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A B S T R A C T

We propose a novel in silico model for computing drug release from multi-layer capsules. The diffusion problem in
such heterogeneous layer-by-layer composite medium is described by a system of coupled partial differential
equations, which we solve analytically using separation of variables. In addition to the conventional partitioning
and mass transfer interlayer conditions, we consider a surface finite mass transfer resistance, which corresponds to
the case of a coated capsule. The drug concentration in the core and through all the layers, as well as in the
external release medium, is given in terms of a Fourier series that we compute numerically to describe and
characterize the drug release mechanism.
1. Introduction

Nowadays, there is a tremendous increasing interest in using capsules
as targeted drug delivery systems [1]. They allow enhanced therapeutic
efficacy and reduce side effects by controlling the drug dose released in
the human body. Capsules consist usually of a drug-loaded (fluid or solid)
core surrounded by one or few hydrogel layers. Such encapsulation with
multiple layers enhances the capsule mechanical stability, its biocom-
patibility, protects the active ingredients from external chemical
aggression and premature degradation, and extends the sustainability of
the drug release [2,3]. Different technologies have emerged in the last
years to design and build layer-by-layer concentric spherical capsules
[4–6], even though the release of their encapsulated drug cannot be fully
predetermined. For some specific applications, a thin coating shell (or
membrane) is required to envelop the whole structure in order to protect
it from external chemical aggressions and mechanical erosion. Depend-
ing on the nature of the encapsulated formulations and according to the
final aimed therapeutic requirements the typical size of these drug car-
riers can range from some nano- to milli-meters. For biomedical appli-
cations, micro-capsules are largely used [7–9].

Drug release characterization consists in tracking the kinetics of the
drug eluted from the capsule into the external targeted medium, which is
away from being an easy task in both cases in vitro and in vivo. However,
effort and costs of developing and designing new optimized delivery
devices can be dramatically reduced if the release mechanism is under-
stood in advance using appropriate in silicomodels [10–12]. A number of
trelli).
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review papers have summarized previously proposed models for drug
release either from coated formulations [13–15] or from polymeric
matrices [11,16]. There are also works on drug release from capsules [3,
17–19], most of them dealing with empirical models. Here, we are rather
interested in mechanistic models, because they allow a better under-
standing of the underlying mechanism of the drug release by tracking the
influence of each physical input parameter, in contrast with the empirical
models. We upgrade existing mechanistic models by extending their
applications to the multi-layer coated capsules. Thus, predictable simu-
lations based on those models can spot the significant physical parame-
ters and allow extracting reliable information for conducting in vitro and
in vivo experiments. Diffusion is by far the dominant mechanism in drug
delivery beside other physico-chemical factors, such as osmosis, drug
dissolution, and polymer swelling [13]. Most of the previous proposed
mathematical models for release from spheres, as well as dissolved or
dispersed drug systems, rely on oversimplifying assumptions, such as
considering a constant diffusion rate and a well stirred (or at constant
concentration) release medium [20], as summarized in the review by
Arifin et al. [21]. As a matter of fact, the release characteristics strictly
depend on the medium properties and these cannot be superficially
dismissed or lumped in terms of boundary conditions at the capsule's
surface as made elsewhere. Mass flux resistance at the coating surface is
not properly addressed in literature.

In this article, we will make a step forward by studying theoretically
for the first time the drug release from a multi-layer capsule, via a semi-
analytic procedure, and moreover by avoiding considering simplistic
er 2017
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Fig. 1. Drug releasing from a multi-layer microcapsule. Drug is initially loaded in the core
Ω0 and diffuses, through all the intermediate layers Ωi, into the release medium Ωs

confined by the dotted line. Suitable conditions are set at internal interlayer interfaces and
at the external coating shell (figure not to scale).

Fig. 2. Schematic representation of the cross-section of the radially symmetric multi-layer
capsule, made of a central core Ω0, a concentric shell Ω1 and a thin protecting coating Ωm

(in red). Together with the external release medium Ω2 - limited by the dashed line - it
constitutes a three concentric layers system. On the right side, a zoom of the distributed
coating layer shell (figure not to scale). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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hypothesis made elsewhere previously, such as a continuous concentra-
tion across the capsule surface. Following a preliminary work [22], we
give a general presentation of a pure diffusive model through a composed
layer-by-layer medium in Sect. 2. The specific case of a spherical
core-layer capsule coated with a protective thin shell is addressed in Sect.
3, with a mathematical treatment somehow similar to the one we pre-
viously used for other drug-eluting systems [23,24]. Here we describe in
detail this method and how to use it for the problem at hand. Special care
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is taken when setting the interlayer conditions, including the finite
resistance (jump in the concentration value) at the external coated shell.
An analytic expression for the concentration and the cumulative mass in
all layers are given in Sect. 4. Finally numerical simulations are used to
show concentration and mass profile in some configuration and study the
dependence and sensitivity of the system to parameters.

