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 k-th cell type in the tissue
L
 boundary of the EC space at x ¼ L
total
T
Sup
 rscript
rev
 representative elementary volume

dimensionless
�

5.1 Introduction
The principal aim underlying the development of drugs and their administration is to elicit some sub-

cellular level biochemical reaction (often occurring within the cells). Mathematical and pharmacoki-

netic models have been developed in order to aid researchers by determining the conditions that will

control successful delivery of the drug to its target (or the conditions that will limit unintended reac-

tions). Often the models evaluate the transport of the drug at the tissue scale; for example, in order to

determine the maximum penetration depth (at some prescribed drug concentration) from the location of

administration into poorly vascularized tissue.

Because at the tissue scale it is prohibitively computationally expensive to model the kinetics of the

drug within and about each individual cell, continuum representations of the physical domain are

employed (Fig. 5.1A). The continuum level representation should capture the effects of the important

local physics involved at the cellular level; at least these should include the transport of the drug

through the extracellular medium, the drug penetration across the cell membrane into the intracellular

space, and reactions between the drug and the cell cytosol. To this end, a three-compartment model

(Dordal et al., 1995) has been adopted in many tissue scale continuum models of drug delivery.

The underlying concept, depicted in Fig. 5.1B, is that the drug exists in three distinct phases: the free

drug in extracellular (EC) space, the free drug in the intracellular (IC) space, and the bound drug of the

IC space that is represented as the product of reaction internal to the cell.

For completeness, we present a brief review of the most common three-compartment models of

drug delivery in tissue composed of a single cell-type population in this section. The associated im-

portant physiological processes are discussed and these are linked to the most common mathematical

expressions. The three-compartment model representation of the conservation of drug mass may be

expressed by a coupled set of equations. The conservation of mass in the EC space is represented

by the partial differential equation (PDE, for short):

∂CEC

∂t
¼ r:j CECð Þ � F CEC,CICð Þ (5.1)

The conservation of drug mass in the IC space is represented by the ordinary differential

equation (ODE):

∂CIC

∂t
¼ F CEC,CICð Þ � R CIC,Pð Þ (5.2)
roduct of the reaction within the cell is represented by the ODE:



FIG. 5.1

(A) Depiction of continuum representation of drug delivery at the tissue scale. (B) Depiction of the three

compartment model.
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∂P

∂t
¼ R CIC,Pð Þ (5.3)

Here CEC and CIC are the total volume-averaged EC and IC drug concentrations, respectively. The flux

of the drug within the EC space is usually modeled by simple diffusion or by a combination of diffusion

and advection resulting from some interstitial flow velocity, v:

j CECð Þ ¼ DrCEC + vCEC (5.4)

Because the EC space is a porous domain, an effective diffusion coefficient, D, is used to account for

the tortuous pathway through the fluid-filled space. In the discussion that follows only the diffusion of

drug in the EC space is considered.

The function F(CEC,CIC) represents the net transport of the drug from the EC space to the IC space

and reverse. When the intrinsic drug concentrations are modeled, the functions describing the trans-

membrane transport must account for the difference in the volumes of the IC space and the EC space.

In single cell-type population models, when intrinsic drug concentrations are used, the functions repre-

senting the transmembrane transport of the EC space in Eq. (5.1) scales linearly to the function used in
the intracellular space of Eq. (5.2) by the ratio of intracellular volume to EC volume.
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A conversion of the drug inside the cell to some product P is often the intention of the drug therapy.

Within the cell, the rate of this conversion is described by the reaction between the drug and the cell’s

internal organelles, R(CIC,P).
The sections that follow summarize some commonmathematical representations of transmembrane

transport and internal reactions that are used in single-cell-type PK models. In the discussion that fol-

lows a total volume-averaged concentration is used. The distinction between total volume-averaged
concentration and intrinsic concentration is described in Section 5.2.1.
5.1.1 Transmembrane transport

The function F(CEC,CIC) must represent the nature of transport across the barrier function of the cell

membrane (which is specific to the cell type and the molecular properties of the drug). The previous

work (Yang and Hinner, 2015) provides a detailed review of how some molecules traverse this barrier.

Generally, the continuummodels describe this transmembrane transport in terms of the EC and IC drug

concentrations.

5.1.1.1 Diffusion-based transmembrane transport models
For many drugs (small nonpolar ions, for example), the observed rate of transport across the cell mem-

brane (from the EC space to the IC space) is linearly dependent on the drug concentration gradient

across the membrane (Vendel et al., 2019a; El-Kareh and Secomb, 2003). Mathematical models de-

scribe the flux of free molecules across the cell membrane by Fickian diffusion. In this way the instan-

taneous rate of drug transport from the EC space to the IC space is represented by

F CEC,CICð Þ ¼ k12CEC � k21CIC (5.5)

The parameter k12 is a constant representing the rate of mass transfer from the EC space to the IC space

and k21 represents the rate constant in the reverse direction. These values may be determined exper-

imentally and depend on the permeability of the cell wall to the drug, the density of the cells in the

tissue, and whether partitioning is considered. It should also be noted that the magnitudes of these rates

depend on whether the drug is represented by total volume-averaged concentration as in Jackson (2003)

and Clarelli et al. (2020) or by intrinsic drug concentration as in Groh et al. (2014) and Mahnic-

Kalamiza et al. (2014). In the analytical model that is developed in the second half of this chapter, only
diffusion-based transmembrane transport is considered.
5.1.1.2 Facilitated diffusion transmembrane transport models
For some polar molecules (glucose, for example), the observed rate of transmembrane transport is sat-

urable (limited) with respect to the transmembrane concentration gradient. This is in contrast with sim-

ple diffusion that is linearly related to this gradient. The transmembrane transport of such molecules is

facilitated by a limited number of specialized carrier proteins (Yang and Hinner, 2015) and continuum

models often describe the rate of facilitated transfer in terms of Michaelis–Menten kinetics (Vendel

et al., 2019a; El-Kareh and Secomb, 2000). A relatively simple expression of facilitated passive trans-

membrane transport is presented in a study by Huang et al. (2011):

F CEC,CICð Þ ¼ Vmax

� �
CEC � Vmax

� �
CIC (5.6)
KM + CEC KM + CIC



915.1 Introduction
Here the reaction velocity, Vmax, indicates that the rate of transport across the cell wall is limited by the

number of available transporters. The Michaelis constant, KM, describes the strength of the interaction

between the drug and the transporter. Its value is representative of the steady concentration value on

one side of the membrane when one-half of the transporters are occupied and the other side of the mem-

brane is highly diluted (Vivian and Polli, 2014). The nonlinearity of Eq. (5.6) makes it difficult to find

the analytical solution, and so numerical methods are used to determine the solutions to Eq. (5.1) for

drugs that rely on facilitated diffusion.

5.1.1.3 Rapid transmembrane transport approximation
Somemodels represent the transport across the cellwall asoccurring instantaneously so that at any time the

internal and external concentrations of the drug in its free unbound state are equal CIC¼CEC¼C (local

mass equilibrium—LME). This approximation allows the three-compartment model of Eqs. (5.1)–(5.3)
to be represented by a two-compartment model that does not distinguish between EC and IC drug

concentrations:

∂C

∂t
¼ r:j Cð Þ � R C,Pð Þ

∂P

∂t
¼ R C,Pð Þ

(5.7)

This simplification holds when the transport of the drug across the cell membrane occurs on a much

shorter timescale than those of the internal reactions. At shorter timescales, this two-compartment ap-
proximation fails to capture the time lag associated with the barrier function of the cell wall.
5.1.2 Reaction terms and binding models

Pharmacological continuum models often use the concept of binding (Clarelli et al., 2020) to represent

the reactions between the drug and its environment. When the drug is free to diffuse and interact with its

environment, the drug is in its unbound state, or free state. The drug may be in its free state within the

EC medium and also within the interior of the cell. The drug molecule is designed to reach specific

receptors within the interior of the cell (sometimes on the exterior cell wall). These receptors are re-

ferred to as specific binding sites; the drug that is bound to these is considered to be in its specific bound

state. It is in this state that the drug can produce its intended effect. A comprehensive discussion of

binding and signaling is presented in the book by Lauffenburger and Linderman (1993). For the pur-

poses of this chapter, we use the principle of binding to represent the intracellular drug reactions and we

present two simple and common reactions that have been used in the three-compartment models of drug

delivery to cells.

5.1.2.1 Nonreversible first-order drug target binding model
In some previous studies of the delivery of drugs in cancer treatments ( Jackson, 2003) the drug in its

intracellular free state binds to the internal organelles of the cell in an irreversible manner. The idea is

that once a sufficient concentration of the drug is in its bound state, the cancer cell will die and exper-

imental observations show that this model is valid for specific cases (Dordal et al., 1995). Here the drug

reaction rate is proportional to the concentration of the free drug in the cell cytosol:
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∂P

∂t
¼ R CICð Þ ¼ konCIC (5.8)

The concentration of the drug in its specific bound state in the cell cytosol, P, is the drug’s intended
target. The parameter kon is the binding rate constant of the drug in the cell and its value may be de-

termined experimentally (Dordal et al., 1995). This type of reaction will be applied in the multiple cell-
type population model introduced in Section 5.2.1.
5.1.2.2 Slow reversible nonlinear drug-target-binding models
For many drugs, the relationship between the rate of targeted binding and the drug concentration is not

linear. Furthermore, these drugs bind to their receptors in a reversible manner so that some of the bound

drug may return to its free state. These models consider that the rate of the binding is limited by the

number of available binding sites. This representation has been used in three-compartment models

(Clarelli et al., 2020; Groh et al., 2014) and is represented by

∂P

∂t
¼ R CICð Þ ¼ konCIC P0 � Pð Þ � koff P (5.9)

Here kon and koff are the drug’s association rate and disassociation rate constants, respectively. The

maximum concentration of binding sites within the cell, P0, limits the reaction and it is assumed that

this value does not change during the reaction.

Sometimes instead of interacting with the intended specific binding site, the drug may interact with

unintended receptors or other molecules (either in the EC space or within the interior of the cell) so the

drug is bound and unable to interact with its intended receptors. Here the drug molecule would be con-

sidered to be in its nonspecific bound state. Recent drug delivery studies have accounted for both spe-

cific and nonspecific binding by including two reaction terms: one to account for specific binding rates

and the other to account for nonspecific binding (McGinty and Pontrelli, 2016; Chakravarty

et al., 2019).

While these models are of great interest, the nonlinearity of the reaction term provides a challenge

to determine the exact mathematical solution; thus numerical methods of solution are generally
employed.
5.1.2.3 Mathematical expressions of drug administration
In practice, the drug may be administered to the tissue via the circulatory system.When the vasculature

is not well distributed, some studies use an advection boundary condition along the external boundaries

where the tissue is in contact with the arterial supply. For example in the works by Vendel et al. (2019b,

2020) such a boundary condition is used to represent the transfer of the drug across the blood–brain
barrier into the EC space:

D∗∂CEC

∂n

���� ¼ K Cb � CECð Þ (5.10)

Here n is the direction of the outward pointing unit vector n normal to the boundary surface of the EC

space, K is representative of the drug’s permeability to the interface (also called mass transfer coeffi-

cient), and Cb is the concentration of the drug in the blood plasma which in those studies is modeled to
be transient decaying in time.
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When the drug is delivered to highly micro-vascularized tissues, a volumetric source term is some-

times used to account for the delivery from the microcirculatory system to the tissue’s EC space

(Jackson, 2003; El-Kareh and Secomb, 2000):

_mb ¼ Γ � Cb � CECð Þ (5.11)

where Γ is a term that is related to the permeability of the molecule in the vascular walls and to the

density of the vascular network in the tissue (whose magnitude can vary by position).

In applications that use a polymer matrix as an applicator (such as a drug eluting stent), the drug is

conserved within the applicator matrix as well as within the tissue domains. The transfer of the unbound

drug to the EC medium is represented at the interface by boundary conditions both of mass flux type

(Chakravarty et al., 2019) and of advection type (McGinty and Pontrelli, 2016):

D0

∂C0

∂n
¼ D

∂CEC

∂n
+ υCEC

D
∂CEC

∂n
¼ K C0 � CECð Þ

(5.12)

HereD0 andC0 correspond to the effective diffusion coefficient and the concentration of the drug in the
substrate, respectively, the parameter υ allows for partitioning of the drug at the interface.
5.1.3 Extension to multiple cell-type populations

Themodels reviewed so far have considered the delivery of drugs to cell populations comprised of only

a single cell type. In many applications, drugs are delivered to a region of tissue composed of different

cell types (for example, healthy and diseased cells) that may react differently to the drug administered.

The concept of the extension of the three-compartment model to a multiple cell-type population is

depicted in Fig. 5.2.

The mathematical representation of such a system would require that each cell type be assigned its

own unique transmembrane transport term and its own unique reaction term. The extension of the

three-compartment conservation of drug mass of Eqs. (5.1)–(5.3) to a population of N different cell

types is accomplished by summing the components of the three-compartment model for each cell type:

∂CEC

∂t
¼ r � j CECð Þ �

XN
i¼1

Fi CEC,Cið Þ

∂Ci

∂t
¼ Fi CEC,Cið Þ � Ri Cið Þ

∂Pi

∂t
¼ Ri Cið Þ

9>>>=
>>>;i ¼ 1…N

(5.13)

Delivery to multiple cell-type populations attempts to capture the transient dynamics of the concen-

tration of infected cells, of noninfected cells, and of the virus (Nowak et al., 1996). In order to capture

the spread of the virus through a population of bacteria, the diffusion of the virus within the EC space

has also been considered (You and Yin, 1999). Versions of this model reviewed all use the rapid trans-

membrane transport approximation so that they do not capture the barrier function of the cell mem-
brane. These models focus on the conservation of the number of cell types. The manner in which



FIG. 5.2

Depiction of the extension of the three-compartment model of Fig. 5.1 to a multiple cell-type population.
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the virus spreads to the cell (represented by the reaction term) has been shown to be nonlinear and

irreversible making this application a poor candidate for expression by Eq. (5.13).

