed to be of Robin-type, except for Dirichlet boundary conditions at the intima-media
layer for c̃2 and at the media-adventitia layer for c̃3, in order to respectively account for (see
Section 4.2.2 and Fig. 4.5):

• A constant source of TGF-β by endothelial cells in the intima;
• A constant source of IL by macrophages in the adventitia.

Accordingly,

at ρ = 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂c̃1

∂ρ
= δ̄λ̂1i

D̂1
c̃1,

c̃2 = ĉ2,

∂c̃3

∂ρ
= δ̄λ̂3i

D̂3
c̃3,

at ρ = 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂c̃1

∂ρ
=− δ̄λ̂1e

D̂1
c̃1,

∂c̃2

∂ρ
=− δ̄λ̂2e

D̂2
c̃2,

c̃3 = ĉ3.

(4.23c)

4.4.4 Analytical Arterial Remodeling Induced by MMPs, TGF-β, and IL

The remodeling laws are formulated by defining the homeostatic imbalance Ij in the Re-
modeling Problem R (Section 4.3.5). As general assumptions, local remodeling is addressed
(namely, Aj = 0) and an additive decomposition of remodeling mechanisms based on
threshold-based activation laws is employed, analogously to the form of Eqs. (4.11b) and
(4.11c).

Remodeling laws are defined in agreement with the evidence in Section 4.2.3 and as
schematically depicted in Fig. 4.5, accounting for the activity by MMPs (q = 1) and TGF-β
(q = 2). To this aim, let constants CR

qj = CR, KR
1j = s̄j /CR, and KR

2j = s̄j VS/CR be introduced,
where CR ∈ R++ is a given concentration value. It is highlighted that volume fraction VS is
accounted for in KR

2j , since TGF-β activity is mediated by SMCs. Accordingly,



4.4 AN AXISYMMETRIC CASE STUDY 99

• Elastin volume fraction s1 = VEL, collagen volume fraction s2 = VC and collagen fiber ra-
dius s3 = rF increase with TGF-β and decrease with MMPs:

I1(c1, c2)= V̄EL [VS〈c2 −CR〉 − 〈c1 −CR〉]/CR , (4.24a)

I2(c1, c2)= V̄C [VS〈c2 −CR〉 − 〈c1 −CR〉]/CR , (4.24b)
I3(c1, c2)= r̄F [VS〈c2 −CR〉 − 〈c1 −CR〉]/CR ; (4.24c)

• Inter-molecular cross-link density s4 =Λc increases with TGF-β :

I4(c2)= Λ̄cVS〈c2 −CR〉/CR ; (4.24d)

• Collagen fiber angle s5 = βo tends to an isotropically distributed pattern (namely, without
any preferred direction) in the presence of MMPs:

I5(c1)= (βiso − β̄o) fh(c1 −CR) , (4.24e)

where βiso = βiso(r) corresponds to an isotropic angle distribution (see Eq. (B.2) in Ap-
pendix B), and fh(x) is the Heaviside function (i.e., fh(x) = 0 for x ≤ 0 and fh(x) = 1 for
x > 0).

Let the homeostatic state be assumed as an initial condition and let ν be a remodeling vis-
cosity, constant among different structural features (namely, soj = s̄j and νj = ν). Employing
steady-state concentration profiles c̃1 and c̃2 in Eqs. (4.23), the Remodeling Problem corre-
sponds to its Reduced form R̃ (Section 4.3.6). Accounting for Eqs. (4.24), analytical solutions
for ECM remodeling in arterial tissues of the form of Eqs. (4.13) directly follow as:

VEL(r, t)= V̄EL
[
CR + VS〈c̃2(r)−CR〉 − 〈c̃1(r)−CR〉

]
CR +

[
VS〈c̃2(r)−CR〉 − 〈c̃1(r)−CR〉

]
exp(−t/ν) , (4.25a)

