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Much work has been devoted to analysing thermodynamic models for solid dispersions with a view to
identifying regions in the phase diagram where amorphous phase separation or drug recrystallization
can occur. However, detailed partial differential equation non-equilibrium models that track the evolu-
tion of solid dispersions in time and space are lacking. Hence theoretical predictions for the timescale
over which phase separation occurs in a solid dispersion are not available. In this paper, we address some
of these deficiencies by (i) constructing a general multicomponent diffusion model for a dissolving solid
dispersion; (ii) specializing the model to a binary drug/polymer system in storage; (iii) deriving an effec-
tive concentration dependent drug diffusion coefficient for the binary system, thereby obtaining a theo-
retical prediction for the timescale over which phase separation occurs; (iv) calculating the phase
diagram for the Felodipine/HPMCAS system; and (iv) presenting a detailed numerical investigation of
the Felodipine/HPMCAS system assuming a Flory-Huggins activity coefficient. The numerical simulations
exhibit numerous interesting phenomena, such as the formation of polymer droplets and strings, Ostwald
ripening/coarsening, phase inversion, and droplet-to-string transitions. A numerical simulation of the
fabrication process for a solid dispersion in a hot melt extruder is also presented.

Statement of Significance

Solid dispersions are products that contain mixtures of drug and other materials e.g. polymer. These are
liable to separate-out over time – a phenomenon known as phase separation. This means that it is pos-
sible the product differs both compositionally and structurally between the time of manufacture and the
time it is taken by the patient, leading to poor bioavailability and so ultimately the shelf-life of the pro-
duct has to be reduced.
Theoretical predictions for the timescale over which phase separation occurs are not currently avail-

able. Also lacking are detailed partial differential equation non-equilibrium models that track the evolu-
tion of solid dispersions in time and space. This study addresses these issues, before presenting a detailed
investigation of a particular drug-polymer system.

� 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Drugs that are delivered orally via a tablet should ideally be
readily soluble in water. Drugs that are poorly water-soluble tend
to pass through the gastrointestinal tract before they can fully dis-
solve, and this typically leads to poor bioavailability of the drug.
Unfortunately, many drugs currently on the market or in develop-
ment are poorly water-soluble, and this presents a serious chal-
lenge to the pharmaceutical industry. Many strategies have been
developed to improve the solubility of drugs, such as the use of
surfactants, cocrystals, lipid-based formulations, and particle size
reduction. The literature on this topic is extensive, and recent
reviews can be found in [1–3].

One particularly effective strategy to improve drug solubility is
to use a solid dispersion [4–6]. A solid dispersion typically consists
of a hydrophobic drug embedded in a hydrophilic polymer [7,8]
matrix, where the matrix can be either in the amorphous or crys-
talline state. The drug is preferably in a molecularly dispersed
state, but may also be present in amorphous particles or even in
the crystalline form (though this is usually undesirable); see
Fig. 1. The drug release concept for most solid dispersions is
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Fig. 1. Adapted from [5]. In this figure, we show three possible structures for a
polymer/drug dispersion. Top: Here the drug is in the molecularly dispersed state,
which is usually desirable for a solid dispersion. Bottom left: Here the dispersion
contains drug in the crystalline form. Bottom right: Here the dispersion contains
amorphous drug-rich domains.
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based on the so-called spring and parachute effect [9]. When the
drug and the hydrophilic polymer dissolve in solution, a supersat-
urated drug solution is quickly created (the spring). Although the
drug concentration then subsequently decreases, the rate of
decrease is slowed by drug-polymer interactions in the dispersion,
so that the drug can be present at supersaturated levels in the solu-
tion for a period of some hours (the parachute). This results in
improved bioavailability of the drug when the solid dispersion
dosage form is taken orally.

Drug loading in most dispersions greatly exceeds the equilib-
rium solubility in the polymer matrix for typical storage tempera-
tures. Hence these systems are usually unstable, with phase
separation eventually occurring [5]. In such cases, the drug will
eventually crystallise out or form an amorphous phase separation.
However, if the dispersion is stored well below the glass transition
temperature [10] for the polymer, and is kept dry, this can happen
extremely slowly. The system is then for all practical purposes
stable, and is said to be metastable. The humidity of the storage
environment can be an issue because even small amounts of mois-
ture can significantly affect the glass transition temperature. Hence
polymers that have high glass transition temperatures and that are
resistant to water absorption have become popular. An example of
one such polymer is Hydroxypropyl Methylcellulose Acetate
Succinate (HPMCAS).