Multiple cell-type populations have also been considered in tumor growth models (Casciari et al.,

1992); these consider that the rate of tumor cell growth is dependent on the available nutrient concen-

tration. In their most general form, the coupled equations account for the different domains of the tumor

(for example, EC space, space occupied by live cells, and space occupied by nonliving cells). These

models consider that the volume fraction of each of these domains can each be represented by conser-

vative equations and that there are reaction terms accounting for the dependence on different chemical

nutrients. In its most general form, the model considers multiple phases and multiple chemical species

(Roose et al., 2007; Casciari et al., 1992). Many applications of these models consider only a single

chemical species and only two phases of tumor; for example, those presented by Breward et al.

(2002) and Flegg and Nataraj (2019) which consider the conservation of only two phases (i) cell

and (ii) EC fluid and only models the conservation of the single nutrient, i.e., oxygen. The focus of

these models is to predict the distribution of tumor cell concentration (and not the distribution of drugs

in the different cell types) so that the tumor growth models do not lend themselves readily to Eq. (5.13).

A drug resistance study by Jackson and Byrne (2000) modeled the diffusion of drug through a tu-

morous tissue composed of two cell types for which one cell type has a much stronger reaction to a drug

than the other. However, that study did not account for the reduction of the drug mass in the EC space
that results in the uptake of the drug by the cells; again that is because the focus of that study was the



955.2 Formulation of the problem
conservation of the cells and not of the drug. Thus that study’s approach also does not address the ex-

pressions posed by Eq. (5.13).

A three-compartment model of a multiple cell-type population has been considered in a previous

study of the cellular uptake drug following exposure to electric fields (Argus et al., 2017). In that study

the cells respond to the application of the electric pulse in two ways: in cell type 1 the permeability

increases are transient and in cell type 2 the permeability increases are constant. The drug is free to

diffuse through the EC space and transmembrane transport is modeled by Fickian diffusion. The gov-

erning equations for this two cell-type population are represented by

∂CEC

∂ t
¼ Dr2CEC � k12CEC � k21 e

�t=τC1

� �
� k13CEC � k13C2ð Þ

∂C1

∂ t
¼ k12CEC � k21 e

�t=τC1

∂C2

∂t
¼ k13CEC � k13C2

(5.14)

Here subscripts 1 and 2 indicate the cell types, andC1 andC2 are their respective total volume-averaged

drug concentrations. Due to the complexity arising from the transient nature of the permeability of cell

type 1 and because in that study the transport coefficients k12, k21, k13, and k31vary by position in a 2D
domain, this problem was solved numerically (Argus et al., 2017). That study did not consider any drug

reactions and is therefore not directly relatable to the greater problem posed by Eq. (5.13).

While the extension of the three-compartment model from single to multiple cell-type populations

may seem obvious, there is a scarcity of its development in the literature. The focus of the remaining

chapter is to provide this extension by first presenting the derivation of the equations conserving the

drug mass. For each cell type, transmembrane transport is represented by the Fickian diffusion based

model of Section 5.1.1.1. The reaction rates of each cell type are represented by nonreversible first-
order binding of Section 5.1.2.1.
5.2 Formulation of the problem
Let us consider a portion of a biological medium of total volume VT in a control volume (CV), as

depicted in Fig. 5.3. The region is comprised of an EC space of volume VEC, of volume VC occupied

by different cell types dispersed in it, having volumes of V1, V2…, Vk…, VN (k denotes the k-th type of
cell; think to healthy cell, tumor cell, inflamed cells, etc.).

Each type of cell responds to the therapy in a different way, so the mass transfers from the EC to the

cell of type k, and vice versa. In the following derivation the rate of transmembrane mass transfer is

dictated by the individual cell type’s mass transfer coefficient, μk. Also, though the problem here is

presented for an arbitrary number N of cell types, the derivation of the solution proposed in

Section 5.3 is restricted to N¼ 3.

The tissue, taken as a whole, here is represented as a nonhomogeneous continuum by appropriately

defining average variables over a sufficiently large volume, termed as “representative elementary vol-

ume” (rev, for short) (de Monte et al., 2013). The volume of the total space (VT) is made of the volume

occupied by the EC space (VEC) and the volume occupied by the cells:
VT ¼ VEC + VC (5.15a)



FIG. 5.3

The control volume CV (cross section in 2D) with individual cells of different types (different colors) immersed in
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The volume occupied by the cells is composed of the volumes occupied by the different cell types:

VC ¼ V1 + V2 + …+VN (5.15b)

The “porosity” is defined here as the fraction of the total volume that is composed of the EC space:

ε ≡
VEC

VT
¼ VEC

VEC + VC
(5.15c)

The volume occupied by all cell types is then VC¼ (1�ε)VT. The fraction of the cellular volume oc-

cupied by cell type “k” is defined as

f k ≡
Vk

VC
¼ 1

1� εð Þ
Vk

VT
, k ¼ 1, 2,…,N: (5.15d)

In this derivation it is assumed that the porosity, the volume fraction of the cell types and their corre-

the EC medium.
sponding volumes are spatially uniform and constant.
5.2.1 Concentrations and volume-averaged variables

The drug concentration in the liquid phase (EC space), cEC, is defined as

cEC ¼ dmEC

dVEC
, (5.16)

where dmEC is the elemental mass of drug in the EC differential volume dVEC.

The concentration cEC depends on rEC�VEC, where rEC is the position vector of a point within the

EC space. It can also depend on the time.

In addition, as the cellular space consists of N different types of cells, the intrinsic drug concentra-

tion in the k-th cell may be taken as
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ck ¼ dmk

dVk
, k ¼ 1, 2,…,N (5.17)

where dmk is the elemental mass of drug contained into the k-th elemental volume dVk. Also, the con-

centration ck depends on rk�Vk, where rk is the position vector of a point within the k-th cell.

Now, there are two different ways of averaging over a volume. One is based on the volume of each

phase contained in the rev, that is, VEC
(rev) for the EC space (which is a portion of the rev, i.e., ε) and Vk

(rev)

for the k-th cell [which is the (1�ε)fk fraction of the rev]. Another is based on the total volume of the

rev (incorporating both fluid and cellular domains), given by

V revð Þ ¼ V
revð Þ
EC + V

revð Þ
C ¼ V

revð Þ
EC +

XN
k¼1

V
revð Þ
k (5.18)

(The length scale of the rev is much larger than the pore scale given by the average size of the pores, but

considerably smaller than the length scale over which macroscopic changes of physical quantities, such

as drug concentration, have to be considered.) For example, we can take a volume average of cEC as

defined in Eq. (5.2) with respect to the corresponding phase volume VEC
(rev) or over the total volume V(rev)

(de Monte et al., 2013). Thus it results in, respectively,

cECh iEC ¼ 1

V
revð Þ
EC

ð
V

revð Þ
EC

cECdV
revð Þ
EC

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m

revð Þ
EC

(5.19a)

cECh i ¼ 1

V revð Þ

ð
V revð Þ

cECdV
revð Þ ¼ 1

V revð Þ

ð
V

revð Þ
EC

cECdV
revð Þ
EC

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m

revð Þ
EC

(5.19b)

wheremEC
(rev) is the mass of drug contained in the VEC

(rev) volume. However, it is assumed that the result of

averaging over a volume is independent of the size of the rev (Nield and Bejan, 2013).

Eq. (5.19a) gives the so-called intrinsic volume-averaged concentration of cEC as well as the com-

panion Eq. (5.19b) yields its volume-averaged concentration. Comparing these two equations gives

hcECi¼εhcECiEC. It is of great concern to note that the averaging operation of cEC performed through

the above integrals provides the value of the drug concentration in the EC space at the centroid of the

rev, which can fall in the EC or cellular domain. Therefore, if r denotes the position vector of the rev

centroid, both hcECi and hcECiEC depend on the same r.

Similarly, we can take an average of ck as defined by Eq. (5.17) with respect to the corresponding

phase volume Vk
(rev) or over the total volume V(rev) (deMonte et al., 2013). In such a way, it is found that,

respectively,

ckh ik ¼
1

V
revð Þ
k

ð
V

revð Þ
k

ckdV
revð Þ
k

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
revð Þ

k ¼ 1, 2,…,N (5.20a)
m
k
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ckh i¼ 1

V revð Þ

ð
V revð Þ

ckdV
revð Þ ¼ 1

V revð Þ

ð
V

revð Þ
k

ckdVk
revð Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
m

revð Þ
k

k¼ 1,2,…,N

(5.20b)

where mk
(rev) is the mass of drug contained in the Vk

(rev) volume of the k-th cell. Also, comparing the

above two equations gives hcki¼ (1�ε)fkhckik.
The averaging operation of ck gives the value of drug concentration within the k-th cell at the cen-

troid of the rev, where a drug concentration in the EC space also exists. Therefore, each spatial point of

the biological domain contains simultaneously N+1 phases: an EC phase with a volume fraction of ε
and a k-th cellular phase (k¼1,2, …, N) with a volume fraction of (1�ε)fk.

For the sake of simplicity and brevity, in this chapter cEC and ck will be used to denote the intrinsic
volume-averaged concentrations in place of hcECiEC and hckik, respectively. Similarly, CEC and Ckwill

be utilized to indicate the volume-averaged concentrations in place of hcECi and hcki, respectively.
Therefore,

CEC ¼ εcEC, Ck ¼ f k 1� εð Þck, k ¼ 1, 2,…,N (5.21)
5.2.2 Governing equations

The rate of variation of drug concentration in either type of cell is given by

1� εð Þ f k½ � ∂ck
∂t|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

mass storage

¼ ΔAkχk
ΔVTð Þk

cEC � ckð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
local mass transfer

� 1� εð Þ f k½ � hkck|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
reaction term

k ¼ 1, 2,…,N

(5.22a)

where the diffusive terms are neglected as the cells are here considered to be lumped bodies because of

their microscopic dimensions. In addition, χk (positive) is the mass transfer coefficient (having units of

m s�1) at the interface of the k-th cell/EC space (it is related to the permeability of the cell membrane to

the drug). Also, (ΔVT)k¼ΔVk/[(1�ε)fk] is the total volume related to the ΔVk volume of a mean cell

type k as well asΔAk is its surface area; and hk (positive) is a reaction coefficient (s
�1) that accounts for

the drug absorption (metabolism) inside the volume occupied by cell type k. In particular, the first-order
irreversible chemical reaction, i.e., hkck, has the effect of reducing the free drug within the space oc-

cupied by the cells.

Eq. (5.22a) states that all mass transfer to/from either of the cell types at the microscopic level is

modeled across the cell membrane so that the transmembrane transport is proportional to the difference

in the intrinsic drug concentrations on either side of the cell wall, say cEC�ck. For the sake of com-

pactness, a coefficient μk (s
�1) may be defined as μk¼χk(ΔAk/ΔVk). Therefore, Eq. (5.22a) becomes

∂ck

∂ t

¼ μk cEC � ckð Þ � hk ck k ¼ 1, 2,…,N (5.22b)



995.2 Formulation of the problem
Strictly speaking, the mass transfer rates μk depend on space and time, that is, μk¼μk(r, t). However, in
many biological applications, due to the spatio-temporal scale and relative magnitude analysis, this

dependence can in general be omitted, and the coefficients μk can be considered uniform and time-

independent.

The rate change in drug concentration within the EC space is subject to diffusion along the con-

centration gradient as well as the mass transfer from the EC to the different cell types and vice versa.

The drug mass balance equation within the EC space is represented as

ε
∂cEC
∂t|fflffl{zfflffl}

mass storage

¼ εDeffr2cEC|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
diffusive term

�
XN
k¼1

ΔAkχk
ΔVTð Þk

cEC� ckð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
local mass transfer
with the k�th cell

(5.23a)

where Deff is the effective diffusivity of the drug within the EC space. This is related to the con-

ventional diffusivity (i.e., when the porous structure is absent) through the tortuosity of pathways

for diffusion and a viscosity function accounting for local boundaries and viscosity (de Monte

et al., 2013). Bearing in mind that (ΔVT)k¼ΔVk/[(1�ε)fk] and μk¼χk(ΔAk/ΔVk), Eq. (5.23a)

becomes

∂cEC
∂ t

¼ Deffr2cEC � 1� ε

ε

� � XN
k¼1

μk cEC � ckð Þ f k (5.23b)

where the ratio (1�ε)/ε¼VC/VEC.

By using the total volume-averaged concentrations defined in Section 5.2.1, Eqs. (5.22) and (5.23)

become, respectively,

∂Ck

∂t
¼ akCEC � μk + hkð ÞCk k ¼ 1, 2,…,N (5.24a)

∂CEC

∂ t
¼ Deffr2CEC �

XN
k¼1

ak CEC � μk Ckð Þ (5.24b)

where the coefficients ak are uniform and constant, and may be taken as

ak ¼ μk
1� ε

ε
f k

� �
, k ¼ 1, 2,…,N (5.25)

The boundary condition associated with the PDE Eq. (5.24b) is, in a generalized case (McMasters et al.,

2019; for an analogous heat diffusive problem),

Deff
∂CEC

∂n
¼ j r, tð Þ + K C∞ r, tð Þ � CEC r, tð Þ½ � (5.26a)

where r is the location of the boundary in a specific coordinate system. Also, j(r, t) is the surface mass

flux applied to the EC boundary surface that is assumed to be a function of both position and time.

K denotes the mass transfer coefficient with the adjacent reservoir at concentration C∞(r, t) depending
in general on position and time.

The initial conditions for Eqs. (5.24a) and (5.24b) are, respectively,

Ck r, t¼ 0ð Þ¼ 0 k¼ 1,2,…,N,
CEC r, t¼ 0ð Þ¼ 0 (5.26b)
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as the biological domain does not contain any drug initially. Contrary to Eq. (5.26a), r appearing in

Eq. (5.26b) denotes the position of any point within the tissue.

When the mass transfer coefficient K is very large (K!∞) in Eq. (5.26a), the result is a nonho-

mogeneous boundary condition of the first kind, that is, CEC(r, t)¼C∞(r, t). On the contrary, when

K is very small (K!0), a nonhomogeneous boundary condition of the second kind is obtained, i.e.,
Deff(∂CEC/∂n)¼ j(r, t).
5.3 Method of solution
From a mathematical viewpoint, Eqs. (5.24a) (k¼1, 2, …, N) and (5.24b) are a set of N+1 coupled,

linear, homogeneous, PDEs (N of them are of first order; while only one is of second order) with con-

stant and uniform coefficients, whose unknowns are C1, C2, …, CN and CEC.