VC(r, t)= V̄C

[
CR + VS〈c̃2(r)−CR〉 − 〈c̃1(r)−CR〉

]
CR +

[
VS〈c̃2(r)−CR〉 − 〈c̃1(r)−CR〉

]
exp(−t/ν) , (4.25b)

rF (r, t)= r̄F
[
CR + VS〈c̃2(r)−CR〉 − 〈c̃1(r)−CR〉

]
CR +

[
VS〈c̃2(r)−CR〉 − 〈c̃1(r)−CR〉

]
exp(−t/ν) , (4.25c)

Λc(r, t)= Λ̄c

[
CR + VS〈c̃2(r)−CR〉

]
CR + VS〈c̃2(r)−CR〉exp(−t/ν) , (4.25d)

βo(r, t)= β̄o(r)
[
β̄o(r)+ (βiso(r)− β̄o(r))fh(c̃1(r)−CR)

]
β̄o(r)+ [βiso(r)− β̄o(r)]fh(c̃1(r)−CR)exp(−t/ν) . (4.25e)

From Eq. (4.25a), the volume fraction of non-collagenous matrix VM(r, t)= VEL(r, t)+VS is
obtained. Moreover, from both Eqs. (4.25a) and (4.25b), the volume fraction of non-bearing-
load constituents (i.e., fragmented elastin and degraded collagen) is obtained as V0(r, t) =
1− (VC(r, t)+VEL(r, t)+VS). For defining the admissible set of values Kj , physical constraints
VC(r, t)≥ 0, VEL(r, t)≥ 0 and V0(r, t)≥ 0 (or equivalently, VC(r, t)+ VEL(r, t)≤ 1− VS ) are em-
ployed as lower and upper bound limits for Eqs. (4.25a) and (4.25b), as well as rF (r, t)≥ 0 for
Eq. (4.25c) and Λc(r, t)≥ 0 for Eq. (4.25d).
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TABLE 4.2 Pseudocode of the algorithm for quasi-analytical arterial multiphysics
1. Find [r̄i , r̄e] from Eq. (4.19),
2. Find {c̃1, c̃2, c̃3} from Eqs. (4.23),
3. Find S(r, t) from Eqs. (4.25),
4. Find Pi(ri ,S(r, t)) from Eq. (4.18).

FIGURE 4.6 Total number of collagen fibers for different fiber angles: homeostatic β̄o(r) and remodeled distri-
butions at steady-state βo(r, TR) for scenarios S2 and S3, compared with experimental data by Schriefl et al. (2012).
Values of parameters in Tables 4.3 and 4.4.

To evaluate the characteristic remodeling time interval TR (namely, the time interval to
reach a steady state), let ε 	 1 be an arbitrary positive constant and, in agreement with
Eq. (4.13b), define TR such that sj (r, TR) = s̄j + Ij ≈ (1 − ε)(s̄j + Ij ). Accordingly, from
Eqs. (4.25) and assuming Ij ∝ s̄j , TR can be estimated as:

TR = ν log

(
(1− ε)Ij

ε s̄j

)
≈ ν log

(
1− ε

ε

)
. (4.26)

4.4.5 Results

In the line of the solution strategy introduced in Section 4.3.6 and Table 4.1, numerical
results are obtained by adopting the procedure in the pseudocode of Table 4.2. Address-
ing arterial media layer only, the model is parameterized for a thoracic aortic segment.
It is worth highlighting that well-established experimental data (Buehler and Wong, 2007;
Clark and Glagov, 1985; O’Connell et al., 2008; Marino and Vairo, 2013, 2014; Marino, 2016;
Schriefl et al., 2012) are available for setting the values of model parameters describing the
homeostatic state S̄ , which is assumed as corresponding to the initial state (namely, at t = 0).
In the following simulations, values in Table 4.3 are employed for model parameters at home-
ostasis. For instance, addressing fiber orientation distribution, Fig. 4.6 shows a comparison
between model setting and histological measurements.
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TABLE 4.3 Values of structural parameters defining reference geometry (ri,o, re,o , and α) and the homeostatic
state S̄ in agreement with data by Auricchio et al. (2014), Buehler and Wong (2007), Clark and Glagov (1985),
O’Connell et al. (2008), Holzapfel and Ogden (2010), Marino and Vairo (2013, 2014), Marino (2016), Schriefl
et al. (2012) and with the microstructure model in Appendix B (the bar symbol is omitted for parameters not
undergoing remodeling). Arterial tissue comprises NM media lamellar units (MLUs) along its thickness, and
each MLU is divided in nM sub-layers. MLUs and sub-layers are assumed to be identical in thickness. Within
each sub-layer, sj ∈ S is piecewise constant and, if variable across arterial thickness, defined by the value at
r = rk,p , representing the middle position of the pth sub-layer in the kth MLU. In the table, k ∈ {1, . . . ,NM }
and c ∈ {2, . . . , nM }
Parameter Value (with unit of measure) Definition
ri,o 8.24 mm Arterial internal radius (in Ωo)
re,o 9.14 mm Arterial external radius (in Ωo)
α 80◦ Arterial opening angle
NM 60 Number of Media Lamellar Units (MLUs)
nM 18 Number of sub-layers in each MLU