Phase separation of solid dispersions in storage is clearly unde-
sirable from the point of manufacturers. Hence much work has
been devoted to constructing phase diagrams for solid dispersions
with a view to identifying regimes where drug recrystallization or
amorphous phase separation can occur. These phase diagrams are
constructed with the aid of thermodynamic models. The most
widely used thermodynamic model in this context is the Flory-
Huggins model [11–13] for polymer solutions.

Flory-Huggins theory is a lattice-based model in which the drug
and polymer are confined to live on a regular lattice. Flory-Huggins
theory is an extension of regular solution theory, as explained in
Chapter 7 of [13]. In the context of a drug/polymer system, each
drug molecule is taken to occupy one lattice site and each polymer
segment is taken to occupym � 1 sites. Under a number of further
simplifying assumptions [13], the change in entropy and enthalpy
associated with the mixing of the polymer and drug are calculated.
With these in hand, the change in bulk Gibbs free energy (Dgmix

b )
per mole associated with mixing is readily calculated, and is found
to be

Dgmix
b

RT
¼ Xd ln /dð Þ þ Xp ln /p

� �þ vdpXd/p; ð1Þ

where R is the gas constant, T is the temperature, Xd;Xp ¼ 1� Xd are
the mole fractions of the drug and polymer, respectively, and /d;/p

are the volume fractions of the drug and polymer, respectively. The
quantity vdp is referred to as the Flory-Huggins interaction
parameter, and it is discussed further below. The mole fractions
and volume fractions are related via the formulae

/d ¼
Xd

Xd þmXp
; /p ¼

mXp

Xd þmXp
: ð2Þ

When the model is applied to real binary systems, m can be calcu-
lated using the formula

m ¼ Vp

Vd
ð3Þ

where Vp;Vd (molar�1) are the molar volumes of the polymer and
drug, respectively.

The mixing of the polymer and drug is spontaneous if DGmix < 0.
The Flory-Huggins parameter vdp takes the form

vdp ¼ q2 wdp �wdd þwpp

2

� �
ð4Þ

where q2 is a positive parameter, and wdp;wdd;wpp give measures of
the drug-polymer, drug-drug and polymer-polymer interaction
energy, respectively. If vdp < 0 then wdp < wdd þwpp

� �
=2 indicating

that the mixed state has lower energy than the separated pure
states, so that mixing is favoured. Conversely, vdp > 0 is indicative
of demixing being favoured. However, these statements are indica-
tive rather than precise, as will be explained in Section 3. We should
also note that vdp is temperature dependent, and is usually given
the empirical form

vdp Tð Þ ¼ a
T
þ b ð5Þ

where a; b are constants.
Flory-Huggins theory has frequently been used to analyse the

stability of binary solid dispersion systems in storage; see, for
example, [14–23]. In many of these studies, the Flory-Huggins
interaction parameter is first estimated using the melting point
depression method [24], or using the Hildebrand and Scott method
[25], which involves the estimation of solubility parameters. Once
estimates for vdp Tð Þ have been obtained, the Gibbs free energy of
mixing DGmix can be calculated, which in turn enables the construc-
tion of phase diagrams for the systems. Phase diagrams assist with
the identification of regions in composition-temperature space
where the system is prone to recrystallization or amorphous phase
separation.

The models we shall develop in the current study are generic
and are not tied to making a specific choice of statistical model.
However, given the particular importance of Flory-Huggins theory
in applications, we shall derive detailed results for this case. Also,
all of our numerical illustrations are calculated within the context
of Flory-Huggins theory. It should be emphasized that Flory-
Huggins theory does involve quite a number of simplifying
assumptions which are not appropriate for some systems; see
[26] for a recent critique of the model.
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2. Theoretical formulation

2.1. A multicomponent diffusion model for solid dispersions

We develop a multicomponent diffusion model for the evolu-
tion of the concentrations of the components constituting a solid
dispersion. We suppose for the moment that there are p compo-
nents. However, in the analysis we shall consider in the current
study, we will in fact have p ¼ 2, with one of the components being
the polymer, and the other being the drug. For a dissolving solid
dispersion, there are three components p ¼ 3: the polymer, the
drug, and the solvent.