To solve this system of PDEs by an exact analytical procedure, the starting point is to uncouple the

N+1 PDEs by using the method proposed by de Monte and Haji-Sheikh (2017a,b) for an analogous
heat diffusive-type problem.
5.3.1 Uncoupling procedure

The goal of the uncoupling procedure is to derive a PDE in the sole unknown CEC(r, t). Once this tran-
sient concentration distribution is calculated, the other concentrations CEC(r, t) (k¼1,2,…,N) may be

obtained by integrating Eq. (5.24a) that is a well-established linear ODE of first order. The related ini-

tial condition is defined through the former of the two Eqs. (5.26b).

The starting point is to sum up Eqs. (5.24a) and (5.24b) yielding the following equation:

∂CEC

∂ t
+
XN
k¼1

hk Ck +
XN
k¼1

∂Ck

∂ t
¼ Deffr2CEC (5.27)

Then, the concentration CEC can be derived from Eq. (5.24a) as follows:

CEC ¼ μk + hk
ak

Ck +
1

ak

∂Ck

∂ t
k ¼ 1, 2,…,N (5.28)

Before proceeding to uncouple the governing equations, it is important to understand the relationships

between the concentrations Ck and CEC by analyzing Eq. (5.28). For this purpose, this equation may

conveniently be rewritten as

CEC r, tð Þ ¼ μk + hk
ak

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Ak

� Ck +
1

μk + hk

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

τ cð Þ
k

∂Ck

∂ t

2
66664

3
77775

cð Þ� �

� AkCk r, t + τk k ¼ 1, 2,…,N (5.29)
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where the quantity between square brackets may be seen as a first-order approximation of Ck(r, t+τk
(c))

when using a Taylor series expansion. Also, Eq. (5.29) exhibits a time lag (or relaxation time) between

the concentration of the EC space and the concentration Ck as well as an amplification or damping.

These quantities are listed below, respectively, as

τ cð Þ
k ¼ 1

μk + hk
k ¼ 1, 2,…,N (5.30a)

Ak ¼ μk + hk
ak

¼ 1

τ cð Þ
k ak

¼ μk + hk
μk

ε

1� εð Þ f k

� 	
k ¼ 1, 2,…,N (5.30b)

where Eq. (5.25) was used in the latter. As τk
(c) is always positive, Eq. (5.29) states that the concentration

Ck is delayed with respect to the concentration CEC. As regards Ak, it can be less or greater than 1 and,

hence, the concentration Ck can be amplified or damped with respect to CEC. However, when using the

intrinsic volume-averaged concentrations, the coefficient Ak simplifies to Ak¼ (μk+hk)/μk and, hence,
reduces to 1 when the reaction coefficient hk is zero.

Then, by using Eq. (5.30a), Eq. (5.28) can be rewritten as

CEC ¼ 1

τ cð Þ
k ak

Ck +
1

ak

∂Ck

∂ t
k ¼ 1, 2,…,N (5.31)

The uncoupling procedure consists of N steps in a cascade sequence that are illustrated in the following

sections. Either step reduces the number of unknowns appearing in the EC mass balance

equation defined by Eq. (5.27) but increases the order of this PDE up to N+2. As already said in

Section 5.2, the problem is presented for an arbitrary number N of cell types but the derivation of
the solution is restricted to only N¼ 3.
5.3.1.1 First step: Elimination of C1
The goal of this step is to get a PDE in N unknowns, namely, C2, …, CN, and CEC. To obtain it, the

starting point is to substitute Eq. (5.31) for k¼1 in Eq. (5.27). It results in

1 +
1

τ cð Þ
1 a1

 !
∂C1

∂ t
+

1

a1

∂
2C1

∂ t2
+
XN
k¼2

∂Ck

∂ t
+
XN
k¼1

hk Ck ¼ Deff
1

τ cð Þ
1 a1

r2C1 +
1

a1

∂

∂ t
r2C1


 �" #
, (5.32)

that is a PDE of the third order in N unknowns, i.e., C1, C2, …, CN.

Eq. (5.32) is, however, not appropriate from a mathematical viewpoint as the boundary condition

Eq. (5.26a) is prescribed only for the concentrationCEC, not forC1. The diffusive phenomenon is in fact

not considered within the cells. For this reason, it is convenient to derive a PDEwhere the concentration

gradient regards only CEC. To get it, one can rewrite Eq. (5.31) for k¼1 as

C1 ¼ τ cð Þ
1 a1CEC � τ cð Þ

1

∂C1

∂ t
(5.33)

Substitution of Eq. (5.33) into Eq. (5.32) and bearing in mind Eq. (5.25) yields



102 Chapter 5 Continuum models of drug transport
1 + τ cð Þ
1 a1

� �
∂CEC

∂t
+ τ cð Þ

1

∂
2CEC

∂t2
+ h1τ

cð Þ
1 a1CEC�h1τ

cð Þ
1

∂C1

∂t
+
XN
k¼2

∂Ck

∂t
+
XN
k¼2

hkCk

¼Deff r2CEC + τ
cð Þ
1

∂

∂t
r2CEC

� �

+
∂

∂t
1 +

1

τ cð Þ
1 a1

 !
τ cð Þ
1

∂C1

∂t
+
τ cð Þ
1

a1

∂
2C1

∂t2
�Deff

1

a1
r2C1 +

τ cð Þ
1

a1

∂

∂t
r2C1

 !" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼�τ cð Þ
1

XN
k¼2

∂Ck

∂t
+
XN
k¼1

hkCk

( )
(5.34)

where the quantity between square brackets on the RHS can be calculated by using Eq. (5.32).

Then, by some algebra, it results in

1 + τ cð Þ
1 a1

� �
∂CEC

∂ t
+ τ cð Þ

1 h1 a1CEC + τ cð Þ
1

∂
2CEC

∂ t2
+
XN
k¼2

hk Ck

+
XN
k¼2

1 + τ cð Þ
1 hk

� �
∂Ck

∂ t
+ τ cð Þ

1

XN
k¼2

∂
2Ck

∂ t2
¼ Deff r2CEC + τ cð Þ

1

∂

∂ t
r2CEC


 �� 	 (5.35)

that is a PDE of third order in N unknowns, namely, C2, …, CN and CEC.

Eq. (5.35) is similar to Eq. (5.27). In detail, there are six additional terms and all of them are mul-

tiplied by a factor of τ1
(c). Also, if N¼ 1, that is only one type of cells interacts with the EC space,

Eq. (5.35) simplifies to

1 + τ cð Þ
1 a1

� �
∂CEC

∂ t
+ τ cð Þ

1

∂
2CEC

∂ t2
+ τ cð Þ

1 h1 a1CEC ¼ Deff r2CEC + τ cð Þ
1

∂

∂ t
r2CEC


 �� 	
(5.36)

whose only unknown is CEC.

5.3.1.2 Second step: Elimination of C2
The objective of this step is to derive a PDE inN� 1 unknowns, namely,C3,…,CN andCEC, in place of

the N unknowns appearing in Eq. (5.35). To obtain it, the starting point is to substitute Eq. (5.31) for

k¼ 2 in Eq. (5.35) yielding

1 + τ cð Þ
1 a1 + τ cð Þ

2 a2

� � 1

τ cð Þ
2 a2

∂C2

∂ t
+ 1 + τ cð Þ

1 a1

� �
+ 1 + τ cð Þ

2 a2

� � τ cð Þ
1

τ cð Þ
2

" #
1

a2

∂
2C2

∂ t2

+
τ cð Þ
1

a2

∂
3C2

∂ t3
+ h1 τ

cð Þ
1 a1

� � 1

τ cð Þ
2 a2

C2 +
1

a2

∂C2

∂ t

 !

+
XN
k¼3

∂Ck

∂ t
+ τ cð Þ

1

XN
k¼2

hk
∂Ck

∂ t
+ τ cð Þ

1

XN
k¼3

∂
2Ck

∂ t2
+
XN
k¼2

hk Ck

" #

¼ Deff
1

τ cð Þ
2 a2

r2C2 +
1

a2
+

τ cð Þ
1

τ cð Þ
2 a2

 !
∂

∂ t
r2C2 +

τ cð Þ
1

a2

∂
2

∂ t2
r2C2

" #
(5.37)
that is a PDE of fourth order in N� 1 unknowns, i.e., C2, …, CN.
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Similar to what was said in the previous paragraph, Eq. (5.37) is not appropriate from a mathemat-

ical viewpoint as the boundary condition Eq. (5.26a) is assigned only to the EC concentration CEC, not

to C2. For this reason, one can rewrite Eq. (5.32) for k¼ 2 as

C2 ¼ τ cð Þ
2 a2CEC � τ cð Þ

2

∂C2

∂ t
(5.38)

Substitution of Eq. (5.38) into Eq. (5.37), after lengthy algebra, yields

1 + τ cð Þ
1 a1 + τ cð Þ

2 a2

� �
+ τ cð Þ

1 τ cð Þ
2 h1 a1 + h2a2ð Þ

h i
∂CEC

∂ t
+ 1 + τ cð Þ

1 a1

� �
τ cð Þ
2 + 1 + τ cð Þ

2 a2

� �
τ cð Þ
1

h i
∂
2CEC

∂ t2

+ τ cð Þ
1 τ cð Þ

2

∂
3CEC

∂ t3
+ τ cð Þ

1 h1a1 + τ cð Þ
2 h2a2

� �
CEC +

XN
k¼3

1 + τ cð Þ
1 hk

� �
∂Ck

∂ t
+ τ cð Þ

1

XN
k¼3

∂
2Ck

∂ t2
+
XN
k¼3

hk Ck

� τ cð Þ
1 h1 a1
μ2

+ h2τ
cð Þ
2

 !
∂C2

∂ t
� τ cð Þ

1 h1 a1
μ2

τ cð Þ
2 + τ cð Þ

1 τ cð Þ
2 h2

 !
∂
2C2

∂ t2
¼

¼ Deff r2CEC + τ cð Þ
1 + τ cð Þ

2

� �
∂

∂ t
r2CEC + τ cð Þ

1 τ cð Þ
2

∂
2

∂ t2
r2CEC

� 	

+
∂

∂ t
1 + τ cð Þ

1 a1 + τ cð Þ
2 a2

� � 1

a2

∂C2

∂ t

�
+ 1 + τ cð Þ

1 a1

� �
τ cð Þ
2 + 1 + τ cð Þ

2 a2

� �
τ cð Þ
1

h i 1

a2

∂
2C2

∂ t2

+
τ cð Þ
1 τ cð Þ

2

a2

∂
3C2

∂ t3
�Deff

1

a2
r2C2 +

τ cð Þ
1 + τ cð Þ

2

� �
a2

∂

∂ t
r2C2 +

τ cð Þ
1 τ cð Þ

2

a2

∂
2

∂ t2
r2C2

2
4

3
5
9=
;

(5.39)

where the quantity between braces on the RHS can be calculated using Eq. (5.37).

After some algebra, it is obtained that

1 + τ cð Þ
1 a1 + τ cð Þ

2 a2

� �
+ τ cð Þ

1 τ cð Þ
2 h1 a1 + h2a2ð Þ

h i
∂CEC

∂ t
+ τ cð Þ

1 τ cð Þ
2 a1 + a2ð Þ + τ cð Þ

1 + τ cð Þ
2

� �h i
∂
2CEC

∂ t2

+ τ cð Þ
1 τ cð Þ

2

∂
3CEC

∂ t3
+ τ cð Þ

1 h1 a1 + τ cð Þ
2 h2a2

� �
CEC +

XN
k¼3

hk Ck +
XN
k¼3

1 + τ cð Þ
1 hk + τ cð Þ

2 hk

� �
∂Ck

∂ t

+
XN
k¼3

hkτ
cð Þ
1 τ cð Þ

2 + τ cð Þ
1 + τ cð Þ

2

� �h i
∂
2Ck

∂ t2
+ τ cð Þ

1 τ cð Þ
2

XN
k¼3

∂
3Ck

∂ t3

¼ Deff r2CEC + τ cð Þ
1 + τ cð Þ

2

� �
∂

∂ t
r2CEC + τ cð Þ

1 τ cð Þ
2

∂
2

∂ t2
r2CEC

� 	
(5.40)

Eq. (5.40) is a PDE of fourth order in N�1 unknowns, namely, C3, …, CN and CEC. Also, this

equation is similar to Eq. (5.35). In detail, all the additional terms are multiplied by a factor of τ2
(c).