V̄EL = V̄EL(r)

{
0.5 for r = rk,1

0.36 for r = rk,c
Elastin volume fraction

V̄C = V̄C(r)

{
0 for r = rk,1

0.14 for r = rk,c
Collagen volume fraction

VS 0.2 Volume fraction of smooth muscle cells
r̄F 0.5 µm Collagen fiber radius
HF,o 1.3 µm Collagen fiber amplitude (in Ωo)
LF,o 5 µm Collagen fiber period (in Ωo)
β̄o = β̄o(r) Eqs. (B.1) with β̂ = 25◦ Collagen fiber angle (in Ωo)
Λ̄c 1 mol/mol Inter-molecular cross-links density
kc 105 nN/µm Inter-molecular cross-links stiffness
�m,o 279 nm Molecular end-to-end length (in Ωo)
�c 287 nm Molecular contour length
�p 14.5 nm Molecular persistence length
T 37◦C Body temperature
Am 1.41 nm2 Molecular cross-sectional area
Êo 1 GPa Low-strain triple-helix tangent modulus
Ê 80 GPa High-strain triple-helix tangent modulus
η 22.5 Triple-helix uncoiling resistance
εho 0.1 Triple-helix uncoiling strain
kM 2.2 MPa Elastin stiffness

As shown in Fig. 4.7, the obtained pressure–radius relationship Pi(ri, S̄) is reported, clearly
showing that it fully agrees with available experimental data (Hallock and Benson, 1937) and
proving the effectiveness of present approach in capturing a realistic mechanical behavior of
thoracic aortic segments. Moreover, by choosing P̄i = 100 mm Hg as reference physiological
pressure, the initialization step (step 1 in Table 4.2) gives:

r̄i = 9.1 mm , r̄e = 9.74 mm . (4.27)

Addressing transport-remodeling phenomena, let ĉ denote a basal molecular production
(assumed to be constant among different molecules for the sake of simplicity) and let γa =
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FIGURE 4.7 Pressure–radius relationship Pi(ri , S̄) (corresponding to the one obtained in scenario S1) and
Pi(ri ,S(r, TR)) for scenarios S2 and S3 (at steady-state), compared with experimental data by Hallock and Benson
(1937). Values of parameters in Tables 4.3 and 4.4.

TABLE 4.4 Values of parameters for the transport-remodeling problems in the axisymmetric arterial study case,
with D̂q = D̂, ζq = ζ , and λ̂qi = λ̂qe = λ̂ in Eqs. (4.23). With reference to Eq. (4.26), ratio ν/TR = 0.1 ensures
ε < 10−4

Parameter D̂ ζ η1 ξ1 λ̂ ν TR
Unit of measurement mm2 s−1 s−1 s−1 s−1 mm s−1 years years

Value 10−6 10−5 10−3 10−3 1 0.1 1

CR = C1/2= ĉ be addressed in what follows. Under these conditions, it is straightforward to
observe that Eqs. (4.23) and (4.25) do not depend on the value of ĉ but only on ratios ĉa/ĉ that
are herein varied in order to reproduce three modeling scenarios:

Scenario S1 Maintenance of the homeostatic state with ĉ2 = ĉ3 = ĉ;
Scenario S2 Increased macrophages activity with ĉ3 = 2ĉ, coupled with a basal production

of TGF-β , with ĉ2 = ĉ;
Scenario S3 Increased macrophages activity with ĉ3 = 2ĉ coupled with an increased produc-

tion of TGF-β from intimal endothelial cells, with ĉ2 = 1.5ĉ.

