
Chapter 10

The Lattice Boltzmann Method as a General

Framework for Blood Flow Modelling

and Simulations

Simone Melchionna, Giuseppe Pontrelli, Massimo Bernaschi,

Mauro Bisson, Ian Halliday, Tim J. Spencer, and Sauro Succi

Abstract Large-scale simulations of blood flow allow for the optimal evaluation

of endothelial shear stress for real-life case studies in cardiovascular pathologies.

The procedure for anatomic data acquisition, geometry, and mesh generation are

particularly favorable if used in conjunction with the Lattice Boltzmann method

and the underlying Cartesian mesh. The methodology allows to accommodate red

blood cells in order to take into account the corpuscular nature of blood in

multiscale scenarios and its complex rheological response, in particular, in proxim-

ity of the endothelium. Taken together, the Lattice Boltzmann framework has

become a reality for studying sections of the human circulatory system in physio-

logical conditions.

10.1 Introduction

Blood flow simulations constitute a rapidly growing field for the medical, engineer-

ing, and basic sciences communities. The study of blood in the macrovasculature,

as much as in capillaries, has deep implications in understanding and prevention of

the most common cardiovascular pathologies, with atherosclerosis being perhaps

the best known example. Atherosclerosis is responsible for � 35% of annual deaths

in developed countries, and its development depends on the presence of systemic
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risk factors. The disease results from the accumulation of lipid molecules within the

wall of the blood vessels, as well as from enhanced exposure to intramural penetra-

tion of nano-sized biological bodies [19]. The build up of the resultant soft tissue

and the eventual changes in its consistency leads to serious atherosclerotic

pathologies, including catastrophic events such as plaque rupture. Atherosclerotic

plaques appear in regions of disturbed blood flow where the local endothelial shear

stress (ESS) is low ( < 1. 0 Pa) or of alternating direction [9]. Hence, plaques tend

to form near arterial bifurcations where the flow is always altered compared to

unbranched regions [8, 39].

Atherosclerosis primarily affects the coronary arteries, and the evidence that low

average ESS has a key role in the disease localization and progression is widely

accepted [8, 23, 43, 9]. Predictions of where and how the illness is likely to develop

can be obtained by fluid-dynamics simulations as a routine methodology to study

blood flow patterns in human arteries. As a matter of fact, the shape and the structure

of endothelium play a number of important roles in the vascular system, and its

dysfunction may lead to several pathological states, including early development of

atherosclerosis [30]. The microscopic shape of the endothelium is defined by the

presence of endothelial cells (ECs henceforth), making the arterial wall undulated.

This effect becomes more pronounced in small-sized vessels, where the corrugation

degree increases. The study of blood flow over a regularly undulating wall made of

equally aligned and distributed ECs has been recently carried out in [34] where the

variation of wall shear stress over the ECs has been computed. Furthermore, the

endothelium is coated by long-chained macromolecules and proteins which form a

thin porous layer, called the glycocalyx [44]. The glycocalyx has a brushlike
structure and a thickness which varies with the vessel diameter, but its average is

100 nm for arterioles. It has several roles: it serves as a transport barrier, to prevent

ballistic red blood cell (RBC) interactions with the endothelium, and as a sensor and

transducer of mechanical forces, such as fluid shear stress, to the surface of ECs.

Actually, it has been recognized that the glycocalyx responds to the flow environ-

ment and, in particular, to the fluid stress, but the mechanism bywhich these proteins

sense the shearing forces and transduce mechanical into biochemical signals is still

not fully understood [30]. The glycocalyx itself is remodeled by the shearing flow

and by the compression exerted by the deformed erythrocytes in capillaries [38].

Flow-induced mechano transduction in ECs has been studied over the years with

emphasis on correlation between disturbed flow and atherosclerosis. Recently, some

mathematical modelling work has been carried out, using a porous medium tomodel

the endothelial surface layer (ESL henceforth) [1, 42]. However, none of these

works includes the effect of the roughness, or wavy nature, of the wall, which should

be incorporated for a more realistic description. In the following sections we also

present a coarse-grained model that attempts to include some of the basic physical

microscale effects of the ESL attached to the EC surface and hence, examine to what

extent the wall shear stress may vary due to this layer in addition to the previously

examined EC shape and particulate transport.