In addition, if N¼ 2, that is only two different types of cells exchange drug with the EC space,

Eq. (5.40) is reduced to

1 + τ cð Þ
1 a1 + τ cð Þ

2 a2

� �
+ τ cð Þ

1 τ cð Þ
2 h1 a1 + h2a2ð Þ

h i
∂CEC

∂ t

+ τ cð Þ
1 + τ cð Þ

2

� �
+ τ cð Þ

1 τ cð Þ
2 a1 + a2ð Þ

h i
∂
2CEC

∂ t2
+ τ cð Þ

1 τ cð Þ
2

∂
3CEC

∂ t3
+ τ cð Þ

1 h1 a1 + τ cð Þ
2 h2a2

� �
CEC

¼ Deff r2CEC + τ cð Þ
1 + τ cð Þ

2

� �
∂

∂ t
r2CEC + τ cð Þ

1 τ cð Þ
2

∂
2

∂ t2
r2CEC

� 	 (5.41)
whose only unknown is CEC.
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5.3.1.3 Third step: Elimination of C3
Applying the same procedure shown in the previous two paragraphs results in

1 + τ cð Þ
1 a1 + τ cð Þ

2 a2 + τ cð Þ
3 a3

� �
+

τ cð Þ
1 τ cð Þ

2 h1 a1 + h2a2ð Þ + τ cð Þ
1 τ cð Þ

3 h1 a1 + h3a3ð Þ
+ τ cð Þ

2 τ cð Þ
3 h2a2 + h3a3ð Þ

2
4

3
5

8<
:

9=
; ∂CEC

∂ t

+ τ cð Þ
1 h1 a1 + τ cð Þ

2 h2a2 + τ cð Þ
3 h3a3

� �
CEC

+
τ cð Þ
1 + τ cð Þ

2 + τ cð Þ
3

� �
+ τ cð Þ

1 τ cð Þ
2 a1 + a2ð Þ + τ cð Þ

1 τ cð Þ
3 a1 + a3ð Þ + τ cð Þ

2 τ cð Þ
3 a2 + a3ð Þ

h i
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3 h1 a1 + h2a2 + h3a3ð Þ

8<
:

9=
; ∂

2CEC

∂ t2

+ τ cð Þ
1 τ cð Þ

2 + τ cð Þ
1 τ cð Þ

3 + τ cð Þ
2 τ cð Þ

3

� �
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3 a1 + a2 + a3ð Þ
h i

∂
3CEC

∂ t3
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3

∂
4CEC

∂ t4

+
XN
k¼4

1 + τ cð Þ
1 hk + τ cð Þ

2 hk

� �
+ hkτ

cð Þ
3

h i
∂Ck

∂ t
+
XN
k¼4

hk Ck

+
XN
k¼4

τ cð Þ
1 + τ cð Þ

2

� �
+ τ cð Þ

3 1 + τ cð Þ
1 hk + τ cð Þ

2 hk

� �
+ τ cð Þ

1 τ cð Þ
2 hk

� �h i
∂
2Ck

∂ t2

+
XN
k¼4

τ cð Þ
1 + τ cð Þ

2

� �
τ cð Þ
3 + τ cð Þ

1 τ cð Þ
2

� �
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3 hk

� �h i
∂
3Ck

∂ t3
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3

XN
k¼4

∂
4Ck

∂ t4

¼ Deff r2CEC + τ cð Þ
1 + τ cð Þ

2 + τ cð Þ
3

� �
∂

∂ t
r2CEC + τ cð Þ

1 τ cð Þ
2 + τ cð Þ

1 τ cð Þ
3 + τ cð Þ

2 τ cð Þ
3

� �
∂
2

∂ t2
r2CEC

�

+ τ cð Þ
1 τ cð Þ

2 τ cð Þ
3

∂
3

∂ t3
r2CEC

	

(5.42)

Eq. (5.42) is a PDE of the fifth order in N�2 unknowns, namely, C4, …, CN and CEC. It is similar to

Eq. (5.40) and its additional terms are multiplied by a factor of τ3
(c). Also, if three different types of cells

exchange drug with the EC space, that is, N¼ 3, Eq. (5.42) reduces to

1 + τ cð Þ
1 a1 + τ cð Þ

2 a2 + τ cð Þ
3 a3

� �
+ τ cð Þ

1 τ cð Þ
2 h1 a1 + h2a2ð Þ +

τ cð Þ
1 τ cð Þ

3 h1 a1 + h3a3ð Þ
+ τ cð Þ

2 τ cð Þ
3 h2a2 + h3a3ð Þ

2
4

3
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1 h1 a1 + τ cð Þ

2 h2a2 + τ cð Þ
3 h3a3

� �
CEC
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2 + τ cð Þ
3
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1 τ cð Þ
2 a1 + a2ð Þ +

τ cð Þ
1 τ cð Þ

3 a1 + a3ð Þ + τ cð Þ
2 τ cð Þ

3 a2 + a3ð Þ
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3 h1 a1 + h2a2 + h3a3ð Þ

2
4

3
5

8<
:

9=
; ∂

2CEC

∂ t2

+ τ cð Þ
1 τ cð Þ

2 + τ cð Þ
1 τ cð Þ

3 + τ cð Þ
2 τ cð Þ

3 + τ cð Þ
1 τ cð Þ

2 τ cð Þ
3 a1 + a2 + a3ð Þ

h in o
∂
3CEC

∂ t3
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3

∂
4CEC

∂ t4

¼ Deff r2CEC + τ cð Þ
1 + τ cð Þ

2 + τ cð Þ
3

� �
∂

∂ t
r2CEC + τ cð Þ

1 τ cð Þ
2 + τ cð Þ

1 τ cð Þ
3 + τ cð Þ

2 τ cð Þ
3

� �
∂
2

∂ t2
r2CEC

�

+ τ cð Þ
1 τ cð Þ

2 τ cð Þ
3

∂
3

∂ t3
r2CEC

	

(5.43)
that is a PDE of fifth order in the only unknown CEC.
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5.3.2 Transformed mass balance equation for the extracellular space

The treatment is here limited to N¼ 1, 2, or 3. Eqs. (5.36), (5.41) and (5.43) represent the transformed

drug mass balance equation for the EC space valid forN¼ 1, 2, and 3, respectively. They can be unified

by only one single equation as

∂CEC

∂ t
+

A
2ð Þ
N

A
1ð Þ
N

∂
2CEC

∂ t2
+

A
3ð Þ
N

A
1ð Þ
N

∂
3CEC

∂ t3
+

A
4ð Þ
N

A
1ð Þ
N

∂
4CEC

∂ t4
+

A
0ð Þ
N

A
1ð Þ
N

CEC

¼ Deff

A
1ð Þ
N

r2CEC + B
1ð Þ
N

∂

∂ t
r2CEC + B

2ð Þ
N

∂
2

∂ t2
r2CEC + B

3ð Þ
N

∂
3

∂ t3
r2CEC

� � (5.44)

where N can be equal to 1, 2, or 3. The coefficients listed in the above equation are given in Section 5.A

(Appendix A).

When the reaction terms are negligible, i.e., hk¼0, Eq. (5.44) simplifies to

∂CEC

∂ t
+ R

2ð Þ
N

∂
2CEC

∂ t2
+ R

3ð Þ
N

∂
3CEC

∂ t3
+ εA 4ð Þ

N

∂
4CEC

∂ t4

¼ εDeff r2CEC + B
1ð Þ
N

∂

∂ t
r2CEC + B

2ð Þ
N

∂
2

∂ t2
r2CEC + B

3ð Þ
N

∂
3

∂ t3
r2CEC

� � (5.45)
where the coefficients RN
(2) and RN

(3) are also given in Section 5.A (Appendix A).
5.3.3 Physical interpretation: The dual-phase-lag model

Eq. (5.45) does not obey the classical theory of transient mass diffusion based on Fick’s law, where the

mass flux vector (j) and the concentration (rCEC) are assumed to occur at the same instant of time. In

fact, the Fick constitutive equation j¼ � (Deff/AN
(1))rCEC would lead (when combined with the mass

balance diffusion–reaction equation) to the classical PDE

∂CEC

∂t
+

A
0ð Þ
N

A
1ð Þ
N

CEC ¼ �r � j ¼ Deff

A
1ð Þ
N

 !
r2CEC (5.46)

where r� j is the divergence of the mass flux vector.

Eq. (5.45) seems to obey the dual-phase-lag (DPL) nonconventional theory of transient mass dif-

fusion that is based on the following constitutive equation:

j r, t + τ jð Þ
EC

� �
¼ � Deff

A
1ð Þ
N

 !
rCEC r, t + τ cð Þ

EC

� �
(5.47)

where τEC
(c) is the phase lag of the concentration gradient while τEC

(j) is the phase lag of the mass flux.

If τEC
(c) > τEC

( j) , the mass flux is the cause, and the concentration gradient is the effect. On the other hand,

if τEC
(c) < τEC

( j) , the concentration gradient is the cause, while the mass flux is the effect.

Now, the first-order approximation of Eq. (5.47) by using Taylor series reads

j r, tð Þ + τ jð Þ
EC

∂j
r, tð Þ � � Deff

1ð Þ

 !
rCEC r, tð Þ + τ cð Þ

EC

∂ rCEC r, tð Þ
� 	

(5.48)

∂t AN

∂t
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Combining this equation with the mass balance yields

∂CEC

∂t
+ τ jð Þ

EC

∂
2CEC

∂t2
+

A
0ð Þ
N

A
1ð Þ
N

CEC ¼ Deff

A
1ð Þ
N

 !
r2CEC + τ cð Þ

EC

∂

∂t
r2CEC

� �
(5.49)

If now the third- and fourth-order time partial derivatives are neglected on the LHS of Eq. (5.44) and the

fourth- and fifth-order mixed partial derivatives are neglected on its RHS as well, this equation reduces

to Eq. (5.49) where the time phase lags may be taken as

τ jð Þ
EC ¼ A

2ð Þ
N

A
1ð Þ
N

, τ cð Þ
EC ¼ B

1ð Þ
N (5.50)

The above coefficients are given in Table 5.A1 of Section 5.A (Appendix A). If the reaction terms are

negligible, AN
(0)¼0 and AN

(1)¼1/ε in Eq. (5.49), and the former of the above two time phase lags mod-

ifies as

τ jð Þ
EC ¼ R

2ð Þ
N (5.51)

where RN
(2) is shown in Table 5.A2 of Section 5.A (Appendix A).

By applying again Taylor series to Eq. (5.47) but performing a third-order approximation to both

mass flux and concentration gradient, it results in

j r, tð Þ + τ jð Þ
EC

∂j

∂t
r, tð Þ + 1

2
τ jð Þ
EC

� �2 ∂2j
∂t2

r, tð Þ + 1

6
τ jð Þ
EC

� �3 ∂3j
∂t3

r, tð Þ

� � Deff

A
1ð Þ
N

 ! rCEC r, tð Þ + τ cð Þ
EC

∂

∂t
rCEC r, tð Þ

+
1

2
τ cð Þ
EC

� �2 ∂2
∂t2

rCEC r, tð Þ + 1

6
τ cð Þ
EC

� �3 ∂
3

∂t3
rCEC r, tð Þ

2
664

3
775

(5.52)

where the quadratic and cubic nonlinear terms of τEC
(c) and τEC

(j) have been considered.

Combining this equation with the mass balance yields

∂CEC

∂t
+ τ jð Þ

EC

∂
2CEC

∂t2
+

1

2
τ jð Þ
EC

� �2 ∂3CEC

∂t3
+

1

6
τ jð Þ
EC

� �3 ∂4CEC

∂t4
+

A
0ð Þ
N

A
1ð Þ
N

CEC

¼ Deff

A
1ð Þ
N

 !
r2CEC + τ cð Þ

EC

∂

∂t
r2CEC +

1

2
τ cð Þ
EC

� �2 ∂
2

∂t2
r2CEC +

1

6
τ cð Þ
EC

� �3 ∂
3

∂t3
r2CEC

� 	 (5.53)

Comparing Eqs. (5.44) and (5.53) gives

A
3ð Þ
N

A
1ð Þ
N

<
1

2
τ jð Þ
EC

� �2
¼ 1

2

A
2ð Þ
N

A
1ð Þ
N

 !2

(5.54a)

A
4ð Þ
N

A
1ð Þ
N

<
1

6
τ jð Þ
EC

� �3
¼ 1

6

A
2ð Þ
N

A
1ð Þ
N

 !3

(5.54b)

2ð Þ 1 cð Þ� �2 1 1ð Þ� �2

BN <

2
τEC ¼

2
BN (5.54c)



1075.4 Case study: A 3D rectangular biological tissue
B
3ð Þ
N <

1

6
τ cð Þ
EC

� �3
¼ 1

6
B

1ð Þ
N

� �3
(5.54d)

The equations listed above state that the third and fourth terms appearing on both sides of Eq. (5.44) are

smaller than the corresponding terms appearing on both sides of Eq. (5.53) and coming from the

third-order approximation of Taylor series Eq. (5.52). In other words, Eq. (5.44) does not represent

rigorously the dual-phase-lag model when the quadratic and cubic nonlinear terms of τEC
(c) and τEC

(j)

are considered for the constitutive Eq. (5.47). As they are smaller and, in addition, the linear terms

are greater than the quadratic and cubic nonlinear terms of τEC
(c) and τEC

(j) , Eq. (5.45) can reasonably

be rewritten as Eq. (5.49), where both the time phase lags are defined through Eq. (5.50).

Similarly, when the reaction terms are negligible. In such a case, in fact, by comparing Eqs. (5.45)

and (5.53), it results in

R
3ð Þ
N <

1

2
τ jð Þ
EC

� �2
¼ 1

2
R

2ð Þ
N

� �2
(5.55a)

R
4ð Þ
N <

1

6
τ jð Þ
EC

� �3
¼ 1

6
R

2ð Þ
N

� �3
(5.55b)

As the third and fourth terms appearing on both sides of Eq. (5.45) are smaller than the corresponding

terms appearing on both sides of Eq. (5.53) and, also, the linear terms are greater than the quadratic and

cubic nonlinear terms of τEC
(c) and τEC

(j) , Eq. (5.45) can reasonably be rewritten as Eq. (5.49) where τEC
(c) is
defined by the second of the two Eqs. (5.50) and τEC
(j) by Eq. (5.51).
5.3.4 Concentration distribution of the k-th type of cell

Once Eq. (5.49) is solved and the concentration distribution CEC(r, t) is calculated, the concentration
Ck(r, t) of the k-th type of cell, with k¼ 1, 2, …, N and N¼1, 2, or 3, may be obtained by solving

Eq. (5.31) that is a well-established first-order and linear ODE. Following a standard integration pro-

cedure (Gradshteyn and Ryzhik, 2007; see p. 1096, No. 16.316), the result is

Ck r, tð Þ¼Ck r, 0ð Þexp � t

τ cð Þ
k

 !
+ ak

ðt
0

CEC r, τð Þexp τ� t

τ cð Þ
k

 !
dτ

¼ ak

ðt
0

CEC r, τð Þexp τ� t

τ cð Þ
k

 !
dτ

(5.56)

where Ck(r, 0)¼0 according to the first of the two Eq. (5.26b); while ak and τk
(c) are defined by
Eqs. (5.25) and (5.30a), respectively.
5.4 Case study: A 3D rectangular biological tissue
The case study considered here is a three-dimensional rectangular tissue that can exchange drug with

three different types of cells (N¼3), as depicted in Fig. 5.4A. The reaction terms within the cells are
assumed to be negligible (hk�0) and the EC space is impermeable at all boundaries with the exception



FIG. 5.4

Schematic of the case study with three different types of cells: (A) parallelepiped-shaped biological tissue;
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of the ones along x. At the x¼0 surface, in fact, the EC space can receive drug due to both an applied

surface mass flux j0(y, z, t) and advection with a reservoir at C∞, 0(y, z, t) concentration by a mass trans-

fer coefficient, sayK0. At the x¼L surface, however, the EC space can release drug by advection with a

reservoir at concentration C∞, L¼0 by a mass transfer coefficient, say KL. Also, the parallelepiped-

shaped biological tissue is initially at zero concentration of drug as well as the three different types

of cells. The symbols L, W, and H are the overall dimensions of the parallelepiped in the x, y, and