For the different scenarios, results are computed via steps 2–4 in Table 4.2 and by employing
values of parameters for the transport-remodeling problems summarized in Table 4.4.

4.4.5.1 Scenario S1
Concentration profiles c̃q obtained from Eqs. (4.23) are shown in Fig. 4.8. Results show that
TGF-β (resp., IL) diffuse in aortic thickness starting from the source at the intima-media layer
ρ = 0 (resp., at the media-adventitial layer ρ = 1). The resulting concentrations profiles c̃2 and
c̃3 respectively represent the consumption and the source terms for MMPs. In turn, the latter
exhibit a symmetric concentration profile (due to the symmetry in the employed values of
intimal and adventitia permeability λ̂) with maximum value at ρ = 0.5.

Based on the obtained solution for the transport problem, a null remodeling is predicted
from Eqs. (4.25) since c̃1(r)≤ CR and c̃2(r)≤ CR. Accordingly, since it results S(r, t)= S̄(r) for
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FIGURE 4.8 Normalized concentration profiles c̃q /ĉ vs. normalized radial coordinate ρ for the scenarios S1, S2
and S3; the dashed line denotes the value CR/ĉ corresponding to the activation of remodeling. Values of parameters
in Tables 4.3 and 4.4.

any t , arterial mechanics from Eq. (4.18) results to be constant in time, obtaining the pressure–
radius relationship Pi(ri, S̄), shown in Fig. 4.7, under homeostatic conditions.

4.4.5.2 Scenario S2

The increment of macrophages activity is addressed as a possible pathological mechanism
and it induces an higher source of IL from the adventitial layer. As shown in Fig. 4.8, a higher
concentration of IL is obtained in the media layer from Eqs. (4.23), while TGF-β are clearly
unaffected. Accordingly, the source term for MMPs (namely, the average c̃2 in the overall
thickness) increases and c̃1(r) > CR is obtained.

This outcome is associated with remodeling activation in Eqs. (4.25). In particular, the
rearrangement of the orientations of collagen fibers (namely, β(r, t)) is obtained as shown
in Fig. 4.6, which corresponds to a more isotropic-distribution of fibers with respect to the
homeostatic state. For instance, the number of fibers along the preferred directions β̂ =±25◦
decreases up to 40%. Moreover, Fig. 4.9 shows the evolution in time of elastin and colla-
gen volume fraction, as well as of fiber radius, associated with the remodeling. A significant
degradation of constituents, whose values nonlinearly evolve in time, is obtained: the greatest
degradation is associated with the initial stage of the investigated pathological mechanism
and a final decrease of about 30% is obtained in the steady-state at t = TR. In the present
scenario, inter-molecular cross-links density is not affected (namely, Λc(r, t) = Λ̄c(r), corre-
sponding results are not shown for the sake of compactness) because Eq. (4.25d) does not
depend on c̃1 and c̃2(r)≤ CR.

As a result of the obtained remodeling, arterial mechanics is significantly affected. The
time-dependent pressure–radius relationship Pi(ri,S(r, t)) along the remodeling path is re-
ported in Fig. 4.9, showing a steady-state enlargement (at t = TR) of about 10% at Pi = P̄i

with respect to t = 0.
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FIGURE 4.9 Scenario S2: time-dependent structural features sj (ρ, t) and pressure–radius relationship
Pi(ri ,S(r, t)) (bottom right); V̌EL (top left), average of VEL within media lamellar units (MLUs); V̌C (top right), aver-
age of VC within the interlamellar substance of each MLU; řF (bottom left), average of rF within the interlamellar
substance of each MLU. Color map denotes different values of time t ∈ [0, TR]. Values of parameters in Tables 4.3
and 4.4.