Simulations of blood flows based on the Lattice Boltzmann (LB) method provide a

particularly efficient and flexible framework in handling complex arterial geometries.
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In the past, the LB method has been applied to a broad range of fluid-dynamic

problems, including turbulence and multiphase flows [41], as well as in blood flow

simulations in steady and pulsatile regimes and with non-Newtonian flows through

stenoses [32]. A direct benefit of the joint use of simulation and imaging techniques is

to understand the connection between fluid-mechanical flow patterns and plaque

formation and evolution, with important implications for predicting the course of

atherosclerosis and possibly preventing or mitigating its effects, in particular by non-

invasively and inexpensively screening large numbers of patients for incipient arterial

disease, and to intervene at clinical level prior to the occurrence of a catastrophic

event. One option is to obtain the arterial wall shape, plaque morphology, and lumen

anatomy from the non-invasive multi-detector computed tomography (MDCT) imag-

ing technique, as in the newest systems with 320-detector rows, a technology that

enables 3D acquisition of the entire arterial tree in a single heart beat and high

accuracy of nominal resolution of 0. 1 mm [36].

The LB method is particularly flexible for handling complex arterial geometries,

since most of its simplicity stems from an underlying Cartesian mesh over which

fluid motion is represented. LB is based on moving information along straight-line

trajectories, associated with the constant speed of fictitious molecules which char-

acterize the state of the fluid at any instant and spatial location. This picture stands

in sharp contrast with the fluid-dynamic representation, in which, by definition,

information moves along the material lines defined by fluid velocity itself, usually a

very complex space-time-dependent vector field. This main asset has motivated the

increasing use over the last decade of LB techniques for large-scale simulations of

complex hemodynamic flows [29, 12, 27, 3].

The main aim of this chapter is to show that the inclusion of crucial components

such as RBC and the glycocalyx, can be done within a single unified computational

framework. This would allow us to reproduce blood rheology in complex flows and

geometrical conditions, including the non-trivial interplay between erythrocytes and

wall structure. The possibility of embedding suspended bodies in the surrounding

plasma and the glycocalyx representation over an undulated endothelial wall

addresses major steps forward to model blood from a bottom-up perspective, in

order to avoid unnecessary and sometimes wrong assumptions in blood dynamics.

10.2 The Lattice Boltzmann Framework

In the last decade, the LB method has captured increasing attention from the

fluid-dynamics community as a competitive computational alternative to the

discretization of the Navier–Stokes equations of continuum mechanics. LB is a

hydrokinetic approach and a minimal form of the Boltzmann kinetic equation, based

on the collective dynamics of fictitious particles on the nodes of a regular lattice.

The dynamics of fluid particles is designed in such a way as to obey the basic

conservation laws ensuring hydrodynamic behavior in the continuum limit, in which

the molecular mean free path is much shorter than typical macroscopic scales [41].

10 The Lattice Boltzmann Method as a General Framework for Blood Flow. . . 155



This condition is clearly met in blood flow regimes, together with the Newtonian

rheological behavior of blood in large arterial systems. Non-Newtonian rheological

models appropriate for simulating blood flow in medium or small-sized arteries, such

as the Casson, Carreau, or Carreau-Yasuda models, can be also incorporated within

the LB approach [6, 20].

The LB method is based on the collective dynamics of fictitious particles on

the nodes of a regular lattice where the basic quantity is f pðx; tÞ , representing the

probability of finding a “fluid particle p” at the mesh location x and at time t and
traveling with discrete speed cp. “Fluid particles” represent the collective motion of a

group of physical particles (often referred to as populations). We employ the common

three-dimensional 19-speed cubic lattice (D3Q19) with mesh spacing Dx, where the
discrete velocities cp connect mesh points to first and second neighbors [2]. The fluid

populations are advanced in a time step Dt through the following evolution equation:

f pðxþ cpDt; tþ DtÞ ¼ f pðx; tÞ � oðf p � f eqp Þðx; tÞ þ Fpðx; tÞ: (10.1)

The right-hand side of (10.1) represents the effect of fluid-fluid molecular

collisions, through a relaxation towards a local equilibrium, typically a second-

order expansion in the fluid velocity of a local Maxwellian with speed u,

f eqp ¼ wpr 1þ u � cp
c2s

þ uu : ðcpcp � c2s IÞ
2c4s

� �
; (10.2)

where cs ¼ 1=
ffiffiffi
3

p
is the speed of sound, wp is a set of weights normalized to unity,

and I is the unit tensor in Cartesian space. The relaxation frequency o controls the

kinematic viscosity of the fluid, n ¼ c2sDt
1
o � 1

2

� �
. The kinetic moments of the

discrete populations provide the local mass density r(x, t) ¼ ∑p fp(x, t) and

momentum ru(x, t) ¼ ∑pcpfp(x, t). The last term Fp in (10.1) represents a momen-

tum source, given by the presence of suspended bodies, if RBCs are included in the

model, as discussed in the following sections. In the incompressible limit, (10.1)

reduces to the Navier–Stokes equation

r � u ¼ 0;

@u

@t
þ ðu � rÞu ¼ � 1

r
rPþ nr2uþ F;

(10.3)

where P is the pressure and F is any body force, corresponding to Fp in (10.1).