The chemical potential li (J/mol) of species i i ¼ 1;2; . . . ; pð Þ
gives the Gibbs free energy per mole of species i, and is given here
by [27]

li ¼ lb
i � �2i r2Xi ð6Þ

where

lb
i ¼ l0

i þ RT ln aið Þ ð7Þ
and where lb

i is the bulk chemical potential of species i;li0 is the
chemical potential of species i in the pure state, ai is the activity
of species i, and the term involving �2i > 0 (m2J/mol) penalises the
formation of phase boundaries [28–32]. The parameters �2i are
referred to as gradient energy coefficients [33,34]. Here Xi is the
molar fraction of species i (i ¼ 1;2; . . . ; p), and the activities can
depend on these molar fractions, so that

ai ¼ ai X1;X2; . . . ;Xp
� �

:

The molar fraction is related to the molar concentration via

Xi ¼ Vici ð8Þ
where Vi (molar�1) is the molar volume of species i. The flux of spe-
cies i (molar�m/s) is given by

Ji ¼ civi ð9Þ
where ci (molar), vi (m/s) give the molar concentration and drift
velocity, respectively, of species i. The drift velocity vi gives the
average velocity a particle of species i attains due to the diffusion
force acting on it, and is given here by

vi ¼ MiF i ¼ �Mirli ð10Þ
where Mi (mol�s/kg), F i (J/[m�mol]) give the mobility and diffusion
force, respectively, for species i. Eqs. (9) and (10) give

Ji ¼ �Micirli: ð11Þ
Conservation of mass for species i implies that
@ci
@t

þr � Ji ¼ 0 ð12Þ
and using (11) now gives

@ci
@t

¼ r � Micirli

� �
or equivalently

@Xi

@t
¼ r � DiXir li � l0

i

RT

� �� 	
ð13Þ

with

li � l0
i

RT
¼ ln aið Þ � d2i r2Xi ð14Þ

for i ¼ 1;2; . . . ;p, and where d2i ¼ �2i =RT > 0 (m2/molar), and

Di ¼ MiRT Einstein relationð Þ
is the self-diffusion coefficient for species i.
The model formulation given by (13) and (14) based on chem-
ical potentials will be used for the numerical scheme described
in Section 4. However, it is also of value to develop a formulation
involving diffusion coefficients since these yield immediate infor-
mation regarding timescales for transport processes, and will also
the enable the development of analytical results via a linearization
process.

2.1.1. Diffusion Coefficients
Using (6), (7) and (11) gives

Ji ¼ �Micirli ¼ �Mici
RT
ai

rai � �2i r r2Xi

� �� 	
and then using the fact that the activities depend on the molar frac-
tions gives

Ji ¼ �Mici
RT
ai

Xp
j¼1

@ai
@Xj

rXj � �2i r r2Xi

� � !
: ð15Þ

Using (8), we can now write (15) as

Ji ¼ �
Xp
j¼1

Dijrcj þ Die2i cir r2ci
� �

ð16Þ

where e2i ¼ Vid
2
i and where the diffusion coefficients Dij (m2/s) are

given by

Dij ¼ Di
Vj

Vi

Xi

ai

@ai
@Xj

: i; j ¼ 1;2; . . . ; p ð17Þ

Conservation of mass (12) then implies that (reverting to molar
fractions)

@Xi

@t
¼ r �

Xp
j¼1

Vi

Vj
Dij Xð ÞrXj � Did

2
i Xir r2Xi

� � !
i ¼ 1;2; . . . ; p

ð18Þ
where X ¼ X1;X2; . . . ;Xp

� �
, and where we have included the concen-

tration dependence of the diffusion coefficients Dij here to empha-
sise that this system is in general a coupled system of nonlinear
diffusion equations. It should denoted that the Eq. (18) are not inde-
pendent since

Pp
i¼1Xi ¼ 1, and so it is sufficient to solve for p� 1

concentrations only.