4.4.5.3 Scenario S3

The increment in concentrations of both TGF-β and IL with respect to the homeostatic state
in scenario S1 (see Fig. 4.8) determines a smaller increase of MMPs concentration with respect
to scenario S2.

Nevertheless, since c̃1(r) > CR, the degradation of constituents associated with remodel-
ing laws in Eqs. (4.25) is activated. The MMPs-related degradation is anyway mitigated by
the depositing properties of TGF-β , since c̃2(r) > CR in about the inner half of arterial thick-
ness. As a matter of fact, the effects of remodeling are shown in Fig. 4.10 where elastin and
collagen volume fractions, fiber radius, and inter-molecular cross-links density are shown in
the steady-state t = TR, and compared with the ones obtained from different scenarios. Al-
though IL concentration is unaffected with respect to scenario S2, constituents degradation
is significantly lower due to the counteracting activity induced by TGF-β . Besides, the value
of structural parameters increases in the inner half of arterial thickness, wherein c̃2 > c̃1, and
the average variation of the value of structural parameters is less than 10%. In particular,
inter-molecular cross-links density increases only because it is not affected by MMPs in the
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FIGURE 4.10 Structural features sj (ρ,TR) at steady-state t = TR for the scenarios S1 (in black), S2 (in red), and
S3 (in blue). V̌EL (top left), average of VEL within media lamellar units (MLUs); V̌C (top right), average of VC within
the interlamellar substance of each MLU; řF (bottom left), average of rF within the interlamellar substance of each
MLU; Λ̌c (bottom right), average of Λc within the interlamellar substance of each MLU. Values of parameters in
Tables 4.3 and 4.4.

present model. Furthermore, as shown in Fig. 4.6, collagen fiber angles are characterized by
a symmetric bimodal distribution after the remodeling, similarly to the homeostatic state.

As a consequence, the pressure–radius relationship Pi(ri,S(r, TR)) obtained for the present
scenario is more similar to the homeostatic scenario S1 than to the pathological one S2 (see
Fig. 4.7). In particular, at Pi = P̄i , an aortic enlargement of about 3% is obtained with respect
to t = 0.

4.5 CONCLUSIONS

Arterial physiopathological behavior involves multiphysics mechanisms, as the result of the
complex interplay between microscale transport phenomena and mechanical equilibrium.
Indeed, vascular mechanics highly depends on arterial wall constituents whose structural
organization and properties are driven by remodeling mechanisms. In turn, the latter are
governed by the proteolytic activity of enzymes diffusing within aortic thickness or by cell–
cell signaling pathways mediated by soluble factors.

Arterial behavior has been herein modeled and analyzed through a multiphysics strategy
that couples macroscopic mechanical description, molecular transport phenomena, and re-
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modeling laws of tissue micro- and nano-structural features. Numerical results have been
obtained by addressing a case study which shows the effects of ECM remodeling induced by
intra-arterial-wall transport of MMPs, TGF-β , and IL on the compliance of an axisymmetric
arterial segment.

Remarkably, obtained results show that the present approach is able to capture arterial
dilation as a consequence of alterations in tissue biochemical environment and/or cellular
activity. For instance, addressing an increased activity of macrophages in the production of
cytokines, an enlargement of about 10% is predicted, associated with the proteolytic activity
of MMPs. On the other hand, aortic dilation reduce to only 3% when MMPs activity is coun-
terbalanced by TGF-β . This agrees well with available evidence that confirms the protective
role of TGF-β whose increased production might represent an internal feedback mechanism
or be a consequence of a pharmacological treatment (Dai et al., 2011).

Future studies will address some limitations of present work. The active contraction of
smooth muscle cells and the unsteady fluid–structure interaction effects characterizing arte-
rial mechanics have not been considered; no mass growth or constituents turn-over has been
investigated; no distinction has been made between latent and active concentrations of molec-
ular species; simplifying assumptions have been introduced (e.g., no mechanical feedback in
the transport problem) in order to reduce arterial multiphysics to an open-loop coupled sys-
tem which can be solved via a staggered and semi-analytical approach.
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APPENDIX A ALONG-THE-CHORD COLLAGEN FIBER TANGENT
MODULUS

By following the Maceri–Marino–Vairo multiscale rationale (Maceri et al., 2013; Marino and
Vairo, 2013, 2014), the mechanics of crimped collagen fibers is described by introducing an
analytical expression for their along-the-chord tangent modulus CF that depends on main
geometric features (period LF , amplitude HF , and radius rF ) as well as on material nanoscale
mechanisms.

