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Abstract

To investigate the pulsatile flow in an artery, a new mathematical formulation
for the study of three-dimensional flow within an elastic tube is presented. The
linearized differential equations governing the fluid flow are recast as a boun-
dary integral representation and coupled with the wall motion. The response of
the fluid-wall system to a pressure pulse is studied by using a Laplace transform
and by examining the solution in the frequency domain. Much attention is paid to
the boundary conditions on the surfaces limiting the domain of the problem. The
results of some numerical simulations, showing the characteristic frequencies of
the fluid-structure system, prove the effectiveness of such a technique.

1 Introduction

The flow of a fluid in a compliant tube has received much attention because of
its relevance in the applications, particularly in hemodynamics [1]. Specifically,
the fluid-structure interaction is of the primary interest in modelling blood flow,
because of the arterial wall remodelling process and the subsequent altered flow
pattern in pathological states. Wave propagation in arteries has been examined
experimentally, butin vivo studies in vascular flows are difficult, expensive and
limited to easily accessible arteries. Theoretical studies and computational model-
ling offer an attractive method of investigation [2],[3].



The fluidbloodand thearterial structure constitute an intrinsically coupled sys-
tem. Its dynamics is adequately described by a set of differential equations which
should be solved by a fully coupled method [4]. Because of many physiological
and clinical implications, several differential models of fluid-structure interaction
have been developed and analyzed [5].

A boundary integral method will be used here to solve the blood–vessel system
and will be adapted for the specific features of the problem at hand. Boundary
integral methods have been extensively used in solving the interaction of elastic
boundaries with both external and internal flows in aeroelastic and acoustoelastic
problems [6–10]. The main advantage of such a formulation stems from the rede-
finition of a three-dimensional differential problem into an integral form defined
on a 2D manifold (the domain boundary) embedded in the 3D space. This results
in a reduction of the computational effort required for the numerical solution of
the coupled system. Similar techniques have been widely used in the past for the
analysis of fluid-structure interaction problems.

In the present application, such a technique is used to describe the flow pattern
alteration due to a compliant structure. In particular, we deal with the internal flow
of a liquid in an elastic tube, driven by a pulsatile forcing function. It is worth
noting that such a point of view is somehow reversed with respect to the classi-
cal aeroelastic approach, where much attention is paid to the structural dynamics.
The main objective of this study is to get an insight of the complex relationship
between arterial pressure, wall deformation and flow field in a large arterial ves-
sel. Neglecting fluid viscosity, our attention is focused on the harmonic response
of thefluid-wall interacting system to a pulsatile inflow. Our ultimate goal is the
prediction of the flow modification in presence of a prosthetic implantation or in
pathological conditions.

The plan of this chapter is as follows. In sections 2 and 3 the mathematical
description of the problem and the boundary integral formulation for the fluid flow-
ing in an elastic tube is given in its general form. The resulting integro-differential
equation is solved numerically by a zeroth-order boundary element method, and
the pressure evaluated from the potential through the Bernoulli’s theorem. Great
attention is paid to the suitable boundary conditions to be imposed at the ends
of the finite domain (sect. 4). The compliant wall is modelled as an elastic shell
which deforms under the flow-induced loads. Many constitutive laws for the arte-
rial wall are available in literature [11], [12] and, because of small deformations,
a linear elastic material will be adopted here. The problem is addressed with a
Galërkin approach and expressed in matrix form (sect. 5). Section 6 is devoted to
the coupling between the structural and fluid equations. These are rewritten in the
frequency domain through the Laplace transform and assembled to yield an alge-
braic system. Finally, the method is applied to the specific case of a thin-walled
vascular segment and preliminary numerical results are presented and discussed in
section 7. To validate the methodology, the formulation is here applied to a simple
configuration, such as that of a straight cylindrical tube.

The presented results show the harmonic response of the fluid-structure system
and predict the wave propagation velocity. The new formulation allows us to deal



with an arbitrary 3D geometry and, though limited to a linear structural operator,
is shown to be an effective tool in the prediction of wave propagation phenomena
in compliant vessels and deserves further investigation.