2.2. Activity coefficients

The activities ai are usually written as

ai ¼ ciXi

where the ci ¼ ci X1;X2; . . . ;Xp
� �

are referred to as activity coeffi-
cients. Eq. (17) now give

Dij ¼ Di
Vj

Vi
dij þ Xi

ci
@ci
@Xj

� 	
i; j ¼ 1;2; . . . ; p ð19Þ

where dij is the Kronecker delta.
The details of the interactions between the species in solution

are captured in the modelling by choosing appropriate forms for
the activity coefficients ci ¼ ci X1;X2; . . . ;Xp

� �
. The construction of

appropriate forms for the ci for various solutions is a large subject
with a large literature; see, for example, the books [35,36].

2.3. The storage problem for a binary mixture

In the current study, we shall be modelling the behaviour of
solid dispersions in storage. In this case, we have p ¼ 2, with the
label 1 referring to the drug and the label 2 referring to the
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polymer. However, for transparency, we choose here to use the
labels d; p rather than 1;2, where d stands for drug, and p for poly-
mer. Then using (18) and the fact that Xp ¼ 1� Xd, we have

@Xd

@t
¼ r � Deff Xdð ÞrXd � Ddd

2
dXdr r2Xd

� �n o
: ð20Þ

where the effective concentration-dependent diffusion coefficient
for the drug in the solid dispersion is

Deff Xdð Þ ¼ Ddd Xdð Þ � VdDdp Xdð Þ=Vp

¼ Dd 1þ Xd

cd
@cd
@Xd

� @cd
@Xp


 �� �
: ð21Þ

For the particular case of a binary Flory-Huggins theory (see
Section 1), the activity coefficients are given by

ln cdð Þ ¼ ln
/d

Xd

� 	
þ 1� /d

Xd
þ vdp/

2
p; ð22Þ

ln cp
� �

¼ ln
/p

Xp

� 	
þ 1� /p

Xp
þmvdp/

2
d ; ð23Þ

where the volume fractions /d;/p are given by (2). Substituting (22)
in (21) gives

Deff Xdð Þ ¼ Dd
m� m� 1ð ÞXdð Þ m2 � m2 � 1

� �
Xd

� �� 2vdpm
2Xd 1� Xdð Þ

m� m� 1ð ÞXdð Þ3
( )

:

ð24Þ
It is more instructive to write this expression in terms of the volume

fraction of drug. Writing Deff Xdð Þ ¼ eDeff /dð Þ, we obtain

eDeff /dð Þ ¼ Dd 1þ m� 1ð Þ/dð Þ 1þ 1
m

� 1
� 	

/d � 2vdp/d 1� /dð Þ
� 	

:

ð25Þ
This expression is particularly useful because it yields insight into
how the mobility of the drug in the dispersion depends on the
length of the polymer chains (m), the dispersion composition (/d),
and the character of the drug-polymer interaction (vdp). We shall
analyze this expression further in Section 3, and also show how it
can be used to calculate the timescale over which phase separation
may occur.

An equivalent formulation for the Flory-Huggins model involv-
ing the chemical potential for the drug ld is given by (see (13) and
(14) above):

@Xd

@t
¼ r � DdXdrwð Þ ð26Þ

where

w ¼ ld � ld0

RT
ð27Þ

and with

w ¼ ln
Xd

m� m� 1ð ÞXd

� 	
þ m� 1ð Þ 1� Xdð Þ

m� m� 1ð ÞXd

þ vdpm
2 1� Xd

m� m� 1ð ÞXd

� 	2

� d2dr2Xd: ð28Þ

We suppose that the solid dispersion occupies a two-
dimensional region X. The governing equation for the drug concen-
tration in X may be written in the conservation form

@Xd

@t
þr � Jd ¼ 0;

where the drug flux Jd is given by

Jd ¼ �Deff Xdð ÞrXd þ Ddd
2
dXdr r2Xd

� �
: ð29Þ
We need to supplement the governing equation in Xwith boundary
conditions on @X, and we choose these here to be

Jd � n ¼ 0; rXd � n ¼ 0 on @X: ð30Þ
The first of these conditions Jd � n ¼ 0 implies that the drug cannot
penetrate the boundary of the domain. The other condition
rXd � n ¼ 0 is the natural boundary condition for the variational
formulation of the problem, and it implies that the interfaces
between the polymer rich and the drug rich domains meet the
boundary at right angles.

Finally, to obtain a well-posed problem, we need to impose an
initial condition and we choose this here to take the form

Xd x; y; t ¼ 0ð Þ ¼ X0
d x; yð Þ for x; yð Þ 2 X; ð31Þ

where X0
d x; yð Þ is a given function.