The LB is a low-Mach, weakly compressible fluid solver and presents several

major advantages for the practical implementation in complex geometries. In particu-

lar, in hemodynamic simulations, the curved blood vessels are shaped on the Cartesian

mesh scheme via a staircase representation, in contrast to body-fitted grids that can be

employed in direct Navier–Stokes simulations. This apparently crude representation

of the vessel walls can be systematically improved by increasing the mesh resolution.
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In addition, at the high mesh resolution required to sample low-noise ESS data, the

LB method requires rather small time steps (of the order of 10 � 6 s for a resolution

of 20 mm).

The wall shear stress, which is central to hemodynamic applications, can be

computed via the shear tensor sðx; tÞ � nr ruþruTð Þ evaluated via its kinetic

representation

sðx; tÞ ¼ �3no
c2S

X
p
cpcpðf p � f eqp Þðx; tÞ: (10.4)

The tensor second invariant is the endothelial shear stress or ESS:

Sðxw; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðs : sÞðxw; tÞ

r
; (10.5)

where xw represents the position of sampling points in close proximity to the mesh

wall nodes. Sðxw; tÞ provides a direct measure of the strength of the near-wall shear

stress [5]. It is worth mentioning that the ESS evaluation via (10.4) is completely

local and does not require any finite-differencing procedure. Thus it is particularly

advantageous near boundaries where the computation of gradients is very sensitive

to morphological details and accuracy. In order to sample high signal/noise ESS

data, the LB mesh needs high spatial resolution, with mesh spacing being as

small as Dx ’ 50 mm for standard fluid-dynamic simulations, or being as small

as Dx ’ 10 mm in order to account for the presence of RBCs.

For the multiscale simulations of blood flows, we have developed the MUPHY

software [3]. Such simulations in extended arterial systems, are based on the

acquisition of MDCT data which are segmented into a stack of slices, followed

by a mesh generation from the segmented slices. For a typical coronary artery

system, the procedure to build the LB mesh from the MDCT raw data starts from a

single vessel, formatted as stacked bi-dimensional contours (slices), with a nominal

resolution of 100 mm. In spite of recent technological progress, this resolution is

still insufficient, and the inherently noisy geometrical data pose a problem in the

evaluation of ESS, a quantity that proves extremely sensitive to the details of the

wall morphology. Raw MDCT data present a mild level of geometric irregularities,

as shown in Fig. 10.1, that can affect the quality of the LB simulations. For the

simulation, we resort to regularize the initial geometry by smoothing the sequence

of surface points via a linear filter along the longitudinal direction. Similarly,

one could filter out surface points along the azimuthal contour. We have shown

that such smoothing is necessary in order to avoid strong artifacts in the simu-

lation results [28]. Even if the precise shape of the vessel is unknown, as it falls

within the instrumental indeterminacy, the numerical results converge to a common

fluid-dynamic pattern as the smoothing procedure reaches a given level. The

regularized geometries are still of great interest because they obey the clinical

perception of a smooth arterial system, and, moreover, the smoothing procedure

falls within the intrinsic flexibility of the arterial system.
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When studying coronary arteries as a prototypical system for plaque formation

and development, one issue regards the inclusion of deformable vessels in simula-

tion. Whereas larger arteries undergo high deformations, a simple calculation

shows that the distensibility index of a coronary artery of sectional area A is

b � 1 ’ 1. 5 mmHg. Therefore, the arterial section during a heartbeat has a maxi-

mal deformation of dA=A ¼ bDP, with DP the maximal pressure variation over a

cardiac cycle. For a pressure jump of 40 mmHg, the deformation is less than 3%,

and considering rigid coronary systems does not introduce major artifacts in the

computed flow and pressure distributions.

LB allows to impose no-slip boundary conditions at the endothelium by

employing the bounce-back method; this consists of reversing at every time step

the post-collisional populations pointing toward a wall node, providing first-order

accuracy for irregular walls [41]. In the bounce-back method, the points

corresponding to the exact no-slip hydrodynamic surface fall at intermediate

positions between the external fluid mesh nodes and the nearby wall mesh nodes.

Owing to its simplicity, the method handles irregular vessel boundaries in a

seamless way, although more sophisticated alternatives with higher-order accuracy

are available [4, 21, 17].