(B) reduced slab-shaped tissue.
z directions, respectively.
5.4.1 One-dimensional governing equations

If j0(y, z, t) and C∞, 0(y, z, t) are space-independent, that is j0(y, z, t)¼ j0(t) and C0(y, z, t)¼C0(t), then the

3D transient, rectangular problem described above reduces to a 1D case due to the homogeneous
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boundary conditions of the second kind applied along y and z, as shown in Fig. 5.4B. The governing

equations of this problem are

∂CEC

∂t
+ τ jð Þ

EC

∂
2CEC

∂t2
¼ εDeff


 � ∂
2CEC

∂x2
+ τ cð Þ

EC

∂

∂t

∂
2CEC

∂x2

� 	
0 < x < L; t > 0 (5.57a)

�Deff
∂CEC

∂x

� �
x¼0

¼K0 C∞,0 tð Þ�CEC 0, tð Þ½ �+ j0 tð Þ t> 0 (5.57b)

�Deff
∂CEC

∂x

� �
x¼L

¼KLCEC L, tð Þ t> 0 (5.57c)

CEC x, 0ð Þ¼ 0 0< x< L (5.57d)

∂CEC

∂t

� �
t¼0

¼ 0 0< x< L (5.57e)

where Eq. (5.57a) comes from Eq. (5.49) (where AN
(0)¼0 and AN

(1)¼1/ε) readapted for the current 1D

rectangular problem. Also, a second initial condition, namely, Eq. (5.57e), has been added according to

the DPL model. It is zero as the initial drug concentration within the EC space is zero. Also, the phase

lag times are

τ jð Þ
EC ¼ R

2ð Þ
3 ¼ τ cð Þ

1 ε + f 2 1� εð Þ + f 3 1� εð Þ½ � + τ cð Þ
2 ε + f 1 1� εð Þ + f 3 1� εð Þ½ �

+ τ cð Þ
3 ε + f 1 1� εð Þ + f 2 1� εð Þ½ �

(5.58a)

τ cð Þ
EC ¼ B

1ð Þ
3 ¼ τ cð Þ

1 + τ cð Þ
2 + τ cð Þ

3 (5.58b)

Once the above equations are solved and the concentration distribution CEC(x, t) obtained, the concen-
tration Ck(x, t) is (see Section 5.3.4)

Ck x, tð Þ ¼ ak

ðt
0

CEC x, τð Þ exp τ � t

τ cð Þ
k

 !
dτ 0 � x � L; t � 0 (5.59)

where

ak ¼ 1� ε

ε

f k

τ cð Þ
k

 !
k ¼ 1, 2,N ¼ 3 (5.60a)

τ cð Þ
k ¼ 1

μk
k ¼ 1, 2,N ¼ 3 (5.60b)

As far as j0(t) andC∞, 0(t) are concerned, it is assumed that the drug delivery occurs for a finite duration,

say 0� t� td, where td denotes the delivery time. Thus, j0(t) and C∞, 0(t) may be taken as

j0 tð Þ ¼ j0 1� H t� tdð Þ½ � (5.61a)

C0 tð Þ ¼ C∞, 0 1� H t� tdð Þ½ � (5.61b)

where H(.) is the unit step or Heaviside function, while j0 and C∞, 0 are time-independent functions in
the range 0� t� td.
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5.4.2 Exact analytical solution

5.4.2.1 Extracellular space solution
The EC concentration distribution has to be calculated both when the drug delivery is “on” (0� t� td)
and when it is “off” (t> td). By using the principle of superposition, it may be given in a general form as

CEC ¼ CEC x, tð Þ 0� t� td
CEC x, tð Þ�CEC x, t� tdð Þ t> td

�
(5.62)

where CEC(x, t) is the EC concentration distribution when j0(t)¼ j0 and C∞, 0(t)¼C∞, 0 in Eq. (5.57b);

whileCEC(x, t� td) is the EC concentration solution when j0(t)¼ j0H(t� td) andC∞, 0(t)¼C∞, 0H(t� td)
in the nonhomogeneous boundary condition Eq. (5.57b). Once CEC(x, t) is computed, CEC(x, t� td) may

be derived from the former by simply replacing t with t� td.
The starting point to calculate CEC(x, t) when j0(t)¼ j0 and C∞, 0(t)¼C∞, 0 is to apply again the

principle of superposition for linear problems according to the fact that the boundary condition

Eq. (5.57b) is nonhomogeneous. In addition, as this boundary condition is time-independent, the

function CEC(x, t) may be split into two parts: a steady-state solution and a ‘complementary’ transient

solution, that is,

CEC x, tð Þ ¼ CEC,ss xð Þ + CEC,ct x, tð Þ 0 � t � td (5.63)

The steady-state solution keeps the nonhomogeneous boundary condition; it is very simple as is linear

in space. For an analogous heat diffusive problem, see the one given by Cole et al. (2016). Readapting it

to the current mass diffusive problem yields

CEC,ss xð Þ ¼ P1 � P2

x

L
(5.64a)

where

P1 ¼ Bi0C∞,0 +
j0L

Deff

� �
1 + BiL

Bi0 + Bi0BiL + BiL
(5.64b)

P2 ¼ Bi0C∞,0 +
j0L

Deff

� �
BiL

Bi0 + Bi0BiL + BiL
(5.64c)

Bi0 ¼ K0L

Deff
, BiL ¼ KLL

Deff
(5.64d)

The complementary transient part is much more complicated. In fact, it is the solution of the following

governing equations:

∂CEC,ct

∂t
+ τ jð Þ

EC

∂
2CEC,ct

∂t2
¼ εDeff


 � ∂
2CEC,ct

∂x2
+ τ cð Þ

EC

∂

∂t

∂
2CEC,ct

∂x2

� 	
0< x< L; t> 0 (5.65a)

�Deff
∂CEC,ct

� �
¼�K0CEC,ct 0, tð Þ t> 0 (5.65b)
∂x x¼0



1115.4 Case study: A 3D rectangular biological tissue
�Deff
∂CEC,ct

∂x

� �
x¼L

¼KLCEC,ct L, tð Þ t> 0 (5.65c)

CEC,ct x,0ð Þ¼�CEC,ss xð Þ 0< x< L (5.65d)

∂CEC,ct

∂t

� �
t¼0

¼ 0 0< x< L (5.65e)

where the two boundary conditions are both homogeneous and the first initial condition is the negative

part of the steady-state solution defined by Eqs. (5.64a)–(5.64d).
The solution to Eqs. (5.65a)–(5.65e) is presented in the next section using a classical Fourier series

technique, as proposed by de Monte and Haji-Sheikh (2017b) for an analogous heat diffusive problem.

Concerning this, it is important to recall the fundamental solution of the classical Fick-type mass dif-
fusion equation.
5.4.2.2 Solution of the Fick-type diffusive equation
The fundamental solution of the classical 1D Fick-type mass diffusion equation

∂CEC,ct

∂t
¼ εDeff


 � ∂2CEC,ct

∂x2
(5.66)

in a finite 1D rectangular body subject to homogeneous boundary conditions, using the classical sep-

aration of variables technique, is

CEC,ct x, tð Þ ¼
X∞
n¼1

bnXn xð Þe�γnt (5.67)

The space-variable function Xn(x) is the n-th eigenfunction (corresponding to the n-th eigenvalue γn and
accounting for the diffusivity, εDeff) that satisfies the following equations:

d2Xn

dx2
+

γn
εDeff

� �
Xn xð Þ ¼ 0 (5.68a)

� dXn

dx

� �
x¼0

+
K0

Deff
Xn 0ð Þ ¼ 0 (5.68b)

dXn

dx

� �
x¼L

+
KL

Deff
Xn Lð Þ ¼ 0 (5.68c)

The function Xn(x) satisfying the above equations may be taken as

Xn xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
γn

εDeff

r
cos

ffiffiffiffiffiffiffiffiffiffi
γn

εDeff

r
x

� �
+

K0

Deff
sin

ffiffiffiffiffiffiffiffiffiffi
γn

εDeff

r
x

� �
; (5.69)

while the eigencondition for computing the eigenvalues is

tan ~γnð Þ ¼ ~γn Bi0 + BiLð Þ
~γn ¼

ffiffiffiffiffiffiffiffiffiffi
γn

r
L (5.70)
~γ2n � Bi0BiL εDeff
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where ~γn is the dimensionless eigenvalue. In accordance with the Sturm-Liouville problem, the function

Xn(x) defined by Eq. (5.69) also satisfies the orthogonality property

ðL
0

Xn x0ð ÞXm x0ð Þdx0 ¼ 0 when n ¼ m

Nn when n 6¼ m

�
(5.71)

where Nn is the so-called norm that may be taken as

Nn ¼ 1

2L
~γ2n + Bi20

 � � 1 +

BiL

~γ2n + Bi2L

 !
+ Bi0

" #
(5.72)

Also, bn in Eq. (5.67) is a coefficient depending on the first initial condition Eq. (5.65d):

bn ¼ � 1

Nn

ðL
0

CEC,ss x0ð ÞXn x0ð Þdx0: (5.73)

Substituting Eqs. (5.64a) and Eq. (5.69) into Eq. (5.73) yields (see Section 5.B—Appendix B)

bn ¼ � P1

Nn
I1n +

P2

NnL

ffiffiffiffiffiffiffiffiffiffi
γn

εDeff

r
I2n,c +

KEC,0

Deff
I2n,s

� �
(5.74)

where I1n, I2n, c, and I2n, s are given in Section 5.B (Appendix B) by Eqs. (5.B2), (5.B4a), and (5.B4b),
respectively.
5.4.2.3 Fourier series-based solution
The exact analytical solution of Eqs. (5.65a)–(5.65e) having the initial condition as only driving term

can be obtained by modifying Eq. (5.67) as

CEC,ct x, tð Þ ¼
X∞
n¼1

φn tð ÞXn xð Þe�γnt (5.75)

where φn(t) is an unknown function of time that accounts for the phase lags appearing in Eq. (5.65a).

The computation of the function φn(t) may be obtained by substituting CEC,ct(x, t) defined by

Eq. (5.75) into Eq. (5.65a) and using first Eq. (5.68a) and then Eq. (5.71). It produces a linear, homo-

geneous, ODE of second order for the determination of the time function φn(t) as

d2φn tð Þ
dt2

� 2βn
dφn tð Þ
dt

+ λ2nφn tð Þ ¼ 0 (5.76)

where

βn ¼ γn 1� τ cð Þ
EC

2τ jð Þ
EC

� 1

2γnτ
jð Þ

EC

 !
(5.77a)

λn ¼ γn 1� τ cð Þ
EC

τ jð Þ
EC

 !1=2

(5.77b)
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The solution of this ODE with constant coefficients provides the function φn(t) to be inserted into

Eq. (5.75) as

φn tð Þ ¼ B1n exp βnt +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �
+ B2n exp βnt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �

¼ eβnt U1n sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �
+ U2n cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �� 	 (5.78)

where U1n¼B1n�B2n and U2n¼B1n+B2n.

The two initial conditions to be used for the determination of coefficients U1n and U2n are defined

by Eqs. (5.65d) and (5.65e). Thus, by imposing that Eq. (5.75) (with the function φn(t) defined through
Eq. (5.78)) satisfy the two initial conditions and bearing in mind the orthogonality property of

Eq. (5.71), results in

U1n ¼ γn � βnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q U2n (5.79a)

U2n ¼ � 1

Nn

ðL
0

CEC,ss x
0ð ÞXn x0ð Þdx0 ¼ bn (5.79b)

where bn may be calculated through Eq. (5.74). After determination of these constants, the function

φn(t) defined by Eq. (5.78) becomes

φn tð Þ ¼ bne
βnt γn � βnð Þ

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q + cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �2
664

3
775 (5.80)

Now, substituting Eq. (5.80) into Eq. (5.75) yields the complementary part CEC, ct(x, t) of the

concentration solution. Then, the complete solution is

CEC x, tð Þ ¼ CEC,ss xð Þ +
X∞
n¼1

bn γn � βnð Þ
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q + cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
t

� �2
664

3
775

	Xn xð Þe� γn�βnð Þt

(5.81)

The relative magnitude of βn and λn defined by Eqs. (5.77a) and (5.77b), respectively, affects the quan-

tity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
appearing in Eq. (5.80) and, hence, in Eq. (5.81). This quantity can in general be real or

imaginary, while the function φn(t) is always real. Whenever βn
2�λn

2<0, the CEC(x, t) solution can

exhibit a wave-like behavior and the convergence of Eq. (5.81) is fast (exponential convergence).

However, it is proven in Section 5.4.4 that this case cannot be verified as the difference βn
2�λn

2 is always

positive. Consequently, the series convergence is complex and demanding and will be analyzed in
Section 5.4.4.
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5.4.2.4 Special case: Boundary condition of the first kind
If K0!∞, the generalized boundary condition of the third kind defined by Eq. (5.57b) reduces to a

nonhomogeneous boundary condition of the first kind, namely, CEC( 0, t)¼C∞, 0(t), where C∞, 0(t)
is defined through Eq. (5.61b). In such a case, Eqs. (5.64b), (5.64c), (5.69), (5.70), (5.72), and

(5.74) reduce, respectively, to

P1 ¼C∞,0; P2 ¼C∞,0

BiL

1 +BiL
; Xn xð Þ¼ sin

ffiffiffiffiffiffiffiffiffiffi
γn

εDeff

r
x

 !
;

~γn cot ~γnð Þ¼�BiL; Nn ¼ L

2
1 +

BiL

~γ2n +Bi
2
L

 !
; bn ¼�P1

Nn
I1n +

P2

NnL
I2n

(5.82)
where I1n and I2n are given in Section 5.B (Appendix B) by Eqs. (5.B5) and (5.B6), respectively.
5.4.2.5 Cell concentration solution
As the drug delivery occurs for a while according to the two relationships in Eq. (5.61), the concen-

tration Ck(x, t) defined by Eq. (5.59) for k¼ 1, 2, N¼ 3 has to be calculated both when it is “on”

(0� t� td) and when is “off” (t> td). By using the principle of superposition, it may be given in a gen-

eral form as

Ck x, tð Þ ¼ Ck x, tð Þ 0 � t � td

Ck x, tð Þ � Ck x, t� tdð Þ t > td

�
(5.83)

where Ck(x, t� td) may be obtained from Ck(x, t) simply replacing t by t� td.