2. A general model for drug release from a multi-layer capsule

Let us consider a multi-layer capsule made of a drug-filled core (the
depot, Ω0) surrounded by a number of layers (Ωi; with i ¼ 1;2;…; n) as
illustrated in Fig. 1. These enveloping layers are constituted of different,
but homogeneous and isotropic materials, which are customized to allow
selective diffusion, to better control the release rate and sometimes to
host more than one drug [7]. The last protective outer shell is in contact
with the targeted release medium Ωs (either a bulk fluid or tissue), here
of finite extent, but with boundaries ”far enough” from the capsule sur-
face. Even in such a simple configuration where the transport is driven by
pure diffusion, predicting drug kinetics is not an easy task.

In the core Ω0, we assume that the drug dissolution occurs in a short
time compared to that of diffusion and thus, can be considered as
instantaneous [25]. Therefore, the drug diffusion in Ω0 can be described
by the second Fick's law:

∂c0
∂t ¼ D0r2c0 in Ω0; (2.1)

where c0 is the concentration field and D0 is the diffusion coefficient of
the drug in the core. Analogously, in the surrounding layers and in the
release medium Ωs, we have similar diffusion equations

∂ci
∂t ¼ Dir2ci in Ωi i ¼ 1; 2;…; n; s (2.2)

with Di is the diffusion coefficient in the i-th layer Ωi (any possible
convection, as in Ref. [26] or reaction terms inΩs are excluded). We set a
perfect sink condition far away (see Sect. 3):

cs ¼ 0 at ∂Ωs; t > 0 (2.3)

The initial condition for concentrations:

cið⋅; 0Þ ¼ fið⋅Þ in Ωi i ¼ 0; 1;…; n; s (2.4)

are given in all layers.
Here, we refrain from using two widely exploited over-simplistic as-

sumptions [20,21], i.e.:

i) c0 is constant at core surface ∂Ω0, as if there is a sustained source of
drug;

ii) cs is uniform in the release medium Ωs, as in well-stirred medium.
2.1. Modelling interlayer boundary conditions

At each interface between two adjacent layers, flux continuity holds:

�Dirci⋅n ¼ �Diþ1rciþ1⋅n at ∂Ωi \ ∂Ωiþ1 (2.5)

with n the surface external normal vector. Moreover, a non-perfect
contact due to the drug partitioning is present at the interlayers [27]:

ci ¼ σiciþ1; at ∂Ωi \ ∂Ωiþ1 (2.6)

where σi is the drug partition coefficient between layers i and iþ 1.

2.2. Modelling the external coating shell

To prevent fast delivery, the capsule's outmost layer Ωn is protected
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with a thin semi-permeable shell (coating) Ωm having a small, yet finite
thickness (h) (see Fig. 2 for the case n ¼ 1). This coating shields and
preserves the encapsulated drug from degradation and fluid convection,
protects the inner structure, and guarantees a more controlled and sus-
tained release [17]. Instead of using a distributed model as above, we
model the drug diffusion across Ωm by setting a simple interface
boundary condition between Ωn and Ωs that incorporates the physical
properties of the coating shell as follows. The mass flux across Ωm is
proportional to the concentration gradient:

Jm ¼ �Dmrcm (2.7)

where Dm is the diffusion coefficient in the coating shell. Let σn and σm be
the partition coefficients (i.e. the ratio of the inner/outer concentrations
at the equilibrium, see Fig. 2 for the case n ¼ 1) of drug on both inter-
facial sides of the coating shell:

σn ¼ cn
c�m

; σm ¼ cþm
cs

(2.8)

By applying Eq. (2.7) across the coating shell thickness h (Fig. 2, right
zoom), we get:

Jm⋅n ¼ �Dm
cþm � c�m

h
¼ Dm

h

�
cn
σn

� σmcs

�
¼ Dm

hσn
ðcn � σnσmcsÞ (2.9)

This can be viewed as an additional boundary condition, of different
nature, imposed at the interface separating Ωn and Ωs. Thus, in case of
having coating shell, Eqns (2.5)–(2.6) are then replaced with:

�Dnrcn⋅n ¼ �Dsrcs⋅n ¼ Pðcn � ΣcsÞ at ∂Ωn \ ∂Ωs (2.10)

where P ¼ Dm
hσn

is the surface mass transfer coefficient (ms�1) expressing
the coating finite resistance and Σ ¼ σnσm.

