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A B S T R A C T

We use Langevin dynamics simulations to study the mass diffusion problem across two adjacent porous
layers of different transport properties. At the interface between the layers, we impose the Kedem–Katchalsky
(KK) interfacial boundary condition that is well suited in a general situation. A detailed algorithm for the
implementation of the KK interfacial condition in the Langevin dynamics framework is presented. As a case
study, we consider a two-layer diffusion model of a drug-eluting stent. The simulation results are compared
with those obtained from the solution of the corresponding continuum diffusion equation, and an excellent
agreement is shown.
1. Introduction

Multi-layer diffusion problems arise in a number of applications
of heat and mass transfer. Some industrial examples are moisture
diffusion in woven fabric composites [1], hydrodynamics of strati-
fied fluids and geological profiles [2], environmental phenomena such
as transport of contaminants, chemicals and gases in layered porous
media [3], and chamber-based gas fluxes [4]. Numerous applications
concern the biomedical field and include, for example, transdermal
drug delivery [5], drug-eluting stents [6] or brain tumor growth [7].
While here we focus on multi-layer diffusion, other related concepts
such as anomalous diffusion, fractal kinetics and non-homogeneous
layers, have been also studied within the context of drug release, see
e.g., [8–10].

Often, the transported material is initially concentrated in one of
the layers from which it propagates to the others by diffusion. The
rate of transfer across the system in mainly determined by the diffusion
coefficients in each layer. In many practical applications it is essential
to regulate the mass flux between layers by suitable interface condi-
tions. This can be accomplished, for instance, by placing a selective
barrier between adjacent layers, which induces a chemical potential
gradient at the boundary. Another mean for controlling the transfer
rate are membranes, which are essentially very thin boundary layers
with a small diffusion coefficient [11]. In addition to their role in
slowing down the diffusion rate, membranes are also employed for
specific functions, including separation/purification of gases, vapors,
liquids, selection of ions, or other biological functions. Membranes
are routinely used for medical care and individual protection, such
as wound dressing, dialysis, tissue engineering, and controlled release
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of drugs. Membranes are also used for environmental cleaning and
protection, such as water purification and air filtration. A better under-
standing of physical behavior of membranes as rate-controlling barriers
can greatly improve the efficiency of separation and enhance their
performance [12].

In this work, we consider simple models for mass transfer in multi-
layered systems. We assume that the molecules are transported across
the boundaries by passive diffusion only, i.e., no active transport pro-
cess is performed to drive the random motion of molecules. Passive
diffusion continues until enough molecules have passed from a region
of higher to a region of lower concentration, to make the concentration
uniform. When equilibrium is established, the flux of molecules van-
ishes: the molecules keep moving, but an equal number of them move
into and out of both layers. Much work has been done from the analyt-
ical and computational point of view for treating multi-layer diffusion
in continuum mechanics. An important aspect of layered systems is the
matching conditions at the interfaces, where an interface is the common
boundary between two layers. Analytical solutions to such problems are
highly valuable as they provide a great level of insight into the diffusive
dynamics, and can be used to benchmark numerical solutions [13].
Various methods are available for the analysis and the solution of
such problems [14,15]: The orthogonal expansion technique and the
Green’s function approach [16–19], the adjoint solution technique [20],
the Laplace transform method [14,15,21–23], and finite integral trans-
forms [24–26]. Integral transform techniques applied to heat transfer
problems was discussed in great detail in the book by Özişik [20],
where several different transformations are given depending on the
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situation. However, there are severe numerical instabilities and compu-
tational drawbacks that arise when the number of layers increases [22].
Other papers demonstrate the complexity of solving diffusion problems
with a large number of layers, either using eigenfunction expansion for
somewhat different boundary conditions [27], or based on the Green
function approach with biological applications [28]. Computational
complexity of finite difference schemes is widely discussed [29].

Recently, a new computational method for studying diffusion prob-
lems in multi-layer systems has been proposed [30,31]. The method
is based on the well-established notion that Brownian dynamics of
particles can be also described by the Langevin’s equation (LE) [32].
Therefore, the particle’s probability distribution function (or, equiva-
lently, the material concentration) can be computed from an ensemble
of statistically-independent single particle trajectories generated by nu-
merical integration of the corresponding LE. Integrating LE within each
layer is pretty straightforward, and there are a number of algorithms
(Langevin ‘‘thermostats’’) that are widely used for molecular dynamics
simulations at constant temperature [33–35]. The key problem is how
to perform the integration during time-steps where the particle moves
between layers, in a manner ensuring that the imposed interlayer
conditions are satisfied. In Ref. [31], a set of algorithms for handling the
dynamics across sharp interfaces has been introduced. Here we present
an algorithm that combines many types of interfaces (a sudden change
in diffusivity, a semi-permeable membrane, an imperfect contact), with
the advantage of treating all these cases with a unified physical-based
method. The new algorithm is applied for studying a two-layer model
of drug release from a drug eluting stent into the artery. Excellent
agreement is found between the LE computational results and the
semi-analytical solution.