Substitution of Eq. (5.81) into Eq. (5.59) yields

Ck x, tð Þ¼ ake
� t

τ cð Þ
k CEC,ss xð Þ

ðt
0

e

τ
τ cð Þ
k dτ

8<
:

+
X∞
n¼1

bn
γn�βnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n� λ2n

q Xn xð Þ
ðt
0

sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n� λ2n

q
τ

� �
e
� γn�βn�

1

τ cð Þ
k

� �
τ
dτ

+
X∞
n¼1

bnXn xð Þ
ðt
0

cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n� λ2n

q
τ

� �
e
� γn�βn�

1

τ cð Þ
k

� �
τ
dτ

9>=
>;

(5.84)
where bn may be calculated through Eq. (5.74).
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Then, by performing the last two integrals by parts (Gradshteyn and Ryzhik, 2007; see p. 148) and

after some algebra, the concentration Ck(x, t) results in

Ck x, tð Þ¼ akfCEC,ss xð Þτ cð Þ
k 1� e

� t

τ cð Þ
k

 !

�
X∞
n¼1

bn

γn�βnð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n� λ2n

q γn�βn�
1

τ cð Þ
k

 !
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n� λ2n

q

γn�βn�
1

τ cð Þ
k

 !2

� β2n� λ2n

 � sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n� λ2n

q
t

� �
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�
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γn�βnð Þ+ γn�βn�
1
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1
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q
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Xn xð Þe� γn�βnð Þt

+e
� t
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k

X∞
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bn

γn�βnð Þ+ γn�βn�
1

τ cð Þ
k

 !

γn�βn�
1

τ cð Þ
k

 !2

� β2n� λ2n

 �Xn xð Þg (5.85)

5.4.3 Concentration solution in dimensionless form

By defining the following dimensionless groups:

~x¼ x

L
; ~t¼ εDeff

L2
t; ~CEC ¼ CEC

C∞,0

; ~Ck ¼ Ck

C∞,0

; ~j0 ¼
j0L

C∞,0Deff
;

~τ cð Þ
EC ¼

εDeff

L2
τ cð Þ
EC; ~τ jð Þ

EC ¼
εDeff

L2
τ jð Þ
EC; ~τ cð Þ

k ¼ εDeff

L2
τ cð Þ
k ; ~ak ¼ ak

εDeff =L2
,

(5.86)

the concentration solution CEC, Eq. (5.81), can be rewritten in dimensionless form as

~CEC ~x, ~tð Þ¼ ~CEC,ss ~xð Þ+
X∞
n¼1

Bn ~γ2n� ~βn

 � sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n� ~λ
2

n

q
~t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2� ~λ

2
q + cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n� ~λ
2

n

q
~t

� �2
664

3
775 ~Xn ~xð Þ e� ~γ2n�~βnð Þ ~t (5.87a)
n n
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where

~CEC,ss ~xð Þ ¼ ~P1 � ~P2~x (5.87b)

~P1 ¼ P1

C∞,0

¼ Bi0 + ~j0

 � 1 +BiL

Bi0 +Bi0BiL +BiL
; ~P2 ¼ P2

C∞,0

¼ Bi0 + ~j0

 � BiL

Bi0 +Bi0BiL +BiL
(5.87c)

~Xn ~xð Þ¼XnL¼~γn cos ~γn~xð Þ+Bi0 sin ~γn~xð Þ (5.87d)

~βn ¼
βn

εDeff =L2
¼~γ2n 1� ~τ cð Þ

EC

2~τ jð Þ
EC

� 1

2~γ2n~τ
jð Þ

EC

 !
; ~λn ¼ λn

εDeff =L2
¼~γ2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�~τ cð Þ

EC

~τ jð Þ
EC

vuut (5.87e)

Also, the dimensionless constant Bn results in

Bn ¼ bn
C∞,0L

¼ �
~P1

~Nn

I1n +
~P2

~Nn

~I2n (5.87f)

where

~Nn ¼ NnL ¼ 1

2
~γn
2 + Bi0

2

 �

1 +
BiL

~γn
2 + Bi2L

� �
+ Bi0

� 	
(5.87g)

I1n ¼ sin ~γnð Þ+ Bi0

~γn
1� cos ~γnð Þ½ �; ~I2n ¼ I2n

L
¼~γn~I2n,c +Bi0~I2n,s (5.87h)

~I2n,c ¼ I2n,c

L2
¼~γn sin ~γnð Þ+ cos ~γnð Þ�1

~γ2n
(5.87i)

~I2n,s ¼ I2n,s

L2
¼ sin ~γnð Þ�~γn cos ~γnð Þ

~γ2n
(5.87j)

Once ~CEC ~x,~tð Þ is known through Eqs. (5.87a)–(5.87j), the concentration ~CEC ~x,~t� ~tdð Þmay be derived

from the former by simply replacing ~t with ~t� ~td, where ~td ¼ εDeff

L2
td.

By using the dimensionless groups defined by Eq. (5.87), the concentration solution Ck(x, t),
Eq. (5.85), can be rewritten in a dimensionless form as
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~Ck ~x, ~tð Þ¼ ~akf ~CEC,ss ~xð Þ~τ cð Þ
k 1� e

� ~t
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k

 !

�
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 �
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k

 !2
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(5.88)

Before proceeding to calculate the concentration solution of the EC space as well as of the k-th cell, the
convergence of both the series-solutions Eqs. (5.87) and (5.88) has to be analyzed and discussed.
Similarly, the computation of the eigenvalues.
5.4.4 Convergence of the series-solution

Computational difficulties might arise during the evaluation of the single summation appearing in

Eq. (5.87a) due to the argument

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
~t of the hyperbolic functions that is always real. In fact,

by using Eq. (5.84e), the term ~β
2

n � ~λ
2

n results in

~β
2

n � ~λ
2

n ¼ ~γ4n 1� ~τ cð Þ
EC

2~τ jð Þ
EC

� 1

2~γ2n~τ
jð Þ

EC

 !2

� ~γ4n 1� ~τ cð Þ
EC

~τ jð Þ
EC

 !
, (5.89)

that is always positive as, in the current case, the ratio ~τ cð Þ
EC=~τ

jð Þ
EC is always greater than 1, as shown in

Section 5.C (Appendix C).

Therefore, when n and the dimensionless time ~t increase, the argument

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
~t can be very

large, and the hyperbolic sine and cosine can become extremely large leading to a possible overflow

error. For this reason, it is convenient to write out these two hyperbolic functions and to combine their

argument,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
~t, with the one, � ~γ2n � ~βn


 �
~t, of the exponential appearing in Eq. (5.87a). After
some algebra, an alternative form of the concentration series-solution is as
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~CEC ~x,~tð Þ ¼ ~P1 � ~P2 ~x +
1
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In the above equation both the summations seem to exhibit an exponential convergence and,

hence, very fast. However, some attention should be paid on the quantity ~γ2n�~βn

 �
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

~β
2

n� ~λ
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n

q
of

the argument of the exponential terms. In fact, bearing in mind Eq. (5.87e), it is found that
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whose limit, when n!∞, is

lim
n!∞

~γ2n � ~βn

 �
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~β
2

n � ~λ
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n

q� 	
¼

1

~τ cð Þ
EC

for }� } sign

∞ for }+} sign

8><
>: (5.91b)

Therefore, the first summation of Eq. (5.90) only apparently exhibits an exponential convergence; it

actually exhibits an algebraic convergence (very slow). Conversely, the second summation is a

“true” exponentially convergent series. The former of the two limits in Eq. (5.91b) has been proven

numerically in Section 5.D (Appendix D). Both of them requires an infinite number of terms.

However, as an infinite number of terms cannot be considered, a convergence criterion for the two

series appearing in Eq. (5.90) has been defined in Section 5.D (Appendix D). It gives the maximum

number of terms, NSEC
(1) and NSEC

(2), for truncation errors less than 10�A (with A¼2, 3, …) through

Eqs. (5.D6) and (5.D10), respectively.

To appreciate the difference in magnitude between NSEC
(1) and NSEC

(2), they have been computed in

Section 5.D (Appendix D) for different numerical accuracies and the results given by Table 5.D1.

The same computational difficulties might arise during the evaluation of the first two single

summations appearing in Eq. (5.88). Then, an alternative form of the concentration Ck(x, t) can
be obtained writing conveniently out the hyperbolic functions as exponentials. In addition, the third

summation of Eq. (5.88) exhibits an algebraic convergence. By some algebra, this summation can

be split into two parts as
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Therefore, Eq. (5.88) becomes
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where, bearing in mind Eq. (5.91), the second summation exhibits an algebraic convergence too. Only

the fourth one is a “true” exponentially convergent series.

All the series stated before require an infinite number of terms. As this cannot be performed, an

appropriate convergence criterion is discussed in Section 5.E (Appendix E). The maximum number

of terms to ensure a truncation error less than 10�A (with A¼2, 3, …) for either series of

Eq. (5.93) is given by Eqs. (5.E5), (5.E9), and (5.E13). Furthermore, the maximum number of terms
is computed for different accuracies and the results given by Table 5.E1.
5.4.5 Computation of the eigenvalues

The eigencondition defined by Eq. (5.70) is the same as the corresponding equation of the 1D linear

transient heat conduction problem involving a slab with boundary conditions of the third kind on

both sides (assuming Bi0 at x¼0 and BiL at x¼L). This problem is denoted by X33 and treated

by Haji-Sheikh and Beck (2000). Therefore, its roots (eigenvalues) may be computed by using

the same explicit approximate relations based on the third-order modified Newton method

(Haji-Sheikh and Beck, 2000). In particular, the n-th approximate eigenvalue ζn is obtained by means

of the following formula:

βn � ζn ¼ zn + εn znð Þ (5.94)

where βn is the exact eigenvalue, zn is the initial guess value used in the first iteration and εn is the
deviation which yields the update value for ζn.

These relations provide approximate values of the exact eigenvalues with high accuracy for Bi0,

BiL� [0,∞). In particular, after one iteration they yield an accuracy with at least seven decimal places

for the first eigenvalue (n¼1), and even higher for n> 1. To obtain eigenvalues with an accuracy of

10�15, two more iterations may be required.

The first 10 eigenvalues computed for Bi0¼BiL¼1 through the method mentioned above are

shown in Table 5.1, where the exact eigenvalues βn listed in the last column are obtained by using

the internal Matlab function “fsolve” setting the tolerance parameter equal to 10�15.
Note that, after two iterations, ζn is exactly the same as βn.

Table 5.1 Calculated eigenvalue, ζn, using explicit approximate formulation and comparison

with results after three iterations and exact eigenvalues βn.

n zn ζn (after 1 iteration) ζn (after 2 iterations) βn (exact)

1 1.30592200212618 1.30654237415872 1.30654237418881 1.30654237418881

2 3.69018331600398 3.67319480171322 3.67319440630425 3.67319440630425

3 6.60338479754574 6.58462058161976 6.58462004256417 6.58462004256417

4 9.64809957042428 9.63168500010130 9.63168463569187 9.63168463569187

5 12.7376635033563 12.7232410324830 12.7232407841313 12.7232407841313

6 15.8470284168283 15.8341055484253 15.8341053693324 15.8341053693324

7 18.9667292229825 18.9549715459113 18.9549714108416 18.9549714108416

8 22.0924755521163 22.0816597411699 22.0816596359426 22.0816596359426

9 25.2220576131836 25.2120269725290 25.2120268885508 25.2120268885508

10 28.3542254064965 28.3448642178852 28.3448641495999 28.3448641495999
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5.5 Results and discussion
As an example, the concentration of the parallelepiped-shaped EC space of Section 5.4 is now computed

for a 10-mm-thick biological tissue subject to an appliedmass flux of ~j0 ¼ 1for the finite-time duration of
~td ¼ 10. Also, it can exchange mass at the boundaries through the Biot numbers of Bi0¼BiL¼1 and the

dimensionless phase lags of concentrationand mass fluxare ~τ cð Þ
EC ¼ 4:5135 and ~τ jð Þ

EC ¼ 4:4905, respec-
tively. These values come from the mass transfer coefficients of μ1¼10�4s�1, μ2¼5	10�5s�1, and

μ3¼10�7s�1 at the EC/cell interface and volume fractions of f1¼0.75, f2¼0.245 and f3¼0.005 for

the three types of cells, respectively. A porosity of ε¼0.18 is assumed for the EC porous medium as

well as an effective diffusivity ofDeff¼2.5	10�10 m2s-1. These numerical values are typical of electro-

porated tissues (Argus et al., 2017). Similarly, the dimensionless phase lags of concentration for the three

types of cell result in ~τ1
cð Þ ¼ 4:5 � 10�3, ~τ2

cð Þ ¼ 9 � 10�3
, and ~τ3

cð Þ ¼ 4:50, respectively.
The dimensionless EC intrinsic concentration, ~cEC ~x,~tð Þ ¼ ~CEC ~x,~tð Þ=ε, as well as the dimensionless

intrinsic concentrations ~ck ~x,~tð Þ ¼ ~Ck ~x,~tð Þ= f k 1� εð Þ½ � (k¼ 1, 2, 3) of the three types of cell are plotted

in Fig. 5.5 as a function of the dimensionless time for different values of the dimensionless space
coordinate.

FIG. 5.5

Dimensionless intrinsic concentrations (when ~t d ¼ 10) as a function of the dimensionless time with the space

coordinate ~x as a parameter: (A) EC space; (B) cell of type “1”; (C) cell of type “2”; and (D) cell of type “3.”
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The concentration profiles of Fig. 5.5 are in agreement with Eq. (5.29) concerning volume-averaged

concentrations. In fact, as τk
(c) is always positive, it states that the concentration Ck is delayed with re-

spect to the concentration CEC. This is also seen in the intrinsic volume-averaged concentrations ck and
cEC that are plotted in Fig. 5.5. In the current case, as ~τ cð Þ

1 ¼ 4:5 � 10�3 and ~τ cð Þ
2 ¼ 9 � 10�3, this delay is

practically zero. However, as ~τ cð Þ
3 ¼ 4:50 for the third type of cell, its concentration is delayed with

respect to the EC concentration. Fig. 5.5D in fact indicates that there exists a delay for this cell con-

centration but it is nearly 2 vs 4.5 due to the fact the second part of Eq. (5.29) is an approximate ex-

pression of the mass balance for the k-th type of cell. In addition, the cell concentration is damped as its

peak value is lower. A comparison among the dimensionless intrinsic concentration of the EC space

and the three types of cell is also shown by means of a contour plot in Fig. 5.6.