Equation (2.10) lumps the distributed model in Ωm into a simpler
interlayer boundary condition, where P reflects the shell mass transfer
properties into one single easily measurable coefficient that is related to
the permeability [27]. Thus, at the coating shell surface, we use the more
general interlayer conditions Eq. (2.10) rather than Eq. (2.6). Note that
Eq. (2.10) includes two limit cases for P (or Dm): when P ¼ 0 the case of
impermeable coating (rcn ¼ 0) is obtained, and if P→∞ (coating in
perfect contact) the case cn ¼ σncs, similar to the other interlayer con-
ditions (cfr. eqn. (2.6)), is recouped.

3. A case study: the spherical core-shell capsule

The two-layer capsule is currently the most used in the applications
and here we consider this special case: a drug-filled core Ω0 encapsulated
by a single polymeric shellΩ1 and surrounded by the release mediumΩ2:
each medium has the shape of concentric sphere of increasing radius,
R0;R1;R∞ respectively (with R0 < R1≪ R∞). This method can be easily
extended, with a more complicated algebra, to any number of layers. Due
to the homogeneity and isotropy, we can assume that net drug diffusion
occurs along the radial direction only, and thus we restrict our study to a
one-dimensional model (Fig. 2) that reflects a perfectly radially sym-
metric system. Thus, the general formulation given in Section 2 reduces
to a three coupled equations problem, that in 1D radial symmetry reads:

∂c0
∂t ¼ D0

�
∂2c0
∂r2 þ 2

r
∂c0
∂r

�
¼ D0

r2
∂
∂r

�
r2
∂c0
∂r

�
in ð0;R0Þ (3.1)

∂c1
∂t ¼ D1

�
∂2c1
∂r2 þ 2

r
∂c1
∂r

�
¼ D1

r2
∂
∂r

�
r2
∂c1
∂r

�
in ðR0;R1Þ (3.2)

∂c2
∂t ¼ D2

�
∂2c2
∂r2 þ 2

r
∂c2
∂r

�
¼ D2

r2
∂
∂r

�
r2
∂c2
∂r

�
in ðR1;R∞Þ (3.3)
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∂c0
∂r ¼ 0 at r ¼ 0 (3.4)
�D0
∂c0
∂r ¼ �D1

∂c1
∂r ; c0 ¼ σ0c1 at r ¼ R0 (3.5)

�D1
∂c1
∂r ¼ �D2

∂c2
∂r ¼ Pðc1 � Σc2Þ at r ¼ R1 (3.6)

c2 ¼ 0 at r ¼ R∞ (3.7)

where r is the radial coordinate position. The initial condition for a
releasing capsule is:

c0ðr; 0Þ ¼ C0 for 0 < r � R0

c1ðr; 0Þ ¼ 0 for R0 < r � R1

c2ðr; 0Þ ¼ 0 for R1 < r � R∞

(3.8)

with C0 is the initial concentration of the loaded drug in the core.
3.1. The release distance R∞

The release medium is here delimited by a cut-off finite distance R∞,
whose range is determined by the following considerations. Strictly
speaking, for a pure diffusion problem from a spherical source into a
homogeneous medium having the diffusivity D, the concentration field
cð⋅; tÞ undergoes a exponential decay ∝ expð � DtÞ and vanishes asymp-
totically at infinite distance. On the other hand, at a given time, the
concentration is gradually damped, going down to zero at infinite
distance.

For computational practical purposes, we set a cut-off length R∞, that
we call release distance or diffusion length, beyondwhich the concentration
as well as the mass flux reduce to zero, within a prescribed tolerance, at a
given time. More precisely, the release distance at time t is the minimum
finite length such that: cðR∞; tÞ ¼ εc0 ’ 0, with ε a small number. For 0 �
r � R∞ the concentration decays with time at exponential rate and the
sink condition (3.7) holds at R∞ within the tolerance ε, being cðr; tÞ ’ 0
for r � R∞. Analogously to the heat transfer problem, R∞ is proportional
to

ffiffiffiffiffi
Dt

p
[28]. The precise estimation of the release distance in a

multi-layer medium is beyond the scope of this work, even though there
are attempts to compute it within a certain degree of accuracy. However,
by considering a homogeneous medium at constant concentration faced
with the release medium, we get a conservative overestimation of the
release distance by R∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10mDt
p

, with ε ¼ 10�m [23].
3.2. Solving procedure

We use the separation of variables method to solve the three-layer
equation model, as done in other composite release systems [23,24].
To this purpose, it would be convenient to recast the above equations in a
dimensionless form.