2. Multi-layer systems: diffusion equation

Let us consider a composite medium consisting of a number of
layered slabs. A slab is defined here as a plate that is homogeneous and
isotropic, having a finite thickness, but extends to infinity in the other
two dimensions. In a typical diffusion problem driven by concentration
gradient, most of the mass dynamics occurs along the direction normal
to the layers. We, therefore, restrict our study to a simplified one-
dimensional model across a multi-layer system. The concentration of
material in each region, 𝑐𝑖(𝑥, 𝑡) (𝑖 = 1,… , 𝑛), is governed by the
ime-dependent diffusion equation

𝜕𝑐𝑖
𝜕𝑡

= 𝐷𝑖
𝜕2𝑐𝑖
𝜕𝑥2

, (2.1)

where 𝐷𝑖 is the diffusion coefficient in the 𝑖th region. The concen-
trations in the adjacent regions 𝑖 and 𝑖 + 1 must be matched at the
oundary between them, which is located at 𝑥 = 𝐿𝑖. Two interfacial
oundary conditions (IBCs) must be specified at each interface. If mass
s conserved (no source or sink) at the interface, then the concentration
lux must be continuous

𝑖 = −𝐷𝑖
𝜕𝑐𝑖
𝜕𝑥

= −𝐷𝑖+1
𝜕𝑐𝑖+1
𝜕𝑥

= 𝐽𝑖+1 at 𝑥 = 𝐿𝑖, 𝑡 > 0. (2.2)

The other IBC to be specified at 𝑥 = 𝐿𝑖 depends on the nature of the
interface. The transport of material can be completely blocked by plac-
ing a perfectly reflecting (𝐽𝑖 = 0) or perfectly absorbing (𝑐𝑖 = 0) barriers.
Typically, however, we are interested at intermediate situations where
the mass flux is not completely blocked, but only hindered by interfaces
whose aim is to control the rate of mass transfer across the layers. Here,
we consider Kedem–Katchalsky (KK) IBC that reads [36,37]

𝐽𝑖 = 𝑃𝑖
(

𝑐𝑖 − 𝜎𝑖𝑐𝑖+1
)

, at 𝑥 = 𝐿𝑖, 𝑡 > 0, (2.3)

where 𝑃𝑖 and 𝜎𝑖 are, respectively, the permeability and partition co-
efficients of the KK condition. We focus on the KK IBC (2.3) because
it represents the most general case of an interface where both a dis-
continuity in the chemical potential and a semi-permeable membrane
are present, in addition to a possible discontinuity in the diffusion
2

coefficient. The case without a membrane corresponds to the limit
𝑃𝑖 → ∞, when the KK IBC must be replaced with

𝑐𝑖 = 𝜎𝑖𝑐𝑖+1, at 𝑥 = 𝐿𝑖, 𝑡 > 0 (2.4)

or, otherwise, the flux diverges at the interface. Eq. (2.4) describes the
interfacial condition at an imperfect contact boundary with partition
coefficient 𝜎𝑖 arising from the discontinuity in the chemical potential
of the transported molecules in the adjacent layers [31]. In the special
case of Eq. (2.4) when 𝜎𝑖 = 0 (or, 𝜎𝑖 → ∞), we have 𝑐𝑖 = 0 (or,
𝑐𝑖+1 = 0), which describes a perfectly absorbing boundary. A subcase
of (2.4) is 𝜎𝑖 = 1 (a perfect contact), when the concentration exhibits
no discontinuity for 𝑃𝑖 → ∞. However, when 𝑃𝑖 is finite in Eq. (2.3),
we expect a concentration jump even for 𝜎𝑖 = 1, as the KK IBC reduces
to

𝐽𝑖 = 𝑃𝑖
(

𝑐𝑖 − 𝑐𝑖+1
)

, at 𝑥 = 𝐿𝑖, 𝑡 > 0, (2.5)

which is the IBC describing the effect of a thin semi-permeable mem-
brane with permeability 𝑃𝑖, but without a chemical potential jump.
Finally, when 𝑃𝑖 = 0, we recover the condition at a perfectly reflecting
boundary, 𝐽𝑖 = 0.

3. Multi-layer systems: Langevin equation

The method presented in Ref. [31] is based on the description of the
overdamped Brownian motion of particles via the underdamped LE

𝑚𝑑𝑣
𝑑𝑡

= −𝛼(𝑥)𝑣 + 𝛽(𝑡) + 𝑓 (𝑥), (3.1)

here 𝑚 and 𝑣 = 𝑑𝑥∕𝑑𝑡 denote, respectively, the mass and velocity
f the diffusing particle. This is Newton equation of motion under
he action of a ‘‘deterministic’’ force 𝑓 (𝑥). The impact of the ran-
om collisions between the Brownian particle and the molecules of
he embedding medium is introduced by two additional forces - (i)

friction force, −𝛼(𝑥)𝑣, and (ii) stochastic Gaussian thermal noise,
(𝑡), with zero mean, ⟨𝛽(𝑡)⟩ = 0, and delta-function auto-correlation,
𝛽(𝑡)𝛽(𝑡′)⟩ = 2𝑘𝐵𝑇𝛼 (𝑥 (𝑡)) 𝛿(𝑡 − 𝑡′), where 𝑇 is the temperature and 𝑘𝐵
s Boltzmann’s constant [38]. The friction coefficient, 𝛼, in LE and
he diffusion coefficients, 𝐷, in the corresponding diffusion equation,
atisfy the Einstein relation [32,39]:

(𝑥)𝐷(𝑥) = 𝑘𝐵𝑇 . (3.2)

In the Langevin dynamics approach to multi-layer diffusion, the
oncentration profile, 𝑐(𝑥, 𝑡), is computed by generating an ensemble of
tatistically-independent particle trajectories of duration 𝑡, from which

fine-grained histogram can be constructed. We define 𝑐(𝑥, 𝑡) such
hat, at 𝑡 = 0, the total density is normalized to unity and essentially
epresents the initial probability distribution function of the particles
∞

−∞
𝑐(𝑥, 0)𝑑𝑥 = 1. (3.3)

he trajectories are calculated by numerically integrating Eq. (3.1).
o allow for simulations of Langevin dynamics in multi-layer systems,
lgorithms were derived in [31] for handling the transition in presence
f (i) layers with different diffusion coefficients, (ii) a semi-permeable
embrane, and (iii) a step-function chemical potential. Here, we in-

egrate them into a single unified algorithm for crossing a KK IBC
Eq. (2.3)] with continuous flux [IBC Eq. (2.2)]. We will not repeat
he discussion on the physical basis underlying the method, but rather
resent a practical recipe describing how to implement the algorithm.
o this purpose, we consider the two-layer system shown in Fig. 1, with
step diffusion function

(𝑥) =

⎧

⎪

⎨

⎪

𝐷1 𝑥 < 0

𝐷 𝑥 > 0.
(3.4)
⎩

2
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Fig. 1. The typical two-layer one-dimensional system. A continuous flux [see Eq. (3.5)] is imposed at the interface 𝑥 = 0 (dashed line), together with Kedem–Khatchalsky (KK)
condition [see Eq. (3.6)].
The continuity of flux 𝐽 applies at the interface

−𝐷1
𝜕𝑐1
𝜕𝑥

= −𝐷2
𝜕𝑐2
𝜕𝑥

at 𝑥 = 0, 𝑡 > 0, (3.5)

together with the KK IBC

𝐽 = 𝑃
(

𝑐1 − 𝜎𝑐2
)

, at 𝑥 = 0, 𝑡 > 0. (3.6)

3.1. Langevin integrator

The initial position of the particle is drawn from the probabil-
ity distribution 𝑐(𝑥, 0), Eq. (3.3), and the initial velocity from the
Maxwell–Boltzmann distribution

𝜌MB(𝑣) =
√

𝑚
2𝜋𝑘𝐵𝑇

exp
(

− 𝑚𝑣2

2𝑘𝐵𝑇

)

. (3.7)

The trajectory 𝑥(𝑡) is then computed by performing discrete-time inte-
gration of LE (3.1). For this purpose, we use the algorithm of Grønbech-
Jensen and Farago (GJF) [35]

𝑥𝑛+1 = 𝑥𝑛 + 𝑏
[

𝑑𝑡𝑣𝑛 + 𝑑𝑡2

2𝑚
𝑓 𝑛 + 𝑑𝑡

2𝑚
𝛽𝑛+1

]

(3.8)

𝑣𝑛+1 = 𝑎 𝑣𝑛 + 𝑑𝑡
2𝑚

(

𝑎 𝑓 𝑛 + 𝑓 𝑛+1) + 𝑏
𝑚
𝛽𝑛+1, (3.9)

to advance the coordinate 𝑥𝑛 = 𝑥(𝑡𝑛) and velocity 𝑣𝑛 = 𝑣(𝑡𝑛) by one
time step from 𝑡𝑛 = 𝑛 𝑑𝑡 to 𝑡𝑛+1 = 𝑡𝑛 + 𝑑𝑡. In the above GJF equations
(3.8)–(3.9), 𝑓 𝑛 = 𝑓 (𝑥𝑛), 𝛽𝑛 is a Gaussian random number satisfying

⟨𝛽𝑛⟩ = 0 ; ⟨𝛽𝑛𝛽𝑙⟩ = 2𝛼𝑘𝐵𝑇𝑑𝑡𝛿𝑛,𝑙 , (3.10)

and the damping coefficients of the algorithm are

𝑏 = 1
1 + (𝛼 𝑑𝑡∕2𝑚)

, 𝑎 = 𝑏
[

1 − (𝛼 𝑑𝑡∕2𝑚)
]

. (3.11)

The GJF integrator is chosen because of its robustness against dis-
cretization time errors, which is critical for achieving accurate sta-
tistical results. More specifically, it accomplishes statistical accuracy
for configurational sampling of the Boltzmann distribution in closed
systems; and it also provides the correct Einstein relation, ⟨𝑥2⟩ =
2(𝑘𝐵𝑇 ∕𝛼)𝑡 (see Eq. (3.2)), of a freely diffusing particle in an unbounded
system with constant 𝛼 [35,40–42].