Gathering together the governing equation, the boundary con-
ditions and the initial condition, we obtain the following initial
boundary value problem:

@Xd

@t
¼ r � Deff Xdð ÞrXd � Ddd

2
dXdr r2Xd

� �n o
in X;

rXd � n ¼ 0; r r2Xd

� �
� n ¼ 0 on @X;

Xd x; y; t ¼ 0ð Þ ¼ X0
d x; yð Þ for x; yð Þ 2 X:

ð32Þ
2.4. Phase separation in a Flory-Huggins binary mixture

2.4.1. The bulk free energy and spinodal decomposition
Spinodal decomposition for binary systems has been long

understood using thermodynamic reasoning, and is well described
elsewhere; see, for example, Chapter 5 of [37], Chapter 7 of [13], or
[38]. Hence our description of the background theory here will be
quite brief, and we will emphasise instead the particular details for
the Flory-Huggins system.

The bulk free energy density gb for the binary mixture constitut-
ing the solid dispersion is given by [39]

gb ¼ lb
dXd þ lb

pXp; ð33Þ

where lb
d;lb

p give the bulk chemical potential of the drug and poly-
mer, respectively, and where

lb
i ¼ l0

i þ RT ln aið Þ for i ¼ d;p:

This leads to

gb ¼ l0
dXd þ l0

pXp þ RT Xd ln Xdð Þ þ Xp ln Xp
� �� �

þ RT Xd ln cdð Þ þ Xp ln cp
� �� �

:

The Gibbs free energy of mixing Dgmix
b is given by

Dgmix
b ¼ gb � l0

dXd � l0
pXp

¼ RT Xd ln Xdð Þ þ Xp ln Xp
� �� �þ RT Xd ln cdð Þ þ Xp ln cp

� �� �
:

If we now use (22) and (23) and the fact that Xp ¼ 1� Xd, we arrive
at

Dgmix
b

RT
¼ Xd ln

Xd

m� m� 1ð ÞXd

� 	
þ 1� Xdð Þ

� ln
m 1� Xdð Þ

m� m� 1ð ÞXd

� 	
þ vdpmXd 1� Xdð Þ

m� m� 1ð ÞXd
: ð34Þ

In Fig. 2(a), we plot a free energy of mixing diagram Dgmix
b as a func-

tion of drug molar fraction Xd. In this diagram, the points X1s
d ;X

2s
d are

the solutions to

d2 Dgmix
b

� �
dX2

d

¼ 0;



Fig. 2. (a) Plot of the bulk free energy of mixing Dgmix
b as a function of a drug molar fraction Xd . The spinodal points X1s

d ;X2s
d are the solutions to d2 Dgmix

b

� �
=dX2

d ¼ 0. In the
spinodal region X1s

d ;X2s
d

� �
, we have d2 Dgmix

b

� �
=dX2

d < 0 and Deff Xdð Þ < 0. (b) Phase diagram for the binary mixture. Here a is the coexistence curve, b is the spinodal curve, T	 is
the temperature for the free energy density diagram in (a), and Tc is the critical temperature above which the dispersion is homogeneous.
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and are referred to as the spinodal points. The region X1s
d ;X2s

d

� �
is

referred as the spinodal region, and for points Xd in this region,
we have

d2 Dgmix
b

� �
dX2

d

< 0:

Compositions Xd in the spinodal region are unstable, and will split
into two phases characterized by the compositions X1u

d and X2u
d as

shown in Fig. 2(a); see [37] for more details. The points X1u
d ;X2u

d

are referred to as the binodal points, and are defined by the com-
mon tangent construction shown in Fig. 2(a). The binodal and spin-
odal points define the coexistence and spinodal curves, respectively,
and these are plotted in the phase diagram shown in Fig. 2(b).