3.2.1. Scaling
All the variables, the parameters and the equations are normalized by

means of the change of variables:

r→
r
R∞

t→
Dmax

R2
∞

t ci→
ci
C0

(3.9)

and by introducing the nondimensional constants:

R0=1=∞ ¼ R0=1=∞

R∞
γi ¼

Di

Dmax
ϕ ¼ PR∞

Dmax
(3.10)

where subscript max denotes the maximum value across the 3 layers. By
separating ciðr; tÞ ¼ FiðrÞGiðtÞ, Eqs. (3.1)–(3.3) become:
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1 G0
i ¼

�
r2F0

i

�0
2

¼ �λ2i i ¼ 0; 1; 2 (3.11)

γi Gi r Fi

that admits the solutions:

FiðrÞ ¼ ai
cosðλirÞ

r
þ bi

sinðλirÞ
r

; GiðtÞ ¼ exp
��γiλ

2
i t
�

i ¼ 0; 1; 2 (3.12)

In order to retain a finite solution in r ¼ 0, we set a0 ¼ 0. By imposing
G0 ¼ G1 ¼ G2 [23], we obtain

λi ¼
ffiffiffiffiffi
γ0
γi

r
λ0 i ¼ 1; 2 (3.13)

The boundary condition (3.4) is automatically satisfied, whereas
(3.5)–(3.7) read respectively:

γ0F
0
0ðR0Þ ¼ γ1F

0
1ðR0Þ (3.14)

F0ðR0Þ ¼ σ0F1ðR0Þ (3.15)

γ1F
0
1ðR1Þ ¼ γ2F

0
2ðR1Þ (3.16)

γ1F
0
1ðR1Þ þ ϕðF1ðR1Þ � ΣF2ðR1ÞÞ ¼ 0 (3.17)

F2ð1Þ ¼ 0 (3.18)

This set of 5 algebraic equations (3.14)–(3.18) is made explicit as:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

γ0½R0λ0 cosðλ0R0Þ� sinðλ0R0Þ �b0 þ γ1½R0λ1 sinðλ1R0Þþ cosðλ1R0Þ �a1
�γ1½R0λ1 cosðλ1R0Þ� sinðλ1R0Þ �b1 ¼ 0

sinðλ0R0Þb0 � σ0 cosðλ1R0Þa1 � σ0 sinðλ1R0Þb1 ¼ 0

�γ1½R1λ1 sinðλ1R1Þþ cosðλ1R1Þ �a1 þ γ1½R1λ1 cosðλ1R1Þ� sinðλ1R1Þ �b1
þγ2½R1λ2 sinðλ2R1Þþ cosðλ2R1Þ �a2 � γ2½R1λ2 cosðλ2R1Þ� sinðλ2R1Þ �b2 ¼ 0

½ � γ1R1λ1 sinðλ1R1Þþ ðϕR1 � γ1Þcosðλ1R1Þ �a1
½ þ γ1R1λ1 cosðλ1R1Þþ ðϕR1 � γ1Þsinðλ1R1Þ �b1
�ϕΣR1 cosðλ2R1Þa2 �ϕΣR1 sinðλ2R1Þb2 ¼ 0

cosðλ2Þa2 þ sinðλ2Þb2 ¼ 0

and form a homogeneous system with unknowns b0; a1; b1; a2; b2. By
imposing the coefficient matrix to be singular and by using Eq. (3.13), we
get a relationship in λ0 (eigencondition). This problem is solved numer-
ically with MATLAB by a successive bisection method [29]. It admits an
infinite number of roots ðλk0Þ with k ¼ 1;2;…, and from them, the whole
set of eigenvalues ðλki Þwith i ¼ 1; 2 and k ¼ 1;2;… are determined. From
each eigenvalue, the constants aki ; b

k
i are obtained subsequently from Eqs.