We note that Langevin dynamics is diffusive only on time scales
larger the so called ballistic crossover time 𝜏ballistic = 𝑚∕𝛼, whereas it
is predominantly ballistic (inertial) on much smaller time scales. Gen-
erally speaking, the GJF integrator can be implemented in simulations
with relatively large time steps, 𝑑𝑡 > 𝜏ballistic, and still produce accurate
statistical results at asymptotically large times [35]. A criterion for
choosing 𝑑𝑡 can be set by the requirement that the characteristic
variations in 𝑓 (𝑥), during the time step, should not be significant,
i.e., |𝑓 𝑛+1 − 𝑓 𝑛

| ≪ |𝑓 𝑛 + 𝑓 𝑛+1
|∕2. This criterion becomes meaningless

when a KK interface is crossed because the interface exerts a singular,
delta-function force [31]. Nevertheless, we will demonstrate that an
accurate algorithm can be devised provided that the integration is
performed in the inertial regime with 𝑑𝑡 ≪ 𝜏ballistic (see next section).
This implies that the integration time step in multi-layer systems is
bounded by the ballistic time at the most viscous medium:

𝑑𝑡 ≪ 𝜏min
ballistic =

𝑚
max(𝛼𝑖)

= min(𝐷𝑖)
𝑚

𝑘𝐵𝑇
. (3.12)
3

3.2. The case of crossing a discontinuity

Before presenting the algorithm for crossing a KK type IBC, the
following quantities are introduced:

• The thermal velocity of the particle, which is independent of 𝛼,
is given by

𝑣th = 2∫

∞

0
𝑣𝜌MB(𝑣)𝑑𝑥 =

√

2𝑘𝐵𝑇
𝜋𝑚

, (3.13)

where 𝜌MB(𝑣) is the equilibrium Maxwell–Boltzmann velocity dis-
tribution (3.7).

• The crossing probability, related to the membrane permeability 𝑃
and to the thermal velocity 𝑣th by [31]

𝑝 = 2𝑃
2𝑃 + 𝑣th

(3.14)

• The step-function chemical potential1

𝜙step = 𝑘𝐵𝑇 ln(𝜎)𝐻(𝑥), (3.15)

that exhibits a discontinuity at the interface 𝑥 = 0, where

𝐻(𝑥) =

⎧

⎪

⎨

⎪

⎩

0 𝑥 < 0

1 𝑥 > 0
(3.16)

is the Heaviside step function. The step-function potential 𝜙step re-
sults in a delta-function force 𝑓step = −𝑑𝜙step∕𝑑𝑥 = −𝑘𝐵𝑇 ln(𝜎)𝛿(𝑥)
with a singularity at the interface. In the proposed computational
scheme, the singular force is replaced with a sharp, piecewise
constant force

𝑓 (𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−
𝑘𝐵𝑇 ln(𝜎)

2𝛥1
−𝛥1 < 𝑥 < 0

−
𝑘𝐵𝑇 ln(𝜎)

2𝛥2
0 < 𝑥 < 𝛥2

0 elsewhere,

(3.17)

defined in the ‘‘small’’ interval
[

−𝛥1, 𝛥2
]

=
[

−
𝛾𝐷1
𝑣𝑡ℎ

,
𝛾𝐷2
𝑣𝑡ℎ

]

, (3.18)

with the associated potential

𝜙(𝑥) = −∫

𝑥

−∞
𝑓 (𝑦)𝑑𝑦. (3.19)

The thickness of interface layer (IL) [−𝛥1, 𝛥2] over which the
chemical potential changes by 𝑘𝐵𝑇 ln(𝜎) is controlled by the
dimensionless parameter 𝛾. In the simulations, 𝛾 is taken to be

1 We exclude the limit cases 𝜎 = 0 and 𝜎 → ∞, which correspond to a
perfectly absorbing IBC. The transition across such an interface is handled
differently, see Section 4.
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of the order of unity such that 𝛥𝑖 (𝑖 = 1, 2) is comparable or
smaller than the particle mean free path, 𝑙MFP = 2𝐷𝑖∕𝑣th, i.e. the
characteristic distance traveled by the particle within the ballistic
time 𝜏ballistic. The condition (3.12) guarantees that the discrete-
time trajectory does not hop from side to side of the interface,
but rather passes across the IL and experiences the influence of
the force (3.17).

• We define the weight function

𝑊 (𝑥) = exp
[𝜙(𝑥) − 𝜙step(𝑥)

𝑘𝐵𝑇

]

. (3.20)

One can easily check that 𝑊 (𝑥) = 1 when 𝑓 (𝑥) = 0.

With the above in mind, the algorithm for calculating 𝑐(𝑥, 𝑡) pro-
eeds as follows:

1. Start a new trajectory. Set 𝑡 = 0 and 𝑛 = 0. Choose the initial
coordinate 𝑥0 from the initial distribution 𝑐(𝑥, 0), and the initial
velocity 𝑣0 from the equilibrium Maxwell–Boltzmann velocity
distribution (3.7).

2. Advance the trajectory from (𝑥𝑛, 𝑣𝑛) to (𝑥𝑛+1, 𝑣𝑛+1) by one step
𝑑𝑡 according to Eqs. (3.8)–(3.11), with 𝑓 (𝑥) given by Eq. (3.17).
Use the friction coefficient 𝛼(𝑥𝑛) at 𝑥 = 𝑥𝑛.

3. If 𝑥𝑛 and 𝑥𝑛+1 are found on different sides of the interface then
𝑥𝑛+1 needs to be recomputed as follows:

• Choose a random number, , uniformly distributed be-
tween 0 and 1.