In a branched portion of arteries, boundary conditions at the inlet and multiple

outlets can be chosen in different ways, typically by following the flow-pressure,

pressure-pressure, or flow-flow prescriptions. The first two options are more popu-

lar in fluid-dynamic models, and pressure conditions at the outlets reflect the

presence of a recipient medium. Even flow-flow conditions have found some

applicability, as they can accommodate some type of metabolic autoregulation as

encoded by Murray’s law [40]. It is worth mentioning that flow-flow conditions can

give rise to numerical instabilities in simple pipe flows, as long-lived transients can

develop and a certain strain is exhorted on the simulation method. The absence of a

peripheral system in real-life simulations can be compensated by using an equiva-

lent RCL circuit at each system outlet, where the auxiliary circuitry introduces an

Fig. 10.1 Details of a multi-branched artery as obtained from MDCT (left) and after smoothing

have been applied as used in simulations (right)
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external viscous dissipation (R), vessel compliance (C), and fluid inertia (L) and

compensates for the missing components (lumped parameter model).

In the framework of the LB method, boundary conditions at the inlet and multiple

outlets can be imposed as follows. A constant velocity (with plug or parabolic profile)

is enforced at the entrance of the main artery, as a way to control the amplitude of the

flow. Even if the inlet profiles are not the real ones for irregular geometries, they fulfill

the purpose of imposing the total flow rate in the chosen region. The fluid spontane-

ously and rapidly develops the consistent profile already at a short distance down-

stream.A constant pressure is imposed on the several outlets of themain artery, aswell

as on the outlet of all secondary branches (of the order of 10 in typical coronary

systems). This leaves the simulation with the freedom of creating an appropriate

velocity profile in the outlet regions, and building up a pressure drop between the

inlet and the several outlets. The Zou-He method [46] is used to implement both the

velocity inlet and the pressure outlets. This method exploits information streamed

from fluid bulk nodes onto boundary cells and imposes a completion scheme for

particle populations which are unknown because their neighboring nodes are not part

of the fluid domain. The boundary cells are treated as normal fluid cells where to

execute the conventional LB scheme. Thanks to this natural integration of the bound-

ary scheme, the method is second-order accurate in space, compatible with the overall

accuracy of the LB method (see [22]). The method handles in a natural way time-

dependent inflow conditions for pulsatile flows. The algorithm requires that all nodes

of a given inlet or outlet are aligned on a plane which is perpendicular to one of the

three main axes, although the injected flow profile and direction can be arbitrary.

However, since the inlet section is typically a critical region of simulation in terms of

numerical stability due to the high fluid velocities, it is preferable to have an incoming

flow direction alignedwith one of the Cartesian axes. This requirement can be fulfilled

by rotating the artery in such a way as to secure that alignment, the inlet axis with one

of the Cartesian axis, which guarantees an exact control of the flow imposed at the

inlet. Conversely, the outlet planes are not in general normal to the orientation of

the blood vessels. However, this does not lead to noticeable problems, because the

pressure drop along typical arterial systems is mild, and the error due to imposing a

constant pressure along an inclined plane is negligible.

10.3 Red Blood Cells

RBCs or erythrocytes are globules that present a biconcave discoidal form, and a soft

membrane that encloses a high-viscosity liquid made of hemoglobin: they exhibit

both rotational and orientational responses that deeply modulate blood rheology.

While blood rheology is quasi-Newtonian away from the endothelial region, the

presence of RBCs strongly affects blood flow in proximity of the endothelium,

where the interplay of RBC crowding for hematocrit levels up to 50%, depletion

due to hydrodynamic forces, and RBC arrangement in rouleaux takes place.
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In order to consider these different factors, we have recently proposed a model

that focuses on three independent components: the far-field hydrodynamic interac-

tion of a RBC in a plasma solvent, the raise of viscosity of the suspension with the

hematocrit level, and the many-body collisional contributions to viscosity [26].

These three critical components conspire to produce large-scale hemorheology and

the local structuring of RBCs. The underlying idea is to represent the different

responses of the suspended bodies, emerging from the rigid body as much as the

vesicular nature of the globule, by distinct coupling mechanisms. These

mechanisms are entirely handled at kinetic level, that is, the dynamics of plasma

and RBC’s is governed by appropriate collisional terms that avoid to compute

hydrodynamic forces and torques via the Green’s function method, as employed in

Stokesian dynamics [7]. The fundamental advantage of hydrokinetic modeling is to

avoid such an expensive route and, at the same, enabling to handle finite Reynolds

conditions and complex boundaries or irregular vessels within the simple colli-

sional approach. At the macroscopic scale, the non-trivial rheological response

emerges spontaneously as a result of the underlying microdynamics.