(3.14)–(3.18), and the eigenfunctions defined in Eq. (3.12) have the
form:

FikðrÞ ¼ aki
cos
�
λki r
�

r
þ bki

sin
�
λki r
�

r
; k ¼ 1; 2;… (3.19)

4. Computing drug concentration and mass

Once the eigenvalues λk0 are computed, the corresponding time-
variable functions Gk

i defined by Eq. (3.12) are obtained as:

Gk
0ðtÞ ¼ Gk

1ðtÞ ¼ Gk
2ðtÞ ¼ exp

�
� γ0

�
λk0
�2
t
�

(4.1)

Thus, the general solution of the problem (3.1)–(3.8) is given by a
linear superposition of the fundamental solutions (3.19)–(4.1) in the
form:
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ciðr; tÞ ¼
X∞

AkFikðrÞexp
�
� γi

�
λki
�2
t
�

i ¼ 0; 1; 2 (4.2)

k¼1

where the Fourier coefficients Ak are computed in accordance with the
initial conditions:

c0ðr; 0Þ ¼ 1 for 0 < r � R0

c1ðr; 0Þ ¼ 0 for R0 < r � R1

c2ðr; 0Þ ¼ 0 for R1 < r � 1
(4.3)

By evaluating Eq. (4.2) at t ¼ 0 and multiplying it by r2Fip, after
integration we get:

∫
R0

0

X
k

Akr2F0kF0p dr ¼ ∫
R0

0
r2F0p dr (4.4)

∫
R1

R0

X
k

Akr2F1kF1p dr ¼ 0 (4.5)

∫
1

R1

X
k

Akr2F2kF2p dr ¼ 0 (4.6)

By summing (4.4) with (4.5) multiplied by σ0 and with (4.6) multi-
plied by σ0σ1, and by the orthogonality of F0k; F1k; F2k (see appendix), we
have:

Ap

 
∫
R0

0
r2F2

0pdr þ σ0 ∫
R1

R0

r2F2
1pdr þ σ0σ1 ∫

1

R1

r2F2
2pdr

!
¼ ∫

R0

0
r2F0pdr (4.7)

By setting:

Ip ¼ ∫
R0

0
sinðλp0rÞrdr ¼

"
sinðλp0rÞ
ðλp0Þ2

� rcosðλp0rÞ
λp0

#R0
0

¼ sinðλp0R0Þ
ðλp0Þ2

� R0cosðλp0R0Þ
λp0

(4.8)

we have:

Ap ¼ bp0Ip
Np

(4.9)

with Np is the norm (see appendix). The analytic form of the solution
allows an easy computation of the dimensionless drug mass in each layer
as a function of time:

M0ðtÞ ¼ ∫
0

2π

dϕ∫
0

π

sinθ dθ∫
0

R0

r2 c0ðr; tÞ dr ¼ 4π∫
0

R0

r2 c0ðr; tÞ dr

M1ðtÞ ¼ 4π∫
R0

R1
r2 c1ðr; tÞ dr

M2ðtÞ ¼ 4π∫
R1

1

r2 c2ðr; tÞ dr

(4.10)

In particular, the above Eqs., together with (4.2), yield:

M0ð0Þ ¼ 4
3
πR3

0; M1ð0Þ ¼ M2ð0Þ ¼ 0 (4.11)

Moreover, it is easy to verify that lim
t→∞

M0ðtÞ ¼ lim
t→∞

M1ðtÞ ¼ 0 and

lim
t→∞

M2ðtÞ ¼ M0ð0Þ. By Eq. (4.2), we get an explicit computation of

M0;M1;M2:

M0ðtÞ¼ 4π
X
k

Ak exp
�
� γ0

�
λk0
�2
t
�
∫
0

R0

Fk0ðrÞ r2dr¼ 4π
X
k

Ak exp
�
� γ0

�
λk0
�2
t
�

�
(
ak0

"
cos
�
λk0R0

�
�
λk0
�2 þR0sin

�
λk0R0

��1

λk0

#
þbk0

"
sin
�
λk0R0

�
�
λk0
�2 �R0cos

�
λk0R0

�
λk0

#)

(4.12)



Fig. 3. Normalized radial concentration profiles in the capsule layers (core (violet), shell (yellow), release medium (fading pink)) at three instants, at four values of P. At all observable times,
all concentrations are damped out at nondimensional distance r ¼ 0:2. The core depletion and the drug release slow down at lower P. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