• If  > 𝑝 [with 𝑝 given by Eq. (3.14)], reflect the par-
ticle back to the layer from which it arrived and set
(𝑥𝑛+1, 𝑣𝑛+1) → (−𝑥𝑛+1,−𝑣𝑛+1)

• If  < 𝑝, allow the particle to move to the adjacent layer,
and determines 𝑥𝑛+1 as follows:

3.1 Calculate the ballistic position 𝑥𝑛+1𝑏 = 𝑥𝑛 + 𝑣𝑛𝑑𝑡
3.2 Calculate the effective friction coefficient

𝛼eff =
𝛼 (𝑥𝑛) |𝑥𝑛| + 𝛼

(

𝑥𝑛+1𝑏
)

|

|

|

𝑥𝑛+1𝑏
|

|

|

|𝑥𝑛| + |

|

|

𝑥𝑛+1𝑏
|

|

|

(3.21)

3.3 Advance the trajectory from (𝑥𝑛, 𝑣𝑛) to (𝑥𝑛+1, 𝑣𝑛+1)
by one step 𝑑𝑡 according to Eqs. (3.8)–(3.11), with
the effective friction coefficient 𝛼eff (3.21). Notice
that in some rare cases, the new position 𝑥𝑛+1 will
be found on the same side as 𝑥𝑛, but this is ac-
ceptable since small discretization errors are always
present when encountering a step function diffusion
function.

4. If 𝑡𝑛+1 = 𝑡 then

• Stop the trajectory at 𝑥 = 𝑥𝑛+1.
• Weight it with the weight function 𝑊 (𝑥) (3.20), and up-

date the histogram,2 hist𝑤(𝑥), for the distribution function
𝑤(𝑥, 𝑡): hist𝑤(𝑥) = hist𝑤(𝑥) +𝑊 (𝑥).

• Return to step 1 if you want to generate another trajectory;
otherwise go to step 6.

5. Return to step 2.
6. Normalize the distribution, 𝑤(𝑥, 𝑡), to obtain the concentration

profile, 𝑐(𝑥, 𝑡):

𝑐(𝑥, 𝑡) =
𝑤(𝑥, 𝑡)

∫ ∞
−∞ 𝑤(𝑥, 𝑡) 𝑑𝑥

. (3.22)

Fig. 2 shows a summary of the algorithm in the form of a flowchart.

2 In the histogram representation, hist𝑤(𝑥), data accumulate in discrete bins.
The continuous distribution 𝑤(𝑥, 𝑡) is defined as the ratio between the total
value stored in a bin and the bin size.
4

4. A worked example: a two-layer model of a drug-eluting stent

In this section we consider a biomedical example where the previous
concepts and algorithms are applied to a simple model of a drug-
eluting stent (DES). Stents are small mesh tubes inserted to keep open
stenosed arteries (see Fig. 3). Drug-eluting stents (DES) also have
an additional thin layer of polymer, coating the mesh and eluting
a drug. More precisely, a DES is constituted by metallic prosthesis
(strut) implanted into the arterial wall and coated with a thin layer of
biocompatible polymer (coating) that encapsulates a therapeutic drug.
Such a drug, released in a controlled manner through a permeable
membrane (topcoat), is aimed at healing the vascular tissues or at
preventing a possible restenosis by virtue of its anti-proliferative action
against smooth muscle cells [43,44].

To formulate the mathematical problem that serves as a simple
DES model, let us consider a stent coated by a thin layer (of thickness
𝐿1) of polymer containing a drug and embedded into the arterial wall
(of thickness 𝐿2), as illustrated in Fig. 4. The complex multi-layered
structure of the arterial wall has been disregarded for simplicity, and a
homogeneous material with averaged diffusion coefficient 𝐷2 has been
considered. A small plasma filtration velocity is present in the wall, but
a scaling analysis shows that this transport effect remains negligible
in comparison with the diffusive one [43,45]. The diffusion coefficient
of the polymer is 𝐷1 ≪ 𝐷2. The DES model shown schematically in
ig. 4 is a two-layer system similar to the one depicted in Fig. 1. The
nly difference between them is that here the two layers have a finite
xtent and two boundary conditions (BCs) are prescribed to make the
athematical problem well-posed. Since the strut is impermeable, no
ass flux passes through the left boundary surface, which is modeled

y imposing a reflecting boundary condition: 𝐽1(−𝐿1) = 0. The right
ide 𝐿2, being 𝐿2 ≫ 𝐿1, is modeled as an absorbing boundary, namely
2(𝐿2) = 0. At the initial time (𝑡 = 0), the drug is contained only in
he coating (layer 1) and it is uniformly distributed at a maximum
oncentration 𝐶:

1(𝑥, 0) = 𝐶 for − 𝐿1 ≤ 𝑥 ≤ 0

𝑐2(𝑥, 0) = 0 for 0 ≤ 𝑥 ≤ 𝐿2. (4.1)

To slow down the drug release rate, the topcoat is located at the
interface 𝑥 = 0 between the two layers. The topcoat separating the
coating and the arterial wall imposes the KK IBC (3.6) between the
layers. As no drug is lost in the topcoat, the continuity of the flux IBC
(3.5) is also imposed there.