The presence of suspended RBCs is included via the following forcing term

[see (10.1)]:

Fp ¼ wp
G � cp
c2S

þ ðG � cpÞðu � cpÞ � c2SG � u
c4S

� �
; (10.6)

where G(x, t) is a local force-torque. This equation produces first-order accurate

body forces within the LB scheme. Higher-order methods, such as Guo’s method

[16], could be adopted. However, given the non-trivial dependence of the forces

and torques on the fluid velocity and vorticity, Guo’s method would require an

implicit numerical scheme, whereas it is preferable to employ an explicit, first-order

accurate numerical scheme.

The fluid-body hydrodynamic interaction is constructed according to the transfer

function ~dðriÞ centered on the i-th particle position ri and having ellipsoidal

symmetry and compact support. The shape of the suspended body can be smaller

than the mesh spacing, allowing to simulate a ratio of order 1 : 1 between

suspended bodies and mesh nodes. In addition, the body is scale-adaptive, since it

is possible to reproduce from the near-field to the far-field hydrodynamic response

with desired accuracy [25]. The fluid-particle coupling requires the computation of

the following convolutions over the mesh points and for each configuration of the N
suspended bodies:

~ui ¼
X

x
uðxÞ~dðx� riÞ;

~Oi ¼
X

x
OðxÞ~dðx� riÞ;

~ti ¼
X

x
tðxÞ � ðx� riÞ~dðx� riÞ; (10.7)
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where O is the fluid vorticity and t is the fluid traction vector, quantities that are

directly obtained from the LB computational core. The three convolutions allow to

compute the drag force and drag torque, inclusive of tank trading components. On

the fluid side, the body-induced forces are encoded by the term

GðxÞ ¼ �
XN
i¼1

Di
~dðx� riÞ þ 1

2
Ti �r~dðx� riÞ

� �
;

where Di and Ti are the drag forces and torques acting on the particles, constructed

starting from the quantities featuring in (10.7). The explicit expression of the drag

forces and torques are not given here, and can be found in [25].

Besides hydrodynamic interactions, mechanical forces regulate the direct

interactions and the packing attitude of suspended bodies. The interactions are

modeled as pairwise by means of the Gay-Berne (GB) potential [14], the pairwise

GB energy being a function of the relative distance between pairs of RBCs and their

mutual orientation. In addition, the mutual interaction depends on the eccentricity

of each interacting particle, so that, as for the hydrodynamic coupling, mixtures of

particles of different shapes can be handled within a unified framework. Once the

forces and torques standing from both hydrodynamics and direct mechanical forces

are computed, the rigid-body dynamics is propagated via a time second-order

accurate algorithm [24, 10].

Numerical results have shown that the particulate nature of blood cannot be

omitted when studying the non-trivial rheology of the biofluid and the shear stress

distribution in complex geometries. Regions of low shear stress can appear as the

hematocrit reaches physiological levels as a result of the non-trivial organization of

RBCs and the irregular morphology of vessels, with far reaching consequences in

real-life cardiovascular applications, where the organization of RBCs impacts both

the local flow patterns and the large-scale flow distribution in vascular networks.

A crucial advantage of the hydrokinetic model in the presence of physiological

levels of RBCs is its reduced computational cost, thus enabling the investigation of

systems of physiological relevance (Fig. 10.2). To a large extent, both the LB

method and the RBC dynamics have been proved to scale over traditional CPU-

based computers such as on Blue Gene architectures, as much as over massive

assemblies of graphic processing units (see [31] and references therein).

10.4 A Closer View to Blood-Wall Interaction

At a lower scale, new intriguing aspects come to light in hemodynamics. For

example, the vessel wall surface is covered by endothelial cells (EC), that give a

wavy structure, so far neglected (Fig. 10.3): this does not imply a significant

variation in the flow field, but it can be relevant in computing ESS, which is

constant in a flat-walled artery. Indeed, the ECs (a single EC has been estimated
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to be about 15 mm long by 0.5 mm high [35]) form a continuous, undulated wall

layer above which blood is flowing. At such mesoscopic scale, the wall may be

considered as a smoothly corrugated idealized surface constituted by a regular array

Fig. 10.2 Snapshot of a multi-branched artery in presence of red blood cells for 50% hematocrit

Fig. 10.3 The rough surface of the endothelium as imaged using scanning force microscopy (from

[35]). Arrows point to granular structures on EC’s surfaces, white line marks scanning line for

height profile evaluation, and scale bar corresponds to 5 mm
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of equal, repeated EC’s. The pressure-driven axi-symmetric flow of a continuum

fluid over such a surface has been recently modelled by Pontrelli et al. [34]. It was

shown that, despite no great change in velocity profiles, there can occur significant

ESS variations between the ECs wall peaks and throats, especially in small-sized

arteries. Differently than in Sect. 10.3, the mesoscopic particulate nature of the

blood is now addressed in the context of a bicomponent fluid model: RBC are here

deformable, neutrally buoyant liquid drops constrained by a uniform interfacial

tension and suspended in the plasma.