Lastly, Fig. 5.7 shows a comparison of small and large values of the dimensionless time. The con-

centration ~c3 is always less than the others with the exception of very large values of the time (larger
than ~td ¼ 10) according to its large phase lag of ~τ cð Þ
3 ¼ 4:50.

FIG. 5.6

Contour plot for the dimensionless intrinsic concentrations when ~t d ¼ 10in the: (A) EC space; (B) cell of type “1”;

(C) cell of type “2”; and (D) cell of type “3.”



FIG. 5.7

Comparison among the intrinsic concentration of the EC space and the intrinsic concentrations of the three

different types of cell immersed in it for ~t d ¼ 10 and different times: (A) ~t ¼ 0:01; (B) ~t ¼ 0:05; (C) ~t ¼ 0:2;

(D) ~t ¼ 1; (E) ~t ¼ 10; and (F) ~t ¼ 15.
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5.6 Conclusions
A mathematical model concerning the mass transport between an extracellular and an intracellular

space consisting ofN different types of cell was presented. Mass transfer coefficients as well as reaction

coefficients were assumed to be space- and time-independent. The solution to the system of coupled

partial/ordinary differential equations was performed by using an uncoupling procedure that has

allowed these equations to be adequately decoupled. This procedure led a governing partial

equation of high order for the extracellular space in the form of the well-established dual-phase-lag

equation. Then, its exact solution was derived analytically for a parallelepiped-shaped biological tissue,

exchanging drug with three different types of cell, using a modified separation-of-variable method. The

concentration profile of the extracellular domain was presented in a graphical form and compared with
the profiles of the three different cells considered.
5.A Appendix A
The coefficients appearing in Eq. (5.44) are

A
0ð Þ
N ¼

XN
k¼1

τ cð Þ
k hkak (5.A1)

A
1ð Þ
N ¼ 1 +

XN
k¼1

τ cð Þ
k ak

 !
+ sign N � 1ð Þ

Y2
k¼1

τ cð Þ
k

 ! X2
k¼1

hkak

 !

+
N � 1ð Þ N � 2ð Þ

2

Y2
k¼1

τ cð Þ
2k�1

 ! X2
k¼1

h2k�1a2k�1

 !
+

Y3
k¼2

τ cð Þ
k

 ! X3
k¼2

hkak

 !" # (5.A2)

A
2ð Þ
N ¼

XN
k¼1

τ cð Þ
k + sign N � 1ð Þ

Y2
k¼1

τ cð Þ
k

 ! X2
k¼1

ak

 !

+
N � 1ð Þ N � 2ð Þ

2

Y2
k¼1

τ cð Þ
2k�1

 ! X2
k¼1

a2k�1

 !
+

Y3
k¼2

τ cð Þ
k

 ! X3
k¼2

ak

 !
+

Y3
k¼1
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k

 ! X3
k¼1

hkak

 !" #

(5.A3)

A
3ð Þ
N ¼ sign N � 1ð Þ

Y2
k¼1

τ cð Þ
k +

N � 1ð Þ N � 2ð Þ
2

Y2
k¼1

τ cð Þ
2k�1 +

Y3
k¼2

τ cð Þ
k +

Y3
k¼1

τ cð Þ
k

 ! X3
k¼1

ak

 !" #
(5.A4)

A
4ð Þ
N ¼ N � 1ð Þ N � 2ð Þ

2

Y3
τ cð Þ
k (5.A5)
k¼1
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B
1ð Þ
N ¼

XN
k¼1

τ cð Þ
k (5.A6)

B
2ð Þ
N ¼ sign N � 1ð Þ

Y2
k¼1

τ cð Þ
k +

N � 1ð Þ N � 2ð Þ
2

Y2
k¼1

τ cð Þ
2k�1 +

Y3
k¼2
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k

 !
(5.A7)

B
3ð Þ
N ¼ A

4ð Þ
N (5.A8)

Note that, for z>0, sign(z)¼1 and sign(�z)¼ �1. Also, sign(0)¼0 as introduced by Oldham et al.

(2010). The coefficients listed before are given in Table 5.A1 for N¼ 1, 2 and 3.

When the reaction terms are negligible (hk!0), the coefficients listed before by Eqs. (5.A1)–(5.A8)
simplify. In fact, bearing in mind Eqs. (5.25) and (5.30a), the product τk

(c)ak reduces to

τ cð Þ
k ak ¼ Vk

VEC
¼ Vk

VC

VC

VEC
¼ f k

1� ε

ε

� �
(5.A9)

Therefore, the coefficients AN
(0), AN

(1), AN
(2), and AN

(3) listed before through Eqs. (5.A1)–(5.A4) become,

respectively,

A
0ð Þ
N ¼ 0 (5.A10)

A
1ð Þ
N ¼ 1 +

XN
k¼1

τ cð Þ
k ak ¼ 1 +

1� ε

ε

� �XN
k¼1

f k|fflfflffl{zfflfflffl}
¼1

¼ 1

ε
(5.A11)
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N ¼ τ cð Þ
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1

ε
ε + sign N � 1ð Þ f 2 1� εð Þ + N � 1ð Þ N � 2ð Þ
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f 3 1� εð Þ

� 	
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1

ε
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f 3 1� εð Þ
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(5.A12)
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2
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+
N � 1ð Þ N � 2ð Þ

2
τ cð Þ
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3

1
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ε + f 1 1� εð Þ½ � ¼ 1

ε
R

3ð Þ
N

(5.A13)

where the coefficients RN
(2) and RN

(3) are shown in Table 5.A2 for N¼ 1, 2, and 3.

The coefficients AN
(4), BN

(1), BN
(2), and BN

(3) given by Eqs. (5.A5)–(5.A8) do however not modify and,
hence, are still defined by these equations.



Table 5.A1 Coefficients appearing in Eq. (5.44) for N51, 2 and 3.

N51 N52 N53

AN
(0) τ1

(c)h1a1 τ1
(c)h1a1+τ2

(c)h2a2 τ1
(c)h1a1+τ2

(c)h2a2+τ3
(c)h3a3

AN
(1) 1+τ1

(c)a1 1 + τ cð Þ
1 a1 + τ cð Þ

2 a2

� �
+ τ cð Þ

1 τ cð Þ
2 h1 a1 + h2a2ð Þ

1 + τ cð Þ
1 a1 + τ cð Þ

2 a2 + τ cð Þ
3 a3

� �
+ τ cð Þ

1 τ cð Þ
2 h1 a1 + h2a2ð Þ

+
τ cð Þ
1 τ cð Þ

3 h1 a1 + h3a3ð Þ
+ τ cð Þ

2 τ cð Þ
3 h2a2 + h3a3ð Þ

2
4

3
5

AN
(2) τ1

(c)
τ cð Þ
1 + τ cð Þ

2

� �
+ τ cð Þ

1 τ cð Þ
2 a1 + a2ð Þ

¼ τ cð Þ
1 1 + τ cð Þ

2 a2

� �
+ τ cð Þ

2 1 + τ cð Þ
1 a1

� � τ cð Þ
1 + τ cð Þ

2 + τ cð Þ
3

� �
+ τ cð Þ

1 τ cð Þ
2 a1 + a2ð Þ

+
τ cð Þ
1 τ cð Þ

3 a1 + a3ð Þ + τ cð Þ
2 τ cð Þ

3 a2 + a3ð Þ
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3 h1 a1 + h2a2 + h3a3ð Þ

2
4

3
5

¼ τ cð Þ
1 1 + τ cð Þ

2 a2 + τ cð Þ
3 a3

� �
+ τ cð Þ

2 1 + τ cð Þ
1 a1 + τ cð Þ

3 a3

� �
+ τ cð Þ

3 1 + τ cð Þ
1 a1 + τ cð Þ

2 a2

� �
+ τ cð Þ

1 τ cð Þ
2 τ cð Þ

3 h1 a1 + h2a2 + h3a3ð Þ

AN
(3) 0 τ1

(c)τ2
(c)

τ cð Þ
1 τ cð Þ

2 +
τ cð Þ
1 τ cð Þ

3 + τ cð Þ
2 τ cð Þ

3

+ τ cð Þ
1 τ cð Þ

2 τ cð Þ
3 a1 + a2 + a3ð Þ

2
4

3
5

¼ τ cð Þ
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2 1 + τ cð Þ
3 a3
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+ τ cð Þ
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2 a2
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2 τ cð Þ
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1 a1
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Table 5.A2 Coefficients RN
(2) and RN

(3) appearing in Eq. (5.45) for N51, 2 and 3.

N51 N52 N53

RN
(2) τ1

(c)
τ cð Þ
1 ε + f 2 1� εð Þ½ �
+ τ cð Þ

2 ε + f 1 1� εð Þ½ �
τ cð Þ
1 ε + f 2 1� εð Þ + f 3 1� εð Þ½ �
+ τ cð Þ

2 ε + f 1 1� εð Þ + f 3 1� εð Þ½ �
+ τ cð Þ

3 ε + f 1 1� εð Þ + f 2 1� εð Þ½ �
RN
(3) 0 τ1

(c)τ2
(c)

τ cð Þ
1 τ cð Þ

2 ε + f 3 1� εð Þ½ �
+ τ cð Þ

1 τ cð Þ
3 ε + f 2 1� εð Þ½ �

+ τ cð Þ
2 τ cð Þ

3 ε + f 1 1� εð Þ½ �
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Substitution of Eq. (5.64a) in Eq. (5.73) yields

bn ¼ � P1

Nn

ðL
0

Xn x0ð Þdx0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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Now, by substituting Eq. (5.69) in the above two integrals, it results in
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(5.B3)

where
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n
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If K0!∞, Eqs. (5.B2) and (5.B3) reduce, respectively, to

I1n ¼
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0
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(5.B5)
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5.C Appendix C
Eqs (5.58a) and (5.58b) are here rewritten for convenience as

τ jð Þ
EC ¼ R

2ð Þ
3 ¼ τ cð Þ

1 ε + f 2 1� εð Þ + f 3 1� εð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼α1

+ τ cð Þ
2 ε + f 1 1� εð Þ + f 3 1� εð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼α2

+ τ cð Þ
3 ε + f 1 1� εð Þ + f 2 1� εð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼α3

(5.C1)

τ cð Þ
EC ¼ B

1ð Þ
3 ¼ τ cð Þ

1 + τ cð Þ
2 + τ cð Þ

3 (5.C2)

where the quantities α1, α2, and α3 are less than one as shown below

α1 ¼ ε + f 2 1� εð Þ + f 3 1� εð Þ < ε + f 1 1� εð Þ + f 2 1� εð Þ + f 3 1� εð Þ
¼ ε + 1� εð Þ f 1 + f 2 + f 3ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼1

¼ ε + 1� εð Þ ¼ 1 (5.C3a)

α2 ¼ ε + f 1 1� εð Þ + f 3 1� εð Þ < ε + f 1 1� εð Þ + f 2 1� εð Þ + f 3 1� εð Þ
¼ ε + 1� εð Þ f 1 + f 2 + f 3ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼1

¼ ε + 1� εð Þ ¼ 1 (5.C3b)

α3 ¼ ε + f 1 1� εð Þ + f 2 1� εð Þ < ε + f 1 1� εð Þ + f 2 1� εð Þ + f 3 1� εð Þ
¼ ε + 1� εð Þ f 1 + f 2 + f 3ð Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼1

¼ ε + 1� εð Þ ¼ 1 (5.C3c)

Therefore, the ratio ~τ cð Þ
EC=~τ

jð Þ
EC results in

~τ cð Þ
EC

~τ jð Þ
EC

¼ τ cð Þ
1 + τ cð Þ

2 + τ cð Þ
3

α1τ
cð Þ
1 + α2τ

cð Þ
2 + α3τ

cð Þ
3

, (5.C4)
that is always greater than 1, as α1, α2, α3<1.
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The most critical exponential appearing in Eq. (5.90) is the one having the following quantity within its

argument

~γ2n � ~βn

 �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~β
2

n � ~λ
2

n

q
¼ ~γ2n

~τ cð Þ
EC

2~τ jð Þ
EC

+
1

2~γ2n~τ
jð Þ

EC

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~τ cð Þ
EC

2~τ jð Þ
EC

+
1

2~γ2n~τ
jð Þ

EC

 !2

� 1

~γ2n~τ
jð Þ

EC

vuut
2
64

3
75 (5.D1)

It depends on four parameters, namely ~τ cð Þ
EC,~τ

jð Þ
EC, Bi0 and BiL, as ~γn ¼ ~γn Bi0, BiLð Þ. Then, valuable insight

of Eq. (5.D1) when n!∞ can be obtained through a numerical investigation. For this purpose,

Eq. (5.D1) has been plotted as a function of the eigenvalue ~γn with ~τ
cð Þ
EC as a parameter and for different

values of the ratio ~τ cð Þ
EC=~τ

jð Þ
EC. In particular, Fig. 5.D1 shows the results obtained for ~τ cð Þ

EC=~τ
jð Þ

EC ¼ 1:5. But

similar curves can be obtained for any value of the ratio ~τ cð Þ
EC=~τ

jð Þ
EC > 1.

Fig. 5.D1 proves that ~γ2n � ~βn

 �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~β
2

n � ~λ
2

n

q� 	
! 1=~τ cð Þ

EC for n!∞. Therefore, the first series

appearing on the RHS of Eq. (5.90) exhibits an algebraic convergence. A convergence criterion for

it can be defined, in a conservative way, by considering the following companion summation:

X∞ ~γ2n � ~βnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~2 ~2

q e
� ~γ2n�~βnð Þ�

ffiffiffiffiffiffiffiffiffi
~β
2

n�~λ
2

n

ph i
~t

(5.D2)

n¼1 ~γn βn � λn

FIG. 5.D1

Exponential argument vs. the dimensionless eigenvalue for ~τ cð Þ
EC =~τ

jð Þ
EC ¼ 1:5.
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The above summation has been obtained by splitting up the first series of Eq. (5.90) into simpler

series and by finding among them the one exhibiting the slowest convergence. Also, in

Eq. (5.D2) the trigonometric functions have been dropped, as they are always (in absolute value) less

than or equal to 1.