Since fibers are collection of fibrils, material features are described in term of fibril me-
chanics. Fibril stretch λf depends on molecular elongation λm (namely, λf = λf (λm)) which,
in turn, is a function of entropy-related λsm and energy-related λhm molecular stretches (namely,
λm = λm(λ

s
m,λ

h
m)). Accordingly, fibril elastic modulus Ef results in

Ef (λf )=Ef (λ
s
m,λ

h
m)=

Em(λ
s
m,λ

h
m)Λc kc �m,o

[Λc kc �m,o +AmEm(λsm,λ
h
m)]

, (A.1a)
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with kc being cross-link stiffness and Em the elastic modulus of collagen molecules, defined
as

Em(λm)=Em(λ
s
m,λ

h
m)=

Es
m(λ

s
m)E

h
m(λ

h
m)

Es
m(λ

s
m)+Eh

m(λ
h
m)

, (A.1b)

where entropy-related Es
m and energy-related Eh

m collagen moduli are

Es
m(λ

s
m)=

kB T �m,o

�p �c Am

(
�3
c

2[�c − �m,oλsm]3
+ 1

)
, (A.1c)

Eh
m(λ

h
m)=

�m,o

�c

[
Ê

1+ exp{−η[�m,o(λhm − 1)/�c − εho ]}
+ Êo

]
, (A.1d)

with kB being the Boltzmann constant and T the absolute temperature. Other symbols are
defined in Section 4.3.3.1. The multiscale problem is closed via interscale compatibility rela-
tionships between atomistic- and nanoscales:

dλsm

dλm
=Φms(λ

s
m,λ

h
m)=

Em(λ
s
m,λ

h
m)

Es
m(λ

s
m)

, (A.2a)

dλhm

dλm
=Φmh(λ

s
m,λ

h
m)=

Em(λ
s
m,λ

h
m)

Eh
m(λ

h
m)

, (A.2b)

and between nanoscale and mesoscale:

dλm

dλf
=Φfm(λ

s
m,λ

h
m)=

Ef (λ
s
m,λ

h
m)

Em(λsm,λ
h
m)

. (A.3)

A closed-form expression for CF can be obtained from the application of the Principle of
Virtual Works by assuming a piecewise-linear fiber-shape and by coupling geometric and ma-
terial nonlinearities (Marino and Wriggers, 2016). Geometric nonlinearities are introduced by
accounting for the functional dependence of fiber amplitude on along-the-chord fiber elon-
gation λF , namely HF =HF (λF ). Moreover, by definition, it results in LF = LF (λF )= λFLF,o

where LF,o represents fiber period in the reference configuration. Material nonlinearities are
accounted for by means of fibril tangent modulus Ef = Ef (λf ) = Ef (λ

s
m,λ

h
m) in Eqs. (A.1).

In order to couple material nonlinearities with geometric ones, an inter-scale compatibility
relationship between fibril stretch λf and along-the-chord fiber stretch λF is introduced by
identifying λf as coincident with the stretch of the fiber centerline, resulting in

dλf

dλF
=Φf (λF ,HF )=

λF �
2
F,o +HF

dHF

dλF√
(λ2

F �
2
F,o +H 2

F )(�
2
F,o +H 2

F,o)

, (A.4)

where �F = LF/4 is the fiber quarter-period and HF,o is the fiber amplitude in the reference
configuration.
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Therefore, omitting functional dependencies for the sake of compactness, it results in