In addition, the endothelial surface is not only wavy in its geometry, but, at

a smaller scale, it is covered by fibrous filaments and long protein chains forming

a thin layer called the endothelial surface layer (ESL) or glycocalyx [44]. From a fluid-

dynamics point of view, the ESL can be modelled as a porous layer of constant

thickness which suits the wall undulation, through which the flow of the continuous

phase (plasma) is possible. This would alter the boundary condition of the problem,

specifically the classical no-slip condition at the vessel wall may have to be replaced to

allow for plasma penetration through the ESL. The LBmethod readily accommodates

a model of the glycocalyx itself, as it is particularly well suited to address what would

now become a multiscale model. Conceptually, the idea is to solve a two-domain

problem, whereby the bulk flow (in the lumen) is governed by the multicomponent

Navier–Stokes equations and the near-wall region by a porous-medium Brinkman

flow formulation (see below). At the mesoscale, the glycocalyx is not modelled in a

detailed form, but its effect on the flow is still properly addressed, using methods

which are amenable to coupling other, more detailed, simulations with experiments.

We develop here a two-way coupled model where the drop interface is forced by

compression of the ESL, and the effect of perturbed or compressed glycocalyx is then

communicated to the flow [33]. We assume here that the filaments are strongly

anchored in the endothelium, where they are most resistant to deformation and that

they deform preferably at their tip, that is toward the vessel lumen.

The mesoscale LB method is still used to solve the governing hydrodynamic

equations, that involves multicomponent fluid flow, off-lattice, or sub-grid, bound-

ary surfaces and a porous-layer representative of the ESL. The governing hydrody-

namic equations for flow in a porous media, with constant or variable porosity e, are
an extension of (10.3) as in [15]:

r � u ¼ 0;

@u

@t
þ ðu � rÞ u

e
¼ � 1

r
rðePÞ þ nr2uþ F: (10.8)

Here, F is the total body force due to the presence of both the porous material (drag)

and other external forces:

F ¼ en
K
u� eFeffiffiffiffi

K
p ujuj þ eH; (10.9)
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whereH is the extra body force that will be used to incorporate further details of the

ESL and particulate effects, such as the RBC interface force density (pressure step)

defined below. To solve governing Equations (10.8) and (10.9) we combine the LB

methods of Guo and Zhao [15] with the model of Halliday et al. [18], that allows for

the introduction of two immiscible fluid components and the formation of interfaces

that embed correct kinematic and surface tension laws. To complete the algorithm,

we must mention that, for multiple fluid LB, the propagation step is augmented by a

fluid segregation process that ensures the correct kinematics and dynamics and

good integrity for an interface between completely immiscible fluid components,

representing RBC and plasma, as discussed above [18]. The propagation step is

expressed as:

Rpðxþ cpDt; tþ DtÞ ¼ R

r
fþp þ wpb

RB

r
� cp � n;

Bpðxþ cpDt; tþ DtÞ ¼ B

r
fþp � wpb

RB

r
� cp � n;

(10.10)

where the density of each fluid component is given by R ¼ ∑pRp(x, t) and

B ¼ ∑pBp(x, t) , the combined particle distribution function is f p ¼ Rp þ Bp ,

and f þp accounts for the propagated combined distribution. In (10.10) b represents

an interfacial segregation parameter and n the interfacial unit normal vector. We

also note that, if only one fluid component exists, (10.10) reduce to the standard

LB propagation step (10.1). Returning to the definition of the extra body force

term, H in (10.9), this incorporates both particulate and glycocalyx forces and is

defined as

H ¼ s
2r

prrN þ E: (10.11)

The left-hand side term imposes an interfacial tension s on multicomponent

particles. Here, p ¼ ∇ �n is the local curvature, and rN ¼ ðR� BÞ=ðRþ BÞ is a
phase field indicator. The right-hand term E is a glycocalyx force that acts upon the

particles as defined in the next section.