Using Eq. (34), we obtain

d2 Dgmix
b

� �
dX2

d

¼ RT
q Xdð Þ

1� 1� 1=mð ÞXdð Þ3Xd 1� Xdð Þ
ð35Þ

where

q Xdð Þ ¼ AX2
d þ BXd þ 1 ð36Þ

and where

A ¼ 1
m3 �

1
m2 � 1� 2vdp

� � 1
m

þ 1;

B ¼ 1
m2 þ 1� 2vdp

� � 1
m

� 2: ð37Þ

Hence there is a spinodal region with d2 Dgmix
b

� �
=dX2

d < 0 if q Xdð Þ < 0
in this region. Inspecting (36), we see that q Xdð Þ can be negative if
q Xdð Þ ¼ 0 has real roots, that is, if

B2 � 4A > 0;

and using (37), this leads to

2vdp � 1þ 1=mð Þ
� �2

� 4=m > 0

which holds true if

vdp >
1
2

1þ 1ffiffiffiffiffi
m

p
� 	2

¼ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vd=Vp

q� �2
:

Hence, we have a spinodal interval if
vdp > vc
dp mð Þ ð38Þ

where

vc
dp mð Þ � 1

2
1þ 1ffiffiffiffiffi

m
p

� 	2

; ð39Þ

and where vc
dp mð Þ is a critical value for the Flory-Huggins parame-

ter. If (38) holds true, then there is a spinodal interval

X1s
d ;X

1s
d

� �
� 0;1½ � where

X1s
d ¼ �B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4A

p
2A

; X2s
d ¼ �Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4A

p
2A

; ð40Þ

and where A;B are given in (37).

2.4.2. The diffusion coefficient and spinodal decomposition
Using (24) and (35), elementary calculations show that

Deff Xdð Þ ¼ My Xdð Þ d
2 Dgmix

b

� �
dX2

d

ð41Þ

where

My Xdð Þ ¼ MdXd 1� Xdð Þ

with Md ¼ Dd=RT, and where My Xdð Þ is a concentration-dependent
drug mobility; see, for example, Eq. (3.6) of the paper [40]. Hence,

for 0 < Xd < 1, it is clear from (41) that d2 Dgmix
b

� �
=dX2

d < 0 implies
that

Deff Xdð Þ < 0: ð42Þ
Hence, an equivalent criterion for spinodal decomposition to occur
is that there exist a region in 0 6 Xd 6 1 where Deff Xdð Þ < 0, that is,
that there exist a region where drug diffusion is against the concen-
tration gradient (uphill diffusion).
3. Qualitative results and discussion

Although the model we have derived in the current study is
quite general, and is not tied to any specific statistical model for
a solid dispersion, the detailed results we shall present in this sec-
tion are for the Flory-Huggins case.
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3.1. The effective diffusion coefficient for the drug in the dispersion

From (25), the scaled effective diffusion coefficient for the drug
in the dispersion is given by

eDeff /dð Þ
Dd

¼ 1þ m� 1ð Þ/dð Þ 1þ 1
m

� 1
� 	

/d � 2vdp/d 1� /dð Þ
� 	

ð43Þ

where we recall that Dd is the temperature-dependent self-diffusion
coefficient for the drug. Eq. (43) is of particular value since it yields
information on how the mobility of the drug in the dispersion
depends on the polymer chain length, the dispersion composition,
and the character of the drug-polymer interaction.

In Fig. 3(a), we have plotted (43) for the Flory-Huggins interac-
tion parameter vdp ¼ 3 (which is in the unstable regime) and vari-
ous values of the polymer chain length m. It should be emphasized

that positive values for eDeff correspond to standard drug diffusion
down the concentration gradient, while negative values corre-
spond to unstable regimes where phase separation of the drug
and polymer can occur. In Fig. 3(a), it is clear that if the drug load-

ing /d is sufficiently low, then eDeff > 0 and the solid dispersion is
stable. However, for larger (and more realistic) drug loadings,eDeff < 0, and the system is unstable. It is interesting to note that
the system becomes more unstable as the length of the polymer
chains increase.

It is also clear from the curves in Fig. 3(a) that the relationship
between the initial drug loading in the dispersion and the initial
rate of phase separation is not altogether obvious. It is not neces-
sarily the case that increasing drug loading corresponds to increas-
ing initial dispersion instability. Rather, there is in fact a well
defined worst choice for the initial drug loading from the point of
view of stability in the initial stages. This worst choice corresponds
to the minima of the curves displayed in Fig. 3(a), since these min-
ima correspond to the fastest rates of phase separation. For m � 1,

the minimum of eDeff /dð Þ occurs at
Fig. 3. Plots of the scaled effective diffusion coefficient for the drug in the polymer dispe
coefficient correspond to standard drug diffusion down the concentration gradient, whil
larger negative values (in absolute terms) corresponding to more rapid phase separatio
interaction parameter vdp ¼ 3 and various values of the polymer chain length m, and, (b
parameter vdp. See the main body of the text for further discussion.
/min
d 


1þ 2vdp þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2vdp

� �2
� 6vdp

r
6vdp

: ð44Þ

These theoretical results predict that choosing initial drug loadings
/d above or below /min

d should lead to improved dispersion stability

in the initial stages. For m;vdp � 1, we have /min
d 
 0:67.