To summarize, the two-layer diffusion problem is given by the
following set of partial differential equations, with boundary and initial
conditions [45]:
𝜕𝑐1
𝜕𝑡

−𝐷1
𝜕2𝑐1
𝜕𝑥2

= 0 in [−𝐿1, 0] (4.2)

𝜕𝑐2
𝜕𝑡

−𝐷2
𝜕2𝑐2
𝜕𝑥2

= 0 in [0, 𝐿2] (4.3)

−𝐷1
𝜕𝑐1
𝜕𝑥

= −𝐷2
𝜕𝑐2
𝜕𝑥

= 𝑃
(

𝑐1 − 𝜎𝑐2
)

at 𝑥 = 0 (4.4)
𝜕𝑐1
𝜕𝑥

= 0 at 𝑥 = −𝐿1 (4.5)

𝑐2 = 0 at 𝑥 = 𝐿2 (4.6)

𝑐1 = 𝐶, 𝑐2 = 0 at 𝑡 = 0 (4.7)

The solution of the above problem is obtained by separation of vari-
ables:

𝑐𝑖(𝑥, 𝑡) = 𝑋𝑖(𝑥)𝐺𝑖(𝑡) 𝑖 = 1, 2 (4.8)

where the spatial functions 𝑋1 and 𝑋2 satisfy the Sturm–Liouville
problem:

𝑋′′
1 = −𝜆21𝑋1 in [−𝐿1, 0] (4.9)

𝑋′ = 0 at 𝑥 = −𝐿 (4.10)
1 1
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𝐷

Fig. 2. A flowchart representation of the algorithm for Langevin dynamics simulations of a layered system with a KK interface.
1𝑋
′
1 = 𝐷2𝑋

′
2 at 𝑥 = 0 (4.11)

𝑋′′
2 = −𝜆22𝑋2 in [0, 𝐿2] (4.12)

𝑋2 = 0 at 𝑥 = 𝐿2 (4.13)

−𝐷2𝑋
′
2 + 𝑃𝜎𝑋2 = 𝑃𝑋1 at 𝑥 = 0 (4.14)

with:

𝐷1 𝜆
2
1 = 𝐷2 𝜆

2
2 (4.15)

The general solution of the ordinary differential Eqs. (4.9) and (4.12)
is:

𝑋1(𝑥) = 𝑎1 cos(𝜆1𝑥) + 𝑏1 sin(𝜆1𝑥)

𝑋2(𝑥) = 𝑎2 cos(𝜆2𝑥) + 𝑏2 sin(𝜆2𝑥) (4.16)

and

𝐺1(𝑡) = 𝐺2(𝑡) = exp(−𝐷1𝜆
2
1𝑡) = exp(−𝐷2𝜆

2
2𝑡) (4.17)

The eigenvalues 𝜆𝑖 and the unknown coefficients 𝑎𝑖 and 𝑏𝑖 are computed
by imposing the BCs and IBCs as follows. From (4.10) and (4.13), we
have:

𝑎1 sin(𝜆1𝐿1) + 𝑏1 cos(𝜆1𝐿1) = 0

𝑎2 cos(𝜆2𝐿2) + 𝑏2 sin(𝜆2𝐿2) = 0, (4.18)

and from (4.11) and (4.14), it follows that
5

𝐷1 𝑏1 𝜆1 = 𝐷2𝑏2 𝜆2
−𝐷2𝑏2 𝜆2 + 𝑃𝜎𝑎2 = 𝑃𝑎1. (4.19)

Eqs. (4.18)–(4.19) form a system of four homogeneous linear algebraic
equations in the four unknowns 𝑎1, 𝑏1, 𝑎2 and 𝑏2. To get a non trivial
solution, it is needed that the determinant of the coefficient matrix
associated with the above system be equal to zero, that is:

tan

(
√

𝐷2
𝐷1

𝐿1𝜆2

)

(

𝐷2𝜆2 + 𝑃𝜎 tan(𝜆2𝐿2)
)

−

√

𝐷2
𝐷1

𝑃 = 0 (4.20)

An infinite sequence of eigenvalues 𝜆21, 𝜆22,… , 𝜆2𝑚 …. is obtained as
solutions of the above transcendental equation (4.20) (eigencondition).
From Eq. (4.15) the correspondent 𝜆11, 𝜆12,… , 𝜆1𝑚 … are found. Hence,
the complete solution of the problem (4.2)–(4.7) is expressed as a linear
superposition of the fundamental solutions:

𝑐1(𝑥, 𝑡) =
∞
∑

𝑚=1
𝐴𝑚𝑋1𝑚(𝑥) exp(−𝐷1𝜆

2
1𝑚𝑡)

𝑐2(𝑥, 𝑡) =
∞
∑

𝑚=1
𝐴𝑚𝑋2𝑚(𝑥) exp(−𝐷2𝜆

2
2𝑚𝑡) (4.21)

where 𝐴𝑚 are determined through the initial conditions (4.7) (see [45]
for further details).