M1ðtÞ ¼ 4π
X
k

Ak exp
�� γ1

�
λk1
�2
t
�
∫
R1

R0

Fk1ðrÞ r2dr ¼ 4π
X
k

Ak exp
�� γ1

�
λk1
�2
t
�

�
8<
:ak1

"
cos
�
λk1R1

�� cos
�
λk1R0

�
�
λk1
�2 þ R1sin

�
λk1R1

�� R0sin
�
λk1R0

�
λk1

#
þ bk1

"
sin
�
λk1R1

�� sin
�
λk1R0

�
�
λk1
�2 � R1cos

�
λk1R1

�� R0cos
�
λk1R0

�
λk1

#9=
;

(4.13)

M2ðtÞ ¼ 4π
X
k

Ak exp
�� γ2

�
λk2
�2
t
�
∫
1

R1

Fk2ðrÞ r2dr ¼ 4π
X
k

Ak exp
�� γ2

�
λk2
�2
t
�

�
8<
:ak2

"
cos
�
λk2
�� cos

�
λk2R1

�
�
λk2
�2 þ sin

�
λk2
�� R1sin

�
λk2R1

�
λk2

#
þ bk2

"
sin
�
λk2
�� sin

�
λk2R1

�
�
λk2
�2 � cos

�
λk2
�� R1cos

�
λk2R1

�
λk2

#9=
;

(4.14)

B. Kaoui et al. Computers in Biology and Medicine 93 (2018) 149–157
5. Results and discussion

The physical problem of drug release from a multi-layer capsule de-
pends on a large number of parameters. In this article, for simplicity, the
following physical parameters are chosen to simulate the release from a
coated core-shell drug-loaded capsule. These typical values of geomet-
rical and diffusion parameters are taken from the work of Henning et al.
[17]:
153
R0 ¼ 1:5⋅10�3m R1 ¼ 1:7⋅10�3m σ0 ¼ σ1 ¼ 1
D0 ¼ 30⋅10�11m2s�1 D1 ¼ 5⋅10�11m2s�1 D2 ¼ 30⋅10�11m2s�1 (5.1)

while the surface mass transfer coefficient P is varied in an appropriate
range and Σ ¼ 1 (see eqn. (2.10)). For these input numerical values, the
release distance R∞ ¼ 30⋅10�3m � 18R1 is estimated to yield a complete
drug depletion of the core and a fully release time of about 12 h. All the
series appearing in the solution (see Eq. (4.2) and what follow) have been
truncated at a finite number of terms N ¼ 300 for all times reported in
the simulation. A number of grid nodes proportional to the thickness of



Table 1
Percentage of the drug mass α retained in each layer at different times for three coatings of
different permeability: A) P ¼ 10�8, B) P ¼ 10�7, C) P ¼ 10�3 (cm s�1) (max error of 1%).
Red values indicate the peak mass values in the hydrogel layer. The reported differences
evidence a strong influence of P on the depletion time and delivery characteristics.
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the layer to guarantee a convenient resolution has been considered. For
example, for the layer's sizes corresponding to the above parameters, a
number of equidistributed 100, 14 and 1888 points has been selected,
respectively.

Drug is transported differently in each layer, that receives mass from
the underneath layer and transmits it to the next above, in a cascade
sequence until the drug is completely released at finite distance R∞ for a
sufficiently long time. The effect of the combined multi-layer diffusivity
is similar to that of other releasing systems [23]. Here we analyze the
behavior of the profile at varying mass transfer coefficient P. Fig. 3 shows
the concentration profiles in the case of different coated capsules, and
reports a different release in the various configurations ranging from a
fully permeable (Fig. 3 top left) to the almost impermeable case (Fig. 3
Fig. 4. Normalized drug mass profiles in the internal core (layer 0), in the hydrogel shell (layer
mass is monotonically decreasing, in the release medium the profile is raising up to a complete re
Note a more uniform and sustained release at lower P.
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bottom right). It turns out that for the above parameters, the sensitive
values are in the range: 10�8 � P � 10�3. For P < 10�8; the coating acts
as an impermeable barrier (as P→0), for P > 10�3; the capsule surface
results in perfect contact with the surrounding external medium (as
P→∞;Σ ¼ 1), giving rise to the concentration continuity.