In Fig. 3(b), we plot (43) for the fixed polymer length m ¼ 50,
and various values of the Flory-Huggins interaction parameter
vdp. For m ¼ 50, the critical value for vdp is given by vc

dp 
 0:5707
(see Eq. (39)). Recall that for vdp < vc

dp, the system is stable for all
drug loadings /d, and that for vdp > vc

dp, there is a regime of unsta-
ble drug loadings. This is borne out by the curves displayed in Fig. 3
(b). These curves predict that the system becomes more unstable
with increasing values of vdp, and this is as expected given the
dependence of vdp on the interaction energies – see equation (4).

3.2. Timescale for phase separation in a solid dispersion

In Fig. 4, we give a schematic of a phase separating solid disper-
sion where polymer-rich regions have formed. The characteristic
lengthscale of these regions is denoted by l. In order for such
regions to form, the drug must have diffused away over a length-
scale of order l, and the timescale over which this diffusion occurs
is estimated by (see (25))

s ¼ l2

j eDeff /0
d

� � j
¼ l2

Dd Tð Þ
1

j 1þ m� 1ð Þ/0
d

� �
1þ 1=m� 1ð Þ/0

d � 2vdp Tð Þ/0
d 1� /0

d

� �h i
j

ð45Þ

where /0
d is the initial uniform volume fraction of the drug in the

dispersion, and T is a representative storage temperature. It should
be emphasized that this formula is just an estimate since, in reality,
rsion as a function of the drug volume fraction. Here positive values of the diffusion
e negative values correspond to phase separation of the drug and the polymer, with
n. We have plotted the scaled drug diffusion coefficient for (a) the Flory-Huggins
) polymer chain length m ¼ 50 and various values of the Flory-Huggins interaction



Fig. 4. Schematic of a phase separating solid dispersion where polymer-rich regions
with characteristic lengthscale l have formed. A formula for the timescale of
evolution of such a dispersion is given in the main body of the text; see Eq. (45).

Table 1
Illustrative values for some of the parameters of the FD/HPMCAS system at various
temperatures. Here the initial weight fraction of drug is 70%, which corresponds to an
initial drug molar fraction Xd 
 0:9909.

T (�C) vdp Tð Þ Dd Tð Þ (m2 s�1) Deff Xað Þ (m2 s�1)

40 6.2383 1:1661� 10�18 8:8605� 10�17

50 5.4645 1:5494� 10�17 1:0113� 10�15

60 4.7371 1:3787� 10�16 7:6107� 10�15

75 3.7245 2:0297� 10�15 8:3587� 10�14

90 2.7954 1:7356� 10�14 4:9151� 10�13

100 2.2176 5:7436� 10�14 1:1670� 10�12

110 1.6699 1:6336� 10�13 2:0806� 10�12

120 1.1501 4:0902� 10�13 2:2657� 10�12
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the drug volume fraction evolves in space and time. Hence, (45)
should only be used as a rough rule of thumb. In Section 4, we eval-
uate this formula by comparing it with detailed numerical results,
and satisfactory agreement is generally found.

Eq. (45) may, in appropriate circumstances, be used to estimate
the shelf life of a solid dispersion product. To see this, suppose that
l denotes the largest acceptable size for polymer-rich domains (or
drug-rich domains) in the product. Then, since s estimates the
timescale for these regions to form, it also estimates the timescale
for the shelf life of the product. However, care should be taken
when using (45) since, apart from the fact that is based on a fixed
value of /d, it also incorporates a number of significant assump-
tions – for example, it assumes that the dispersion is perfectly
dry, and that Flory-Huggins theory is an appropriate statistical
model for the system.