2 Mathematical formulation

Let us consider a homogeneous incompressible inviscid fluid of density�, flowing
in a compliant tube of finite length. LetV � <3 be the volume occupied by the
fluid. Its boundaryS is constituted by the elastic wall of the arterial vessel (surface
Sw) and by the inlet and outlet surfaces,S i andSo. Therefore@V = S = S i [
Sw [ So (fig. 1). Henceforth, the superscript indexesi, w, ando refer to variables
onS i;Sw;So respectively.

According to the Kelvin’s theorem, an initially irrotational flow of such a fluid
remains irrotational at all times. Thus, the velocity potential field�(x; t) is defined
such that:

v(x; t) = r�(x; t) (1)

with v the fluid velocity vector.

Si

V

So

Sw

Figure 1: Sketch of the arterial segment with the surfacesS i (inlet), Sw (elastic
wall) , So (outlet).

The continuity equation for incompressible flowsr � v = 0, is expressed in
terms of the velocity potential as:

r2� = 0 (2)

The above differential equation must be completed with suitable boundary condi-
tions. On the surfaceSw, the impermeability condition is imposed:

@�

@n
:= r� � n = vw � n; on Sw (3)

with vw the wall velocity andn the inward normal. For the application considered
here,vw is the time derivative of the elastic displacementu, and the condition (3)



becomes:

@�

@n
= _u � n (4)

(dot over a variable denotes time derivative).
On the inlet sectionS i we assume the velocity to be a uniform known (typically

periodic in time). Denotingvi the incoming velocity, we have:

r� � n = vi(t) � n; onS i (5)

The boundary condition imposed at the sectionSo needs a more careful discus-
sion. The outflow rate is not an independent condition, but depends on the whole
flow insideV . The continuity equation (2) implies:Z

V

r2� dV(x) = 0

or, by the Gauss theorem:Z
V

r2� dV(x) =

Z
S i

@�

@n
dS(x) +

Z
So

@�

@n
dS(x) +

Z
Sw

@�

@n
dS(x) = 0 (6)

stating that, in the absence of mass sources insideV , the mass is conserved and
the total flow across its boundary is zero. This provides a compatibility condition
between the inflow atS i, the normal velocity alongSw and the outflow atSo holds.
In Section 4, eqn. (6) will be used to yield the outflow condition.

Being interested in studying the perturbation of a fluid at rest having a constant
reference pressurep0, the relationship between velocity potential and pressure is
given by the linearized Bernoulli theorem:

_�+
p

�
=

p0
�

(7)

3 The Boundary Integral Equation

The theoretical foundation of boundary integral methods is related to thefunda-
mental solutionof the governing equation, defined as the solutionG of the so
calledadjoint problem[13]. For the Laplace equation (2) we have:

r2G = �(x � y) (8)

where�(x � y) is the Dirac� function, representing an impulsive source located
aty. Equation (8) is completed by the vanishing condition at infinite distance from
the perturbation point [6, 7]. The solution of eqn. (8) is:

G(x;y) = �
1

4�r
with r = jjx� yjj (9)

It is worth noting that, although this problem deals with a bounded domain, we
use expression (9) forG, which represents thefree–space Green functionfor the



Laplacian operator. The boundary conditions associated with eqn. (2) are substan-
tially different from those used in the adjoint problem (8), and the use of a Green
function (i.e., a fundamental solution satisfying the boundary conditions of the
specific problem) could be considered a more suitable choice. Nevertheless, the
derivation of such a Green function has often a higher level of difficulty than the
solution of the original differential problem. Ana priori recipe to identify the most
convenient approach is not available, and the choice of the fundamental solution
has to be made on the basis of the specific application (for details on the use of
Green’s functions see [13], [14], [15], [16]).

Multiplying eqn. (2) byG and eqn. (8) by�, subtracting and integrating yields:Z
V

�(x� y)�(x) dV(x) =

Z
V

�
�r2G�Gr2�

�
dV(x)

Recalling the properties of the Dirac� function and applying the Gauss theorem,
we finally obtain:

E(y)�(y; t) =

Z
S

�
G
@�

@n
� �

@G

@n

�
dS(x); (10)

whereE is a domain function defined as:

E(y) =

(
1 if y 2 V

0 if y 62 �V

being the value onS derived through a limiting process (it can be provedE(y) =
1=2 for regular points on smooth surfaces). The boundary integral eqn. (10) is
a representation for the solution� of the differential problem (2) and relates the
value of the velocity potential at any point inV to the Cauchy data of the problem.
For the problem under investigation, the Neumann boundary condition provides
a value for@�=@n on S. Thus, in eqn. (10) the value of� is unknown on the
boundary. Ify 2 S, the above integral representation becomes a Boundary Inte-
gral Equation (BIE) for the velocity potential onS (for details, see [6],[13]). It
is worth noting that, using the BIE approach, the original differential problem in
<3 is reduced to an integral equation on a two-dimensional manifold embedded
into the3D space. Once the solution� has been obtained onS, the same integral
representation eqn. (10) may be used to get the value of the velocity potential at
any pointy 2 V .

4 Numerical solution

The numerical solution of the above integral formulation is computed by means
of a Boundary Element Method (BEM) (see [15]). Following this approach, the
boundaryS is partitioned intoN surface elements (or panels)Sj (beingN =
N i +Nw +No andN i; Nw; No the number of the panels onS i; Sw; So respec-
tively) and a set of collocation points is chosen on eachSj to satisfy eqn.(10). This



procedure is known as thecollocationmethod, and the choice of the surface ele-
ments shape and the number and the location of collocation points depend on the
level of accuracy desired.

In the present work, we use the so calledzeroth orderformulation, in which the
unknown is assumed to be piecewise constant. Despite its simplicity, this kind of
discretization is able to describe complex geometries with a good level of detail.
Higher order formulations have been developed to solve linear and nonlinear pro-
blems, with a faster convergence rate but at a higher computational cost [17].

Here, the surface elements are quadrilateral panels (triangular panels are treated
as a limit case) described by a bilinear representation (fig. 2), the collocation points
are located at the centers of the panels and all the functions are assumed to be
constant–valued over each elements. The discretized form of eqn.(10) is:

En �n =

NX
j=1

"
�j

Z
Sj

G(x;yn) dS(x) � �j

Z
Sj

@G

@n
(x;yn) dS(x)

#
(11)

where subscripts indicate evaluation at the corresponding collocation point and
� = @�=@n. Equation (11) can be rewritten as:

1

2
�n =

NX
j=1

Bi

nj�
i

j +

NX
j=1

Bo

nj�
o

j +

NX
j=1

Bw

nj�
w

j +

NX
j=1

Cnj�j (12)

with

Bnj =

Z
Sj

G(x;yn) dS(x); Cnj = �

Z
Sj

@G

@n
(x;yn) dS(x) (13)

Equation (12) represents a set of algebraic equations for theN unknowns�n and
its matrix form is:

1

2
� = Bi�i + Bo�o + Bw�w + C� (14)

with B andC being theN � N matrices collecting the coefficients in (13) and
underbar indicating column vectors.

Ni

Nw

No

Sj

Figure 2: Boundary elements representation of the surfaceS (cfr. fig. 1).



Some consideration about the role of the first three terms on the right hand side
is now given. First, the column vector containing the boundary conditions� is
partitioned into the threeN � 1 vectors�i, �o, and�w as follows:

� = �i + �w + �o =

8>>>>>><
>>>>>>:

�̂i

� � �

0

� � �

0

9>>>>>>=
>>>>>>;

+

8>>>>>><
>>>>>>:

0

� � �

�̂w

� � �

0

9>>>>>>=
>>>>>>;

+

8>>>>>><
>>>>>>:

0

� � �

0

� � �

�̂o

9>>>>>>=
>>>>>>;

(15)

where�̂i; �̂w; �̂o are column vectors of lengthN i; Nw; No respectively. Similarly,
the coefficient matrices are defined as:

Bi =
h
B̂i

... 0
... 0

i

Bw =
h

0
... B̂w

... 0

i

Bo =
h

0
... 0

... B̂o

i

whereB̂i; B̂w; B̂o are, respectively,N �N i, N �Nw, N �No rectangular sub-
matrices. Assuming a uniform velocity profile for the input and output sections,
the discretized form of the eqn. (6) has the form:

Ai�i +Ao�o +

NwX
j=1

Aw

j �
w

j
= 0 (16)

whereAi = jjS ijj, Ao = jjSojj andAw
j = jjSw

j jj. From eqn. (16) we obtain:

�o = �
1

Ao

0
@Ai�i +

NwX
j=1

Aw

j �
w

j

1
A = �or + G �w (17)

which gives the outflow as a function of inflow and wall–motion–induced normal
velocity at the boundarySw. The term�or on the right hand side of eqn. (17)
corresponds to the outflow condition in the case of rigid walls, and is given by
�(Ai=Ao)�i. The matrixG has the form:

G =

2
6664

0
... 0

... 0

� � � � � � � � � � � � � � �

0
... �Aw

j =A
o

... 0

3
7775



Substituting eqn. (17) into eqn. (14):�
1

2
I� C

�
� = Bi�i + Bo�or + (BoG+ Bw)�w: (18)

The motion of the elastic boundary represents the coupling between the fluid and
the mechanics of the structure. The boundary condition on the elastic walls given
by eqn. (4) and evaluated in the j-th collocation point is:

�w

j = _uj � nj (19)

with nj the unit normal toSw
j . The latter equation provides the entries of vector

�w as a function of the wall velocities at the BEM collocation points.

5 Dynamics of the elastic walls

Under the assumption of small elastic deformations, the wall dynamics is described
within the framework of linear elasticity theory (see [18]). In such a context, the
general form of the motion equation governing the structural dynamics is:

�w �u+ Lu = f (20)

where�w is the wall density,L denotes the (self-adjoint)3D linear elastic operator,
andf(x; t) is the forcing term due to the fluid flow.

A Galërkin approach is used to solve eqn. (20): the displacementu is expressed
as a linear combination of vector functions'm(x) (the trial functions) with time
dependent coefficientsam(t), and eqn. (20) is projected over thetest functionset.
In this work, we choose both the trial and the test functions as the eigenfunctions
of the operatorL, such that:

L'm = �w �m'm; (21)

�m being the corresponding eigenvalue. The theory of self-adjoint linear operators
ensures that the'm are linearly independent and orthogonali.e.,

h'm;'li�w :=

Z
Vw

�w 'm � 'l dV(x) = �ml (22)

whereVw is the volume of the elastic solid, and�ml is the Kronecker’s function.
The elastic displacement is expressed by the linear combination:

u(x; t) =

1X
m=1

am(t)'m(x) '

MX
m=1

am(t)'m(x) (23)

truncated to the orderM . Substituting eqn. (23) into eqn. (20), projecting on the
eigenfunction space, by means of eqns. (21) and (22), we have:

�al(t) + !2l al(t) = el(t); l = 1; :::;M (24)

where!l is thelth eigenfrequency, and thegeneralizedforceel is the inner pro-
duct between thelth eigenfunction and the force due to the pressure perturbation



exerted by the fluid on the wall. In the present formulation, where the effects of
viscosity are neglected,f = �(p � p0)�(�)n, being� the Dirac function and
�(x) = 0 the equation of the inner solid boundary. Hence:

el = hf ;'li = �

Z
Vw

(p� p0) �(�) n �'l dV(x)

= �

Z
Sw

(p� p0)n � 'l dS(x) (25)

Note that eqn. (24) represents a system ofM linear ordinary differential equations
for the modal amplitudesal, and can be written in matrix form as follows:

�a+
2 a = e (26)

where:
(
2)ml = !2m �ml

In eqn. (26), the forcing term represents the coupling between the wall dynamics
and the blood flow.

6 Fluid-wall interaction

Blood flow in arteries is pulsatile, with the fundamental frequency induced by the
heart beat. The aim of the present work is to obtain the frequency-dependent trans-
fer function of the fluid–structure interacting system, relating the inflow atS i to the
velocity potential at arbitrary locations inside the arterial district. To accomplish
this, the governing equations are rewritten in the frequency domain. By applying
the Laplace transform to the eqns. (18) and (26), indicating with~� the functions in
frequency domain, we have:�

1

2
I� C

�
~� = Bi~�i + Bo~�or + (BoG+ Bw)~�w: (27)

and

s2 ~a+
2 ~a = ~e (28)

s being the Laplace variable. Note that eqn. (27) is formally identical to eqn. (18),
and that the solution depends upon the frequency through the harmonic content
of the forcing terms on the right hand side. This peculiarity is consistent with
the assumption of incompressible fluid. Nevertheless, while in a rigid tube the
propagation of the pressure perturbation is instantaneous in the flow field (and
the fluid dynamic response has the same spectrum of the inflow), in the present
formulation the term~�w provides the coupling with the wall dynamics (eqn. (28)),
through eqn. (19). Hence, the compliance of the vessel wall introduces a frequency
dependent term in the dynamic response of the system.