CF =Ef

�2
F +H 2

F√
�2
F,o +H 2

F,o

[
�F + 4H 2

F

3r2
F �F

(
�2
F +H 2

F

)]−1

, (A.5)

coupled with the following interscale differential equations:

dλsm

dλF
=Φms(λ

s
m,λ

h
m)Φfm(λ

s
m,λ

h
m)Φf (λF ,HF ) , (A.6a)

dλhm

dλF
=Φmh(λ

s
m,λ

h
m)Φfm(λ

s
m,λ

h
m)Φf (λF ,HF ) , (A.6b)

dHF

dλF
=− �FHF

[
4(�2

F +H 2
F )− 3r2

F

]
λF

[
4H 2

F (�
2
F +H 2

F )+ 3�2
F r

2
F

] , (A.6c)

where Eqs. (A.2), (A.3), and (A.4) are taken into account. Accordingly, from the solution of
the system of differential equations (A.6), functions λsm = λsm(λF ), λ

h
m = λhm(λF ), and HF =

HF (λF ) are obtained, resulting in CF = CF (λF ). Moreover, in order to highlight the explicit
dependence of predicted fiber mechanics on the set of structural parameters SF (defined in
Eqs. (4.4)), the functional form CF = CF (λF ,SF ) is conveniently employed.

APPENDIX B MICROSTRUCTURE OF AORTIC MEDIA LAYER

Aortic media layer is modeled as comprising NM iso-width perfectly-bonded layers repre-
senting a single media lamellar unit (MLU). Each of them comprises nM iso-width perfectly-
bonded sub-layers. Accordingly, sj ∈ S are piecewise constant functions in r where, for the
sake of notation, sk,pj denotes the value of sj in the pth sub-lamella of the kth lamella. More-
over, let subscript k take values in {1, . . . ,NM}, p in {1, . . . , nM}, and c in {2, . . . , nM}.

The kth lamella is considered as made up of one elastin layer (namely, V k,1
C = 0) and nM −1

sub-lamellae reinforced by collagen fibers (V k,c
C > 0).

For describing the homeostatic state, let us introduce V̄ el
EL, V̄ is

EL, and V̄ is
C as constant values.

The elastin layer is assumed to be characterized by V̄
k,1
EL = V̄ el

EL for any MLU (namely, for any
k = 1, . . . ,NM ). Moreover, we choose V̄

k,p

EL = V̄ is
EL and V̄

k,c
C = V̄ is

C , constant within and among
MLUs. Furthermore, the homeostatic orientation of collagen fibers in the inter-lamellar sub-
stance at the reference configuration is defined by the function β̄o = β̄o(r), with

β̄k,c
o =�k(r)ϑ

ani
c−1(β̂)+ (1−�k(r))ϑ

iso
c−1 (B.1a)
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where

�k(r)=
{

2(ρk(r)− ri)/(re − ri) for ρk(r) < (re + ri)/2,

1 for ρk(r)≥ (re + ri)/2,
(B.1b)

ρk(r)= (re,k + ri,k)/2 for ri,k ≤ r < re,k , (B.1c)
ri,k = ri + (k − 1)(re − ri)/NM , (B.1d)
re,k = ri,k + (re − ri)/NM , (B.1e)

and ϑani
c−1 (resp., ϑ iso

c−1) is the (c−1)th component of vector ϑani(β̂) ∈RnM−1 (resp., ϑ iso ∈RnM−1)
representing a fiber angle distribution with preferred direction β̂ ∈ (0,π/2) (resp., without
any preferred direction). In the numerical simulations conducted in the present work, we
choose nM = 18 and

ϑ iso = (−ϑ̂
iso
,0, ϑ̂

iso
) , ϑani(β̄∗)= (−ϑ̂

ani
(β̂),0, ϑ̂

ani
(β̂)) , (B.1f)

where

ϑ̂
iso = (10,20,30,40,50,60,70,80)π/180 , (B.1g)

ϑ̂
ani

(β̂)= (1/2, 2/3, 2/3,1,1,1, 4/3, 5/3)πβ̂/180 . (B.1h)

Finally, for the sake of describing the remodeling of fiber orientation, let βiso in Eq. (4.24e)
be a piecewise constant function with values

β
k,c
iso = ϑ iso

c−1 . (B.2)
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