10.5 The RBC: Glycocalyx Interplay

In the proposed model of the ESL as a porous layer, the porosity is reduced by a

compressive encounter with an erythrocyte. As a consequence, the ESL is squashed

locally transporting the same mass into a smaller volume and consequently decreas-

ing the porosity in that region. Even in the simplest situation, the ESL-lumen

boundary should not be regarded as sharp, and there is an uncertainty region
between bulk, lumen, and glycocalyx material [33]. Let us define a variable porosity
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e(x, y) that tends to 1 in the lumen region and gradually reduces, as we enter the

glycocalyx region, where it approaches a minimum value, eG. This porosity

transition is modelled through the increasing smooth function:

eðxÞ ¼ eG þ 1� eG
2

1� tanhðxðs� lÞÞ½ �; (10.12)

where l is themeanESL thickness and theparameter 1 x determines the distributionof

(i.e., the effective standard deviation of) protein chain lengths, while s(x) denotes
distancemeasured normally to the endothelial boundary. Note that eG � e(x) � 1 and

that, for e ! 1, we have F ! H [see (10.9)], and (10.8)–(10.9) reduce to the multi-

component LB Navier–Stokes equations for free multicomponent fluid flows, and the

described procedure reduces to the standard LB method for two-component, incom-

pressible fluid.On the other hand, an additional, fictitious, repulsive body force density

acts on the drop interface which enters the ESL region, impinging on the lumen. This

force distribution is so designed that its accumulation produces an effective Hookean

force acting at the center of the local volume. Specifically, the erythrocyte is subjected

to a surface force distribution, effective in the ESL only, which is directed everywhere

in the drop-surface normal direction. This force device effectively models the

glycocalyx as a continuum of elastic springs, with modulus E, gradually decaying

from a maximum value, and EG (in the ESL) to 0 (towards the bulk):

EðxÞ ¼ EG

2
1� tanhðxðs� lÞÞ½ �; (10.13)

where all notations are given in correspondence to (10.12). It is important to note

that the above force acts solely on the red fluid (drop) and not upon the plasma.

Hence, the relative density of the material which comprises the drop may be

modelled by appropriate choice of the spring constant EG in the above equation.

A number of simulations have been carried out in the case of an axi-symmetric

channel having the same corrugation repeated along the length. Its size (of order of

mm) is slightly larger than a single RBC flowing through it, driven by a constant

pressure gradient with periodic conditions. At such fine scale, for accuracy

purposes, the off-lattice non-slip endothelial surface uses continuous bounce-back

conditions [4]. The ESL structure has been modelled as a porous layer of constant

thickness over the undulated wall. As one may expect, the average velocity of the

drop is slower in the presence of the glycocalyx, which constitutes a hindrance for

the lumen flow. Also, the mean deformation of the drop is more pronounced with

the glycocalyx force (Fig. 10.4). Hence, when the drop is in the ESL influence

region, it is subjected to the elastic force which squeezes and lifts it away from the

boundary while making its shape more elongated. Considering the action of the

glycocalyx as a sensor of mechanical forces, it is worth computing the shear stress

at the ESL/lumen boundary. Our results evidence, in the latter case with ESL, a

reduction of the shearing stress either at the wall (due to the plasma only) and at the

ESL top (due to the particulate fluid) [33]. It is seen that ESL is more likely to

protect the endothelial cells from ESS fluctuations associated with particle transits.
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10.6 The MUPHY Software

The simulation of real-life blood flows involves five basic steps: (1) acquisition of

MDCT data, (2) data segmentation into a stack of slices, (3) mesh generation from

the segmented slices, (4) flow simulation; (5) data analysis and visualization. The

MUPHY simulation package is designed to handle generic geometries, such as

those provided by the MDCT acquisitions, and to run large-scale simulations on

commodity or high-performance hardware resources. The major advantage of

MUPHY is the possibility of concurrently simulating fluid dynamics together

with suspended bodies at cellular and molecular scales. This multi-scale methodol-

ogy arises from the combined use of LB and molecular dynamics techniques and

has been discussed in previous sections and in paper [3].