The relationship between the velocity potential and the pressure perturbation is
given by the Bernoulli theorem (eqn.(7)) which, in the frequency domain becomes:

~p� ~p0 = �s � ~�: (29)

Substituting into eqn. (25) we obtain:

~el = s �

Z
Sw

~�n �'l dS(x): (30)

The velocity potential~� along the boundarySw is known from the piecewise–
constant numerical solution of the system (27). Thus, the corresponding values of
the generalized forces at those locations are obtained by considering the zeroth-
order approximation for~� and by computing the inner product of eqn. (30) with a
sum ofNw integrals on the panels, to have:

~el ' s �

NwX
j=1

Z
Sw

j

~�n �'l dS(x) ' s �

NwX
j=1

~�j

Z
Sw

j

n �'l dS(x); (31)

which is a linear representation of thelth generalized force as a function of the
value of the velocity potential onjth panel. We define the matrixE such that:

~e = s �E ~� (32)

with

(E)lj =

Z
Sw

j

n �'l dS(x):

Substituting into eqn. (28) and solving with respect to~a, one obtains:

~a = s �
�
s2 I+
2

��1
E ~� = H(s) ~�; (33)

whereH represents theM�N frequency-dependent matrix transfer function rela-
ting the velocity potential at the collocation points with the modal amplitude of the
wall elastic displacement. Being~� also evaluated on the sectionsS i andSo, the
matrixH is partitioned as:

H(s) =
h
0

... Ĥ(s)
... 0

i

where the submatrix̂H(s) has dimensionM �Nw.



Finally, to obtain the final form of the complete coupled fluid-wall dynamics,
a relation between the wall motion and the boundary conditions of the flow is
needed. To this aim, the modal representation ofu into eqn. (19) yields:

�w(x; t) =
d

dt

"
MX
m=1

am(t)'m(x)

#
� n =

MX
m=1

_am(t)'m(x) � n:

Again, by means of the Laplace transform, we obtain, at thejth collocation point:

~�w

j =

MX
m=1

s ~am'm(xj) � nj

or, in vector notation:

~�w = s R ~a (34)

with the generic entry of theN �M matrix given by:

(R)jm =

(
nj �'m; xj 2 S

w

0; otherwise

The relationship between vectors~� and~� is obtained by combining the equations
(33) and (34):

~�w = s RH(s) ~�: (35)

Substituting the relationship (35) into eqn. (18), the final fully–coupled system of
equations is:�

1

2
I� C

�
~� = Bi~�i + Bo~�or + s (BoG+ Bw)RH(s)~�

which, solved for~�, gives:

~� =

�
1

2
I� C� s (BoG+ Bw)RH(s)

��1 �
Bi~�i + Bo~�or

�
= T(s) ~q (36)

where

T(s) =

�
1

2
I� C� s (BoG+ Bw)RH(s)

��1
is the frequency–dependent matrix transfer function relating the known flux~q

throughS i andSo, with the velocity potential onS. Note thatT includes the
effects of the wall dynamics through the matrixH.



7 Numerical results

Numerical experiments are carried out to validate the above formulation. Although
this is applicable for three dimensional analysis of arbitrarily shaped arterial di-
stricts, in this section the attention is limited to straight thin-walled cylindrical
vessels. In the following subsection a specific expression for the structural model is
given, as well as the form of the eigenfunctions'm corresponding to the boundary
conditions chosen. In subsection 7.2 the procedure used to numerically evaluate
the input impedance of the vessel is outlined and, in subsections 7.3 and 7.4, the
results of the convergence analysis and a preliminary simulation are presented.

7.1 The elastic wall operator

Arterial tissues are characterized by a rather complex structure, and experimen-
tal studies have demonstrated that they deform orthotropically. Several constitu-
tive nonlinear models have been proposed to describe the strain-stress relationship
of the vascular wall [11], [12]. On the other hand, it has been observed that the
assumption of small elastic deformations around a reference configuration is rea-
sonable, and the structural dynamics may be represented with an acceptable level
of approximation using a linear model.