5. Results

In the absence of direct experiments, we have chosen the following
parameters which are in the correct range and for which the resulting
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Fig. 3. A drug-eluting stent implanted in an artery.

release times are consistent with published data [44,46,47]:

𝐿1 = 5 ⋅ 10−4 cm 𝐿2 = 10−2 cm 𝐷1 = 10−13 cm2∕s
𝐷2 = 7 ⋅ 10−11 cm2∕s

𝑃 = 10−5 cm/s 𝜎 = 0.164 (5.22)

These parameters, which are representative of the typical scales in DES,
have been chosen based on data in literature for the arterial wall and
heparin drug in the coating layer. The same parameters were used
in Ref. [45], with the exception of 𝐷1 and 𝐷2 have been taken 103

smaller, in order to have more realistic release times. For the Langevin
simulations, we use dimensionless units with 𝑘𝐵𝑇 = 1, 𝑣𝑡ℎ = 2.523,
𝑚 = 10−1, 𝐿1 = 5, 𝐿2 = 100, 𝐷1 = 10−2, 𝐷2 = 7. For 𝛾 = 0.5 in
Eq. (3.18), 𝛥1 ≃ 2 ⋅ 10−3 ≪ 𝐿1 and 𝛥2 = 1.387 ≪ 𝐿2. In these units,
𝑃 = 10−1. Converting the dimensionless units to physical ones, we find
that 𝑡 = 1 in the simulations corresponds to 103 s. The time step is set to
5 ⋅ 10−5, which falls in the ballistic regime of the Langevin dynamics in
both layers, 𝜏min

ballistic = 10−3 [see Eq. (3.12)]. We note that the reflecting
boundary at 𝑥 = −𝐿1 is treated as special cases of the KK condition with
𝑃 = 0 and 𝜎 = 1 and is, therefore, covered by the above algorithm. The
absorbing boundary at 𝑥 = 𝐿2 corresponds to 𝑃 → ∞ and 𝜎 → ∞ (or
𝜎 = 0). In this case, one should assign a very large (or nearly vanishing)
6

Fig. 4. Cross-section of a stented artery with the sequence of layers for drug dynamics
(a) stent strut, (b) coating, (c) topcoat, (d) arterial wall (figure not to scale).

value for 𝜎 in Eq. (3.17). In our simulations we use a simpler approach:
we do not introduce a force near the absorbing interface and, instead,
simply terminate and assign zero weight to each trajectory exceeding
𝐿2.

The concentration profiles, 𝑐1 and 𝑐2, for three values of time are
displayed in Fig. 5. We observe that the concentration 𝑐1 decays in
time, indicating that drug is eluting from coating to the wall. The
Fig. 5. Drug concentration profiles in the coating (above) and in the wall (below) for three times (note the different space scales). The curves depict the solution obtained by
separation of variables in [45], while the markers represent the results of the Langevin simulations based on the algorithm described in Section 3.2.
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Fig. 6. The concentration 𝑐2 at 𝑡 = 105 in the region close to the interface. The markers
depict the Langevin simulation results with different value of 𝛾 in Eq. (3.18), while the
dashed red line presents the analytical solution in the limit 𝛾 → 0, when the chemical
potential is given by a step-function — see Eq. (3.15).

concentration at the wall, 𝑐2, increases at short times, and decays at
longer times as more and more drug arrives at the absorbing surface
𝑥 = 𝐿2. At 𝑥 = 0, where the KK IBC is imposed, we observe a
sharp discontinuity in the concentration that diminishes with time. The
agreement between the semi-analytical solution (continuous curves)
and the Langevin simulation results (diamond symbols) is excellent,
except for deviations near 𝑥 = 0 at the shorter time 𝑡 = 104 s. These arise
from the approximation of the delta-function force at the KK interface
by the sharp continuous force (3.17) existing around the interface. The
impact of this approximation on the results are supposedly corrected
by the weight function (3.20); however, this correction is based on
the ratio of the corresponding Boltzmann factors and, thus, relies
on the assumption that locally the system is at thermal equilibrium
which, strictly speaking, can be only assumed in the overdamped limit
𝜏ballistic → 0. Fig. 6 presents results for 𝑐2 at 𝑡 = 105 with larger values
of 𝛾, zooming in on the region close to the interface. The difference
between the analytical and numerical solution at 𝑥 = 0 provides a
measure of the computational error, 𝐸𝑟. Not surprisingly, we find that
it decreases almost linearly with 𝛾 (𝛾 = 4 ∶ 𝐸𝑟 = 0.0095, 𝛾 = 2 ∶ 𝐸𝑟 =
0.0048, 𝛾 = 1 ∶ 𝐸𝑟 = 0.0028, 𝛾 = 0.5 ∶ 𝐸𝑟 = 0.0012) suggesting that the
simulations should be run with the smallest possible 𝛾. Nevertheless, 𝛾
cannot be reduced indefinitely since the condition 𝑑𝑡 ≪ 𝛾𝑙MFP∕2𝑣th is
required to ensure that the particle travels within the IL.3

6. Analysis of discretization errors

In the last section, we have examined the computational error
arising from the approximation of a discontinuous chemical potential
with a sharp piecewise constant jump. Here, we further expand our
analysis, focusing on the convergence and accuracy of the algorithm
with respect to the integration time step 𝑑𝑡. As noted above, we use
the GJF equations (3.8)–(3.11) to integrate the Langevin dynamics,
where an ensemble of particle starting on one side of the interface
and spreading across the system. We chose this integrator because it
yields the correct Einstein relation, ⟨𝑥2⟩ = 2𝐷 𝑡 = 2(𝑘𝐵𝑇 ∕𝛼)𝑡, for any
time step when applied in simulations of a freely diffusing particle.
Thus, the algorithm samples correctly the diffusive dynamics away

3 Note that the above condition can be also written as 𝑑𝑡 ≪ 𝛾(𝜋∕2)𝜏ballistic,
with 𝜏ballistic given by Eq. (3.12), which explains why 𝛾 should be of the order
of unity.
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Table 1
Norm of the profile difference at three times for a sequence of decreasing time steps
𝑑𝑡𝑘.