In the design of MUPHY, we have followed some basic guidelines that allow us

to use the software as is, for a number of diverse applications. The cornerstone of

our approach is to use an indirect addressing scheme [11, 37]. At variance with most

Navier–Stokes solvers, the LB mesh is Cartesian, providing extreme simplicity in

Fig. 10.4 The velocity field for the particulate fluid in the region of the endothelium. The extent of

the ESL is indicated by the broken line. An enhanced recirculation region is induced by the porous
media (bottom), with respect to an experiment without glycocalyx (top). The single deformable

drop has been acted on by encountering the glycocalyx body force field. The flow appears to be

deflected up which would tend to protect the endothelial cell surface from increased WSS
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data management and algorithms. At the working resolution, given the size of a

reconstructed arterial tree (linear edge ’ 10 cm), the resulting simulation box

would have a size � 1011Dx3, clearly beyond the capabilities of most commodity

and high-end computers. Hence, for the LB simulation and all the ancillary stages

of simulation (mesh construction and data analysis), only the active computational

nodes, those residing inside the arterial vessel, should be taken into account,

resulting in huge savings in memory (about three orders of magnitude) and CPU

time. The scheme relies on representing sparse mesh regions as a compact one-

dimensional primary array, complemented by a secondary array that contains the

Cartesian location of each element. In addition, neighboring mesh points are

accessed by constructing a connectivity matrix whose elements are pointers to the

primary storage array. For the LB mesh topology, this matrix requires the storage of

18�Nmesh elements, where Nmesh is the number of active computational nodes. The

indirect addressing approach demands some extra programming effort and may

result in a minor (and very reduced on modern computing platforms) computational

penalty in simulating non-sparse geometries. This choice provides strategic

advantages in handling sparse and generic systems, allowing us to handle a number

of fluid nodes of the order 109, a size sufficient to study extended arterial systems

with a high degree of ramification. We further mention the possibility of simulating

the dynamical trajectories of active and passive tracers. Different ways to exchange

hydrodynamic information locally between tracers and mesh nodes can be cast

within the indirect addressing framework, without major efficiency penalties [13].

To exploit the features of modern computing platforms, the MUPHY code has

been highly tuned and parallelized. The code takes advantage of optimizations like

(a) removal of redundant operations; (b) buffering of multiply used operations [45],

and (c) fusion of the collision and streaming in a single step. This last technique,

already in use in other high-performance LB codes [45], significantly reduces data

traffic between main memory and processor. With these optimizations in place,

we achieve � 30% of the peak performance of a single core of a modern CPU, in

line with other highly tuned LB kernels [45]. Indeed, the algorithm for the update of

the LB populations has an unfavorable ratio between number of floating point

operations and number of memory accesses, no optimized libraries are available

as for other computational kernels (e.g., matrix operations or FFTs), and it is not

possible to exploit the SIMD-like operations on many modern processors since the

LB method has a scattered data access pattern.

10.7 Conclusions

Studying the cardiovascular system and capturing the essence of blood circulation

cogently requires to cope with the complexity of such biological fluid, as much as

the details of the anatomy under study. From the computational standpoint, taming

such complexity is not a trivial task, as it requires to handle several computational

actors. Choosing the right computational framework, therefore, is a delicate issue
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that has been addressed in the present chapter. It was shown that the LB method is

an extremely powerful framework to deal simultaneously with blood plasma,

RBCs, and the glycocalyx in a unified and consistent form. The versatility of this

framework is such to be a good candidate to study biological fluids of different

types and at different scales without major differences.

When dealing specifically with blood and the development of cardiovascular

disease, it is key to address the detailed structure and dynamics of blood in the

surroundings of the endothelium, as recent work has revealed a correlation between

the flow-induced mechano-transduction in the glycocalyx and the development of

atherosclerosis. The presence of the glycocalyx is supposed necessary for the

endothelial cells to respond to fluid shear, and its role is characterized by studying

its response to shear stress. A coarse-grained model and a preliminary numerical

simulation of the blood flow over the exact, microscale, corrugated EC shape

covered by a prototype ESL have been proposed. Another direction we are under-

taking is to enhance our current, simplistic, interfacial tension model with addi-

tional stresses and bending properties associated with elastic structures. Our current

effort is to modify and extend the behaviour our fluid-fluid interface so as to enrich

and adapt its existing mechanical properties, in a manner which mimics the thin

membrane of erythrocytes.

If, at one hand, the microscopic blood-wall interaction has a noticeable impor-

tance for pathological states, on the other hand, the simulation of large-scale

circulatory systems relies on sophisticated imaging techniques and powerful simu-

lation methodologies. Owing to the basic assets of hydrokinetic modeling, the

unifying LB methodology provides a reliable and robust approach to the under-

standing of cardiovascular disease in multiple-scale arterial systems, with great

potential for impact on biophysical and biomedical applications. The inclusion of

RBCs allows to reproduce non-trivial blood rheology and represents a step forward

for clinical purposes, as much as for the basic understanding of biomechanics in

model and physiological scenarios.
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