In this work, we adopt one of these models, assuming the vessel wall to behave
like a purely elastic membrane [2],[18]. Despite its simplicity, the proposed for-
mulation is able to predict the propagation velocity of pressure perturbations with
good accuracy, since it has been demonstrated that the effects of the viscous dis-
sipation play only a secondary role in the local wave propagation mechanism [1].
Therefore, a purely elastic model is appropriate for the study of local variations in
the wave speed, due to local inhomogeneity of the elastic wall and/or geometric
variation of the vessel cross section, such as prosthetic implantations, atheroscle-
rotic plaques, stenoses, etc.

Let us assume a straight cylindrical arterial segment of lengthL having a cir-
cular cross section of reference radiusR0. Considering a cylindrical coordinate
system(x; �; r) (fig. 3), we denote withu andw the components of the elastic dis-
placementu in the longitudinal and radial directions respectively. The hypotheses
we are dealing with are:(i) incompressible isotropic elastic material characterized
by a single value for the Young modulusE and the Poisson’s ratio�; (ii ) wall
thicknessh � R0; (iii ) w � R0. By neglecting the elastic deformations in the
azimuthal direction, the membrane equations governing the structural dynamics
are [2],[5]:

8>>>><
>>>>:

�wh
@2u

@t2
=

Eh

1� �2

�
�

R0

@w

@x
+
@2u

@x2

�
+ fu

�wh
@2w

@t2
= kGsh

@2w

@x2
�

Eh

1� �2

�
�

R0

@u

@x
+

w

R2

0

�
+ fw

(37)
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o

Figure 3: The cylindrical straight tube and the coordinate system.

where,Gs is the shear modulus,k is the Timoshenko’s shear correction factor [18],
fu andfw represent the forcing terms due to the action of the blood flow. The invis-
cid fluid model impliesfu = 0. Assuming a negligible longitudinal deformation
u, eqn. (37.1) is automatically satisfied, to yield:

�wh
@2w

@t2
= kGsh

@2w

@x2
�

Eh

1� �2
w

R2
0

+ fw (38)

The above differential equation forw is formally identical to the equation gover-
ning the motion of a vibrating string lying on an elastic soil. The transverse elastic
effect is produced by the radial displacement (second term on the right hand side of
eqn. (38)), and represents the contribution of the restoring force due to the defor-
mation of the annular sections of the vessel. Hence, the linear structural operator
(per unit thickness) used here has the following form:

L = �kGs

@2

@x2
+

E

(1� �2)R2

0

I (39)

whereI is the identity operator (cfr. eqn. (20)). To obtain the eigenfunctions of
L, we need boundary conditions for the elastic displacements. Here, we assume
hinged conditions for the limit sections of the vessel,i.e., w(0; t) = w(L; t) = 0.
These boundary conditions are not suitable to study the behaviour of anin vivo
arterial district, but may be useful to compare the numerical results toin vitro
experiments available in the literature, and lead a simple form for the eigenfunc-
tions 'm. In addition, they allow for an easy evaluation of the wave velocity
from the resonance frequencies of the system and constitute a useful benchmark
to assess the methodology. The eigenvalue problem (21) becomes:

@2'm
@x2

+ �2m'm = 0 (40)



where

�2m =
�m�w
kGs

�
E

kGs(1� �2)R2

0

The general solution of eqn. (40) is:'m(x) = A cos (�mx) +B sin (�mx).
Imposing'm(0) = 'm(L) = 0 we obtain:

'm(x) = sin
�m� x

L

�
with the corresponding eigenvalue:

�m =
kGs

�w

��m�

L

�2
+

E

kGs(1� �2)R2

0

�

7.2 The input impedance

In this work we focus our attention on the harmonic response of the coupled fluid-
structure system, being the wall dynamics typically driven by a pulsatile inflow.
As we will see later, the phase wave velocity may be derived from its resonance
frequencies, which correspond to the peaks of the response spectrum. To charac-
terize the harmonic behaviour of the system, a suitable quantity is represented by
the input impedanceof the arterial segment [1]:

~Z i(s) =
~p(s)� p0
vi(s) � n

: (41)

It can be considered as the transfer function relating the pressure perturbation at
S i and the flow through it. Under the assumption introduced in the present study,
eqn. (41) is rewritten as:

~Z i(s) =
�s � ~�i(s)

~�i(s)
(42)

where~�i(s) is assumed a given function. To numerically evaluate the input impe-
dance of the compliant vessel the following procedure is used: first, the system is
forced with a periodic inflow oscillating at a specified frequency!q; then, the solu-
tion of the problem is obtained on the entire boundaryS; finally, ~Z i is computed
by averaging the value defined in eqn. (42) onS i,

~Z i(!q) =
�j !q �

Ai

Z
S i

~�(x; !q)

~�(!q)
dS(x) (43)

To analyze the harmonic response of the system, the frequency range of interest is
spanned by forcing the system with a periodic inflow with constant amplitudei.e.,
~�i(!) = 1. The resulting spectrum~Z i(!) is used to get the resonance frequency
by identifying the location of its peaks.



0 100 200 300 400 500
Frequency (Hz)

In
pu

t I
m

pe
da

nc
e

M increasing

M = 2
M = 4
M = 8
M = 16
M = 32

Figure 4: Spectrum of the input impedance imaginary part=[ ~Z i(!)] (lengthL =
1 m, reference radiusR0 = 1 cm, Young modulusE = 6 � 107 Pa,
wall density�w = 1030 Kg=m3, fluid density� = 51 Kg=m3). The
parametric analysis is made with respect to the number of eigenfunc-
tions.

The wave propagation velocity is derived through the well known similarity with
an equivalent one-dimensional acoustic problem [1]: let us consider a rigid pipe of
lengthL closed at both ends and filled with a compressible fluid, with speed of
soundc. The air column enclosed resonates at frequencies given by:

fk =
c


=

k c

2 L
k = 1; 2; ::: (44)

where is the wavelength of the travelling wave. Since the boundary conditions
at the input and output sections of the vessel segment satisfy this assumption, eqn.
(44) may be used to evaluatec from the resonance frequencies. To validate the
wave velocity obtained with the above technique, the results of the present method
will be compared to the well assessed Moens-Korteweg formula [1], in the modi-
fied form due to Bergel [19]. According to such a model, the relationship between
the propagation velocity of a pressure perturbation and the elastic wall properties
is given by:

c =

s
E h

2 �R0(1� �2)
(45)



7.3 Convergence analysis

The above formulation is affected by two numerical approximations: the boundary
element representation of the boundaryS, depending on the number of panelsN ,
and the truncation orderM of the modal expansion of the elastic wall displace-
mentw. The effect of these two parameters is deeply correlated by eqn. (28) and
eqn. (34), used to evaluate the coupling terms. In particular, the number of col-
location points alongSw should be sufficiently large to properly capture pressure
fluctuations up to the wavelength of the highest mode considered.

In fig. 4 the spectrum of the imaginary part of the input impedance for several
values ofM is shown. The cylindrical tube is 1 m long, withR0 = 1 cm, to sim-
ulate a one-dimensional problem. We used non–physical values for fluid density
� and Young’s modulusE, to obtain an expected value for the wave velocity of
the same order of magnitude of that of the sound in the air, and spectrum char-
acteristics comparable to those of a resonating pipe. The number of panels used
is Nw = 180. Figure 4 includes the impedance spectrum predicted by succes-
sive doubling of the number of fundamental modes, from2 up to 32, in a fre-
quency range surrounding the first resonance. The value predicted by the Moens–
Korteweg–Bergel formula isc = 396m/s, corresponding to the eigenfrequency
f1 = 198Hz. The result converges monotonically towards such a reference value.
The spectra corresponding to the two highest truncation orders (16 and 32) are
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Figure 5: First resonance frequency vs. the number of panelsN . The asymptotic
estimate forN ! 1 is obtained by extrapolation of a quadratic regres-
sion of the data, and it is compared to the value predicted by the 1D
model. Same test case of Fig. 4.
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Figure 6: Amplitude spectrum of the input impedance. Parametric analysis is made
with respect to the Young modulusE. Same test case of Fig. 4.

almost identical, revealing that the solution converges for a truncation order lower
than the maximum limit allowable by the BEM mesh used (for a proper evaluation
of E, we set a lower limit of five collocation points for each wavelength).