Case Time step 𝐸(⋅, 104) 𝐸(⋅, 105) 𝐸(⋅, 106)

1 𝑑𝑡1 = 20 𝑑𝑡 0.0138 0.0083 0.0080
2 𝑑𝑡2 = 10 𝑑𝑡 0.0120 0.0142 0.0386
3 𝑑𝑡3 = 5 𝑑𝑡 0.0067 0.0069 0.0074
4 𝑑𝑡4 = 2 𝑑𝑡 0.0051 0.0043 0.0085
5 𝑑𝑡5 = 𝑑𝑡 0.0025 0.0024 0.0057

from the interface, and discretization errors arise from the segments
of the trajectories when the particle passes close to the interface. These
errors can be minimized by using smaller 𝑑𝑡, but that would come at the
cost of being able to simulate a smaller number of trajectories per CPU
time, which would increase the statistical noise. In order to analyze the
convergence of the numerical method with respect to 𝑑𝑡, we repeat the
simulations of a system with IL parameter 𝛾 = 0.5 for a sequence of
decreasing time steps 𝑑𝑡𝑘 (𝑘 = 0, 1, 2,….). As a reference case, we set
𝑑𝑡0 = 25 ⋅ 10−4 which is 50 times larger than the minimal time step
𝑑𝑡 used to generate the results in Fig. 5 and 2.5 times larger than the
ballistic time, as computed from Eq. (3.12). We quantify the distance
between the concentration profiles 𝑐(𝑘) corresponding to subsequent
time-steps through the Euclidean norm

𝐸𝑘(⋅, 𝑡) =
‖

‖

‖

‖

𝑐(𝑘) − 𝑐(𝑘−1)

𝑐(𝑘)
‖

‖

‖

‖2
, 𝑘 = 1,… , 5 (6.23)

The results of the analysis are summarized in Table 1. The table shows
a clear convergence at smaller time steps and indicates that choosing
𝑑𝑡 = 5 ⋅ 10−5 for the simulation results in Fig. 5 yields a satisfactory
accurate solution. The significant drop in 𝐸𝑘 between 𝑘 = 2 and
𝑘 = 3 is probably due to the fact that 𝑑𝑡2 is not sufficiently smaller
compared to the ballistic time (𝑑𝑡2 = 5 ⋅ 10−4 = 𝜏ballistic∕2). Thus, for the
smaller 𝑘 values in the table the error is predominantly a systematic
discretization one, while for the larger values of 𝑘 is dominated by
statistical noise.

To summarize, the simulation results shown in Fig. 5 represents
an acceptable compromise between accuracy and computational ef-
ficiency, dictated by the available CPU time, the high aspect ratio
(𝐿2∕𝐿1 = 20), and the large diffusivity contrast (𝐷2∕𝐷1 = 700).

7. Conclusions and perspectives

We proposed an algorithm for Langevin dynamics simulations in
diffusive multi-layer systems, with flux continuity and KK interface con-
dition separating regions of different diffusivity. The proposed method
is based on accumulating statistics from a large number of indepen-
dent single particle trajectories. These are produced by a Langevin
dynamics discrete-time integrator, and the algorithm describes how the
integration is set up when the particle crosses an interface. From the
ensemble of Langevin dynamics trajectories, we generate a fine-grained
histogram of the concentration profile that solves the corresponding
continuum diffusion equation.

To validate the algorithm, we consider the case study of two-layer
model for a DES that can be solved semi-analytically by separation of
variables. The agreement between this solution and our computational
results is shown to be very good. We also use this example to assess
the accuracy and stability of the method. Our analysis suggests that
two parameters of the simulations need to be carefully chosen: (i) The
integration time step that must be smaller than the ballistic time of
the Langevin dynamics, and (ii) the width of the interface layer over
which the step-function potential energy is approximated. Reducing the
values of these parameters improves the accuracy of the results, but
also increases the computational cost since more iterations are needed
for generating each trajectory. A careful choice, that depends on the
problem in question and on the available computational resources,
should balance between these two aspects.
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While the example discussed here concerns a two-layer system, it
should be stressed that the Langevin dynamics has a clear advantage
in dealing with multi-layer systems that have relevance in many scien-
tific and engineering disciplines. The method can be straightforwardly
generalized to any number of interfaces, simply by employing the
algorithm whenever a trajectory encounters one of the interfaces. The
simplicity of the algorithm is in contrast to analytical solutions that, in
general, become increasingly complex and computationally inefficient
with larger number of layers. In a future work we plan to present
studies of multi-layered systems to demonstrate this important feature
of the method.

Another direction is to extend the method to two- and three-
dimensional composite systems. We also intend to consider examples
where other mechanisms besides passive diffusion, e.g. advection and
mass degradation, are included. For the specific application of drug-
eluting stent considered herein, additional efforts are needed to assess
and evaluating the relative influence of the various factors, including
material properties.
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