Concentration is dropping down inside each layer, being possibly
discontinuous at the interlayer interfaces, with the mass flux continuity
preserved (Fig. 3). We also compute the fraction of drug mass retained in
each layer, defined as:

αiðtÞ ¼ MiðtÞ
M0ð0Þ i ¼ 0; 1; 2 (5.2)

Table 1 gives the different distribution of αiðtÞ in each layer, in three
significant cases of coating having different permeability. Because of the
sink boundary condition (3.7), all mass eventually accumulates in the
external release medium up to a distance R∞. In other words, due to the
absorbing condition (3.7) at the release distance, all drug mass is trans-
ferred to the external medium at a sufficiently long time and the total
mass is preserved and equals its initial value (say the drug mass in the
coating M0ð0Þ), such that:

M0ð0Þ �
P
i¼0

2

MiðtÞ
M0ð0Þ ¼ 1�

X2
i¼0

αiðtÞ ’ 0 (5.3)

The drug mass is monotonically decreasing in the core (layer 0), but is
first increasing up to some upper bound and then decaying asymptoti-
cally in the layer 1 (Fig. 4). In the release medium the mass progressively
accumulates over an extended distance R∞ at a time depending on the
1) and in the targeted release medium (layer 2) at four values of P. In the innermost layer
lease, while in the hydrogel there is a characteristic time at which the drug reaches a peak.
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diffusive properties of the two-layer capsule. The simulation points out
the time and the size of the mass peak in the hydrogel layer (layer 1) is
related to the releasing properties of the core at one hand, and to the
diffusivity of the release medium at the other hand, together with the
mass resistance of the coating. The thin hydrogel layer retains a negli-
gible mass due to its thickness, and the core is completely emptied after a
period of about 12 h (Table 1) in the case of P � 10�3. At that time, all the
mass is transferred to the external layer. A much sustained release occurs
in the case of a coating having a smaller mass transfer coefficient
(P � 10�7).

It appears also that the relative size of the layers and their respective
diffusivity affect the whole drug release processes. Thus, depending on
the specific application, it is worth identifying which set of parameters
guarantees a more prolonged and uniform release and what other values
are responsible for a localized peaked distribution followed by a faster
decay. One of them is the permeability of the coating shell that offers a
significant resistance to the mass flux. Thus, the coating resistance has to
be properly tuned in order to allow drug molecules to be released, while
maintained in the efficient therapeutic range without exceeding the toxic
dose nor dropping below an insufficient dose. These results can be used
to assess whether drug targets tissues at the desired rate and to optimize
the dose capacity given by thin surface coating shells for an extended
period of time. Differently than in other single layer models, the current
formulation constitutes a simple tool to predict the accurate drug release
from a multi-layer coated capsule that can help in designing and in
manufacturing new drug delivery platforms.

6. Conclusions

Despite notable recent progress in designing drug release systems, the
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precise characteristics and the development of multifunctional delivery
carriers remains a challenge. Mathematical modelling has emerged in
recent years as an additional powerful alternative tool to simulate drug
delivery processes and much effort is currently addressed for a deeper
understanding of the elution mechanism. This is not completely under-
stood and can be influenced by different concurrent physical and
chemical factors. In this work we propose a mechanistic model for
studying the drug release from a multi-layer coated spherical capsule
under a limited number of physical assumptions. The analytic form of the
solution provides insights into the drug mass transfer as well as the effect
of parameters, such as the device geometry and the coating resistance, on
the release mechanism. By showing the relationship among the several
variables and material transport properties, the present model can be
used to identify and optimize parameters to guarantee a controlled de-
livery. Thus, the capsule design for a therapeutically optimal rate can be
predicted using a systematic approach with a minimum number of
experimental studies.
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Appendix

Let us prove the orthogonality of the system FikðrÞ; i ¼ 0;1;2; k ¼ 1; 2;…: – see Eq. (3.19) – in the interval ½0;1�. The Sturm-Liouville eigenvalue
problems Eq. (3.11) can be written:

�
r2F '

0

�' ¼ �λ20r
2F0 in ½0;R0� (A.1)

F0
0ð0Þ ¼ 0 (A.2)

γ0F
0
0ðR0Þ ¼ γ1F

0
1ðR0Þ (A.3)

�
r2F '

1

�' ¼ �λ21r
2F1 in ½R0;R1� (A.4)

F0ðR0Þ ¼ σ0F1ðR0Þ (A.5)

γ1F
0
1ðR1Þ ¼ γ2F

0
2ðR1Þ (A.6)

�
r2F '

2

�' ¼ �λ22r
2F2 in ½R1; 1� (A.7)

F1ðR1Þ ¼ σ1F2ðR1Þ (A.8)

F2ð1Þ ¼ 0 (A.9)

Let us consider two different eigenvalues λ0m and λ0n and the corresponding eigenfunctions F0m, F0n. Multiplying Eq. (A.1) by F0n and integrating:

λ20m ∫
R0

0
r2F0mF0ndr ¼ � ∫

R0

0

�
r2F '

0m

�'
F0ndr ¼ �	r2F '

0mF0n


R0
0 þ ∫

R0

0
r2F '

0mF
'
0mdr (A.10)

Similarly, for the eigenvalue λ0n
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λ20n ∫
R0

r2F0nF0mdr ¼ � ∫
R0 �

r2F0
0n

�0
F0mdr ¼ �	r2F0

0nF0m


R0
0 þ ∫

R0

r2F0
0nF

0
0mdr (A.11)
0 0 0

Subtracting Eq. (A.11) from Eq. (A.10) we have:

�
λ20m � λ20n

�
∫
R0

0
r2F0nF0mdr ¼ �	r2F0m

0F0n


R0
0 þ 	r2F0

0nF0m


R0
0 (A.12)

Repeating a similar procedure for Eq. (A.4) (resp. Eq. (A.7)), for the eigenvalues λ1m; λ1n (resp. λ2m; λ2n ) and for the eigenfunctions F1m; F1n (resp.
F2m; F2n), we get:

�
λ21m � λ21n

�
∫
R1

R0

r2F1nF1mdr ¼ �	r2F0
1mF1n


R1
R0
þ 	r2F0

1nF1m


R1
R0

(A.13)

�
λ22m � λ22n

�
∫
1

R1

r2F2nF2mdr ¼ �	r2F0
2mF2n


1
R1
þ 	r2F0

2nF2m


1
R1

(A.14)

Eq. (A.12) multiplied by γ0 and by use of (A.2) reads:

γ0
�
λ20m � λ20n

�
∫
R0

0
r2F0nF0mdr ¼ �γ0R

2
0F

0
0mðR0ÞF0nðR0Þ þ γ0R

2
0F

0
0nðR0ÞF0mðR0Þ (A.15)

Eq. (A.13) multiplied by γ1σ0 gives:

γ1
�
λ21m � λ21n

�
σ0∫

R0

R1
r2F1nF1mdr ¼ �γ1R

2
1σ0F

0
1mðR1ÞF1nðR1Þ þ γ1R

2
0σ0F

0
1mðR0ÞF1nðR0Þ þ γ1R

2
1σ0F0

1nðR1ÞF1mðR1Þ � γ1R
2
0σ0F0

1nðR0ÞF1mðR0Þ (A.16)

Finally Eq. (A.14) multiplied by γ2σ0σ1 and by use of (A.9) becomes:

γ2
�
λ22m � λ22n

�
σ0σ1 ∫

1

R1

r2F2nF2mdr ¼ γ2R
2
1σ0σ1F

'
2mðR1ÞF2nðR1Þ � γ2R

2
1σ0σ1F '

2nðR1ÞF2mðR1Þ (A.17)

By summing Eqs. (A.15), (A.16), (A.17) and by use of Eqs. (3.13), (A.3) and (A.6) we get:

γ0
�
λ20m � λ20n

� 
∫
0

R0

r2F0nF0mdr þ σ0∫
R0

R1
r2F1nF1mdr þ σ0σ1∫

R1

1

r2F2nF2mdr

!
¼ γ0R

2
0F

0
0nðR0Þ½F0mðR0Þ � σ0F1mðR0Þ� � γ0R

2
0F

0
0mðR0Þ½F0nðR0Þ � σ0F1nðR0Þ�

þ γ1R
2
1σ0F0

1nðR1Þ½F1mðR1Þ � σ1F2mðR1Þ� � γ1R
2
1σ0F

0
1mðR1Þ½F1nðR1Þ � σ1F2nðR1Þ�

(A.18)

Finally, by the use of (A.5) and (A.8), all terms at r.h.s. are zero and

∫
R0

0
r2F0nF0mdr þ σ0 ∫

R1

R0

r2F1nF1mdr þ σ0σ1 ∫
1

R1

r2F2nF2mdr ¼
�

0 for m 6¼ n
Nm for m ¼ n

(A.19)

with

Nm ¼ ∫
R0

0

�
bm0 sin

�
λm0 r
� �2

dr þ σ0 ∫
R1

R0

�
am1 cos

�
λm1 r
�þ bm1 sin

�
λm1 r
� �2

dr þ σ0σ1∫
1

R1

�
am2 cos

�
λm2 r
�þ bm2 sin

�
λm2 r
� �2

dr > 0 (A.20)

the norm.
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