Nevertheless, the eigenfrequency evaluated with32 modes is still above200Hz.
To completely assess the convergence off1 to the expected value, it is necessary
to verify the influence of the BEM mesh on the solution, at a givenM . Figure
5 depicts the value of the first resonance as a function of1=N (for M = 32).
The computed values are fitted by means of a second-order regression, and the
asymptotic estimate of the solution forN !1 is obtained by extrapolation. The
agreement with eqn. (45) is excellent (diamond symbol), revealing the capability
of the method to reproduce accurately the well assessed Bergel’s model.

We complete the parametric analysis by investigating the effect of the wall stiff-
ness on the solution. From eqn. (45) it is evident that the wave phase velocity
increases with the square root of the Young’s modulus. In the rigid wall limit
(E ! 1), any perturbation propagates instantaneously (for incompressible flu-
ids) in the whole fluid domain, and the relationship between the inflow and the
outflow reduces to the frequency–independent ratioAo=Ai. Figure 6 shows the
results of this parametric study. The amplitude spectrum of the input impedance
for the1m long tube shows the correct trend for increasing values of the Young’s
modulus. In particular, forE = 6� 10100 Pa, the frequency response of the sys-
tem is zero in the whole frequency range, which is compatible with the expected
behaviour of an incompressible fluid flowing inside a rigid pipe.
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Figure 7: Asymptotic1=N convergence of the first resonance frequency for an
arterial district (lengthL = 0:1m, radiusR0 = 1 cm, Young mod-
ulus E = 6 � 105 Pa, fluid density� = 1000Kg/m3, wall density
�w = 1030Kg/m3). The corresponding estimated wave velocity is
6:978m/s .

7.4 A realistic case study

To complete the preliminary assessment of the proposed method, we attempt the
simulation of blood flow in a simple arterial district, characterized by physiologi-
cal values for the Young’s modulus, Poisson’s ratio, wall and fluid densities. The
test case corresponds toL = 10 cm, with radiusR0 = 1 cm and wall thickness
h = 1mm. The density of the fluid is� = 1000Kg/m3, and�w = 1030Kg/m3.
Figures 7 and 8 show the result obtained for such a case study. First, we fix the
Young’s modulus (E = 6 � 105 Pa) and examine the variation of the first reso-
nance frequency of the vessel. Using the same approach described in subsection
7.3, we evaluate the asymptotic value by extrapolation of the data in the limit
N ! 1. This limit value is used to compute the wave speed in the artery by
means of eqn. (44). The estimated propagation velocity is6:98m/s, in agreement
with the physiological value.

To go one step further, we repeated the above procedure for different values of
the wall stiffnessE, in the range of variation typical of human healthy vessels. The
results are presented in fig. 8, where the value of the wave velocity is plotted as a
function ofE. The computed velocities are in good agreement with the expected
values [1], and suggest that the proposed methodology may be considered as a
promising tool for the evaluation of the wave propagation speed inside compliant
vessels.
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Figure 8: Influence of the Young modulus on the computed wave velocity for the
same test case as Fig. 7.

8 Conclusions

Mathematical models predicting the wave propagation characteristics (such as
velocity and impedance) of an arterial vessel are of interest for the clinicians. The
outcome of such models constitute physiological indicators of diagnostic signifi-
cance and their anomalies can be used to detect pathological states in the vascular
system. In this chapter, a boundary element method has been presented and devel-
oped for studying the wave propagation phenomena in an artery. This formulation
is based on the intrinsic coupling between a boundary integral representation of the
flow equations and the vessel wall dynamics. Another advantage of the presented
methodology is the possibility to analyze complex three dimensional geometries.
Preliminary numerical results in a basic configuration show the capability of the
method of predicting the relevant propagation features, with a modest computa-
tional effort. Though some hypothesis have been included for simplicity, the inte-
gral formulation can be extended to a variety of other possible cases. In particular,
the influence of the wall viscoelasticity can be easily investigated. Moreover, a
time domain analysis is worth accomplishing to include other effects such as the
fluid viscosity.
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