Then, bearing in mind Eq. (5.87e), the constant ~γ2n � ~βn

 �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
appearing in Eq. (5.D2)

can be rewritten, after some algebra, as

~γ2n � ~βnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q ¼

~τ cð Þ
EC

2~τ jð Þ
EC

+
1

2~γ2n~τ
jð Þ

ECffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~τ cð Þ
EC

2~τ jð Þ
EC

+
1

2~γ2n~τ
jð Þ

EC

 !2

� 1

~γ2n~τ
jð Þ
EC

vuut
(5.D3)

As ~τ cð Þ
EC=~τ

jð Þ
EC > 1, the ratio given by Eq. (5.D3) is in general greater than 1. In fact, the denominator of

Eq. (5.D3) is less than the numerator. By a numerical investigation, it has been proven that it has a

maximum when ~τ cð Þ
EC=~τ

jð Þ
EC is close to 1, that is in the neighborhood of the zero of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
that occurs

for ~γn ¼ 1=~τ cð Þ
EC

� �1=2
. Also, after this maximum it approaches the unit when n increases.

In detail, the constant ~γ2n � ~βn

 �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
is less than 50 when ~τ cð Þ

EC=~τ
jð Þ

EC ¼ 1:001 and n�2. As

this value would lead to a very conservative criterion, it is convenient to consider more terms in order

to reduce such a constant. In particular, for n�131 and ~τ cð Þ
EC � 10�5 it is always less than 5. In addition,

by means of numerical investigation, it has been proven that the argument ~γ2n � ~βn

 �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~β
2

n � ~λ
2

n

q
is

less than or equal to 1

~τ cð Þ
EC

when ~τ cð Þ
EC � 10�3; and it is greater than 1000 when ~τ cð Þ

EC < 10�3. In other words,

e
� ~γ2n�~βnð Þ�

ffiffiffiffiffiffiffiffiffi
~β
2

n�~λ
2

n

ph i
~t �

exp �103~t

 �

for ~τ cð Þ
EC < 10�3

exp � 1

~τ cð Þ
EC

~t

 !
for ~τ cð Þ

EC � 10�3

8>><
>>: (5.D4)

Then, by using these findings, for n�131 it results in

1

~γn

~γ2n � ~βnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q e
� ~γ2n�~βnð Þ�

ffiffiffiffiffiffiffiffiffi
~β
2

n�~λ
2

n

ph i
~t �

5e�1000~t

n� 1ð Þπ for 10�5 � ~τ cð Þ
EC < 10�3

5e
� 1

~τ
cð Þ
EC

~t

n� 1ð Þπ for ~τ cð Þ
EC � 10�3

8>>>><
>>>>:

(5.D5)
where (n�1)π has been used as a very conservative estimate of the n-th eigenvalue ~γn.
5.D.1 Convergence criteria

Then, a convergence criterion can be derived by setting the arguments appearing on the RHS of
Eq. (5.D5) equal to 10�A (with A¼ 2,3, …15). Behaving like this, the maximum number of required
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terms to obtain a truncation error less than 10�A for the series of Eq. (5.D2) may be taken in a conser-

vative way as

N
S

1ð Þ
EC

¼

max 131; 1 + ceil
5e�1000~t

10�Aπ

� �� 	
for 10�5 � ~τ cð Þ

EC < 10�3

max 131; 1 + ceil
5e

� 1

~τ
cð Þ
EC

~t

10�Aπ

0
B@

1
CA

2
64

3
75 for ~τ cð Þ

EC � 10�3

8>>>>>><
>>>>>>:

(5.D6)

As regards the second summation on the RHS of Eq. (5.90), that exhibits a “true” exponential conver-

gence, the maximum number of required terms can be defined using the following companion and con-

servative series:

X∞
n¼1

~γ2n � ~βn

~γn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q e
� ~γ2n�~βnð Þ+

ffiffiffiffiffiffiffiffiffi
~β
2

n�~λ
2

n

ph i
~t

(5.D7)

To define a convergence criterion for the above series, some attention should be paid on the exponential

term. In fact, in the exponential argument the eigenvalue ~γn appears both outside and inside a square

root, as shown by Eq. (5.91a) (for the plus sign). For this reason, it is convenient to use a conservative

value for this argument. It can be obtained by noting that the term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2n � λ2n

q
appearing in Eq. (5.87a) is

always real. Therefore,

~γ2n � ~βn +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
> ~γ2n

~τ cð Þ
EC

2~τ jð Þ
EC

(5.D8)

Using this upper limit and the considerations discussed above, in a conservative way (for n�2) it

follows

1

~γn

~γ2n � ~βn

 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q e
� ~γ2n�~βnð Þ+

ffiffiffiffiffiffiffiffiffi
~β
2

n�~λ
2

n

ph i
~t
<

50

π
exp � ~τ cð Þ

EC

2~τ jð Þ
EC

n� 1ð Þ2π2~t
" #

(5.D9)

where (n�1)π has been used as a conservative estimate of the n-th eigenvalue.

Then, by setting the RHS of Eq. (5.D9) equal to 10�A, the maximum number of required terms for

the exponentially-convergent series may be taken as

N
S

2ð Þ
EC

¼ 1 + ceil
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ln 10ð Þ + ln 50

π


 �
~τ cð Þ
EC

2~τ jð Þ
EC

~t

vuuut
2
664

3
775, (5.D10)

and depends on the ratio ~τ cð Þ
EC=~τ

jð Þ
EC.

The maximum number of required terms defined through Eqs. (5.D6) and (5.D10) are now com-

puted for different A and ~τ cð Þ
EC values and shown in Table 5.D1.

As shown in Table 5.D1, when accurate numerical values are desired, the number of required terms
for computing the first series of Eq. (5.90) can be extremely large.



Table 5.D1 Maximum number of required terms to compute the two series of Eq. (5.90) for

different accuracies 102A and ~τ cð Þ
EC values (~t50:1).

~τ cð Þ
EC

NSEC
(1)—Eq. (5.D6) NSEC

(2)—Eq. (5.D10)

(~τ cð Þ
EC=~τ

jð Þ
EC ¼ 2)

A52 A54 A56 A52 A54 A56

10�4 131 131 131 4 5 6

10�3 131 131 131 4 5 6

0.01 131 131 131 4 5 6

0.1 131 5856 585500 4 5 6

0.5 132 13032 1303052 4 5 6

1 146 14402 1440095 4 5 6

1.5 150 14891 1488907 4 5 6

2 153 15141 1513930 4 5 6

5 158 15602 1560036 4 5 6

10 159 15759 1575715 4 5 6

100 160 15901 1589960 4 5 6

1000 161 15915 1591392 4 5 6
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5.E Appendix E
Consider the first two series of Eq. (5.93) exhibiting an algebraic convergence. A convergence criterion

can be fixed by analyzing the following associate conservative summation

X∞
n¼1

1

~γn

~γ2n � ~βnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q e
� ~γ2n�~βnð Þ�

ffiffiffiffiffiffiffiffiffi
~β
2

n�~λ
2

n

ph i
~t

~γ2n � ~βn

 �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~β
2

n � ~λ
2

n

q
� 1

~τ cð Þ
k

� 	 (5.E1)

By using the results of Section 5.D (Appendix D), it is found that

lim
n!∞

~γ2n � ~βn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
� 1

~τ cð Þ
k

 !
¼ 1

~τ cð Þ
EC

� 1

~τ cð Þ
k

(5.E2)

where ~τ cð Þ
EC > ~τ cð Þ

k (with k¼ 1, 2, N¼3) due to Eq. (5.58b). Also, a lower limit for this quantity can be

defined as

~γ2n � ~βn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
� 1

~τ cð Þ
k

�
103 � 1

~τ cð Þ
k

for ~τ cð Þ
EC < 10�3

~τ cð Þ
k � ~τ cð Þ

EC

��� ���
cð Þ cð Þ for ~τ cð Þ

EC � 10�3

8>>>>><
>>>>>:

(5.E3)
~τEC~τk
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By following the same procedure used in Section 5.D (Appendix D), for n�131 it results in

1

~γn

~γ2n � ~βnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q e
� ~γ2n�~βnð Þ�
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2

n�~λ
2

n

ph i
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~γ2n � ~βn
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~β
2

n � ~λ
2

n

q
� 1

~τ cð Þ
k

� 	 �
~τ cð Þ
k

103~τ cð Þ
k � 1

��� ���
5e�1000~t

n� 1ð Þπ for 10�5 � ~τ cð Þ
EC < 10�3

~τ cð Þ
EC~τ

cð Þ
k

~τ cð Þ
k � ~τ cð Þ

EC

��� ���
5e

� 1

~τ
cð Þ
EC

~t

n� 1ð Þπ for ~τ cð Þ
EC � 10�3

8>>>>>>><
>>>>>>>:

(5.E4)
where (n�1)π has been used as conservative estimate of the n-th eigenvalue.
5.E.1 Convergence criteria

By setting the arguments appearing on the RHS of Eq. (5.E4) equal to 10�A (with A¼ 2,3, …15), the

maximum number of required terms to obtain a truncation error less than 10�A for the first two series of

Eq. (5.93) may be taken in a conservative way as

N
S

1ð Þ
k

¼ N
S

2ð Þ
k

¼

max 131; 1 + ceil
~τ cð Þ
k

103~τ cð Þ
k � 1

��� ���
5e�1000~t

10�Aπ

0
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1
CA

2
64

3
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EC < 10�3

max 131; 1 + ceil
~τ cð Þ
EC~τ

cð Þ
k

~τ cð Þ
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� 1
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cð Þ
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~t

10�Aπ

0
B@

1
CA

2
64

3
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EC � 10�3

8>>>>>>>><
>>>>>>>>:

(5.E5)

Consider now the third summation appearing in Eq. (5.93) exhibiting an algebraic convergence as

well. A convergence criterion can be obtained through the following companion conservative series:

X∞
n¼1

1

~γn

~γ2n � ~βn

 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q 1

~γ2n � ~βn

 �

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
� 1

~τ cð Þ
k

� 	 (5.E6a)

where the quantity ~γ2n � ~βn

 �

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
� 1

~τ cð Þ
k

� 	
appearing in the denominator of the above

equation vanishes for ~γ2n � ~βn

 �

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
¼ 1

~τ cð Þ
k

and then, it increases monotonically with n. By

means of a numerical investigation, it has been shown that, for any ~τ cð Þ
k � ~τ cð Þ

EC , the above quantity

is greater than 2 when the following constraint is verified

n � 1 + ceil
2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ~τ cð Þ

k

� �
~τ jð Þ
EC

~τ cð Þ
k ~τ cð Þ

EC

vuuut
2
664

3
775: (5.E6b)

Then, similarly to what was done for the previous case, it is found that
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1
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(5.E7)

where (n�1)π has been used as conservative estimate of the n-th eigenvalue, and

n
kð Þ
1 ¼ max 130; 1 + ceil
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vuuut
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Therefore, by setting the RHS of Eq. (5.E7) equal to 10�A, the maximum number of required terms for

the third series appearing in Eq. (5.93) may be taken as

N
S

3ð Þ
k

¼ max 1 + n
kð Þ
1 ; 1 + ceil

5e
� ~t

~τ
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k

10�A 2π

2
64
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75

8><
>:

9>=
>; for ~τ cð Þ

EC � 10�5 (5.E9)

A convergence criterion for the last series of Eq. (5.93) which exhibits a “true” exponential conver-

gence can be defined through the following related conservative summation

X∞
n¼1

1
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2
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(5.E10)

By the same argumentations used above and bearing in mind Eq. (5.D8), it follows in a conservative

way
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~γ2n � ~βn
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~β
2

n � ~λ
2

n

q e
� ~γ2n�~βnð Þ+

ffiffiffiffiffiffiffiffiffi
~β
2

n�~λ
2

n

ph i
~t

~γ2n � ~βn

 �

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
� 1

~τ cð Þ
k

<
50

2π
e

�
~τ cð Þ
EC

2~τ jð Þ
EC

n� 1ð Þ2π2~t
for n � n

kð Þ
2

(5.E11)

where (n�1)π has again been used as a conservative estimate of the n-th eigenvalue, and

n
kð Þ
2 ¼ 1 + ceil

2

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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vuuut
2
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3
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Then, by setting the RHS of Eq. (5.E11) equal to 10�A, the maximum number of required terms may be

taken as



Table 5.E1 Maximum number of required terms to compute the four series of Eq. (5.93) for

different accuracies and ~τ cð Þ
EC values (when ~t ¼ 0:1 and ~τ cð Þ

k ¼ ~τ cð Þ
EC=100).

~τ cð Þ
EC

NSk
(1)5NSk

(2)—Eq. (5.E5) NSk
(3)—Eq. (5.E9)

(~τ cð Þ
EC=~τ

jð Þ
EC ¼ 2)

NSk
(4)—Eq. (5.E13)

(~τ cð Þ
EC=~τ

jð Þ
EC ¼ 2)

A52 A54 A56 A52 A54 A56 A52 A 54 A56

10�4 131 131 131 453 453 453 453 453 453

10�3 131 131 131 145 145 145 145 145 145

0.01 131 131 131 131 131 131 48 48 48

0.1 131 131 593 131 131 131 17 17 17

0.5 131 131 6583 131 131 131 9 9 9

1 131 147 14548 131 131 131 7 7 7

1.5 131 227 22561 131 131 1014 6 6 6

2 131 307 30586 131 131 5363 6 6 6

5 131 789 78791 131 1078 107698 5 5 6

10 131 1593 159164 131 2929 292751 4 5 6

100 162 16062 1606020 131 7202 720048 4 5 6

1000 1609 160748 16074651 131 7880 787858 4 5 6
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The maximum number of terms defined above are now computed for different A and ~τ cð Þ
EC values at

~τ ¼ 0:1 and the results shown in Table 5.E1.

As shown in Table 5.E1, the first two series of Eq. (5.93) can require a number of terms extremely

large when accurate numerical values are desired. Also, even if the fourth series of Eq. (5.93) exhibits

an exponential convergence, its computation may require a large number of terms for small values of

~τ cð Þ
EC (and ~τ cð Þ

k ) as, in such a case, according to Eq. (5.E6b) the quantity ~γ2n � ~βn

 �

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~β
2

n � ~λ
2

n

q
� 1=~τ cð Þ

k

requires many terms to be greater than 2.
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