3.3. Criteria for a stable solid dispersion

Although the drug loading in real solid dispersions is typically
high and in the unstable regime, it is nevertheless worthwhile
specifying conditions under which the stability of the dispersion
is guaranteed. The results we display here are based on the discus-

sion given in Section 2.4. For vdp < vc
dp where vc

dp ¼ 1
2 1þ 1=

ffiffiffiffiffi
m

p� �2,
the system is stable irrespective of the choice of the uniform initial
drug load /0

d. For vdp > vc
dp, the dispersion is unstable if the initial

drug loading /0
d is chosen in the interval /�

d ;/
þ
d

� �
, but stable if cho-

sen in either of the intervals 0;/�
d

� �
or /þ

d ;1
� �

, where

/�
d ¼ 1

2
1þ 1

2vdp
1� 1

m

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2vdp
1� 1

m

� 	" #2
� 2
vdp

vuut8<:
9=;:

These results are based on the bulk free energy only, and do not take
account of interfacial energy. However, the interfacial energy can be
readily incorporated into the analysis, and this is discussed in
Appendix A.

4. Numerical results and discussion

4.1. The numerical method

For the purposes of numerical calculations, we take the
integration domain to be the square region
X ¼ x; yð Þ j 0 < x < L; 0 < y < Lf gwith boundary @X. The governing
equation to be solved is defined by the Eqs. (26)–(28). The bound-
ary conditions are given by

rw � n ¼ 0 and rXd � n ¼ 0 on @X; ð46Þ
and the initial condition takes the form (31). The boundary condi-
tions (46) are equivalent to those given in (30). The governing equa-
tion was numerically integrated using the finite element package
COMSOL Multiphysics. A mesh sensitivity analysis was performed
to investigate the influence of the size of the mesh on the results.
The solution was assumed to be mesh independent when there
was less than 1% difference in the mole fraction of drug between
successive refinements. The final mesh used in the simulations
was triangular and consisted of 7553 vertices and 14,796 triangles.
The numerical solutions all conserved the total mass of drug in the
system to within 1%.

4.2. Parameter values

We consider parameter values that are appropriate for a solid
dispersion consisting of the drug Felodipine (FD) and the polymeric
excipient HPMCAS. Felodipine is a calcium channel blocker that is
commonly used to treat blood pressure. For this system, the Flory-
Huggins interaction parameter is given as a function of tempera-
ture by (see [16])

vdp Tð Þ ¼ �18:767þ 7830:4
T

: ð47Þ

Using data taken from [16], the molar volume for FD is
Vd ¼ 300:19 cm3/mol and the molar volume of HPMCAS is
Vp ¼ 14007:78 cm3/mol, so that

m ¼ Vp

Vd
¼ 14007:78

300:19

 46:6630:

From (39), the critical value for the interaction parameter below
which phase separation cannot occur is given by

vc
dp mð Þ ¼ 1

2
1þ 1ffiffiffiffiffi

m
p

� 	2

¼ 0:6571:

The self-diffusion coefficient for Felodipine was estimated in [41]
(Chapter 4, page 133) to be

Dd Tð Þ ¼ exp �A1ð Þ exp �A2

T
exp

A3

T

� 	� 	
m2s�1 ð48Þ

where A1 ¼ 18:03; A2 ¼ 445:84 K, A3 ¼ 874:81 K. Some illustrative
values for the diffusion coefficients and the Flory-Huggins interac-
tion parameter are displayed in Table 1.

For the numerical simulations displayed in the current study,
we take the size of the square domain to be given by L ¼ 2 mm.
The thickness of the interfacial regions is dictated by the parameter
dd, and here we chose the value dd ¼ L=50 ¼ 4� 10�5 m. We illus-
trate how the initial conditions were specified by considering a
particular case. We consider the case where the initial weight
fraction of drug is 80%. This means that the initial weight of FD
divided by the weight of FD plus the weight of HPMCAS is 0.8. This
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corresponds to an initial molar drug fraction of Xd ¼ 0:9947. More
precisely, we choose the initial molar fraction of drug to be a small
random perturbation about this level given by

Xd x; y; t ¼ 0ð Þ ¼ 0:9947 1þ rnd x; yð Þð Þ

where rnd x; yð Þ is a normally distributed random function with a
mean value of zero and a standard deviation of 10�5. The standard
deviation for all of the initial conditions was taken to be 10�5, with
one exception – the numerical results displayed in Fig. 6 took the
Fig. 5. The phase diagram for the Felodipine/HPMCAS system.

Fig. 6. Numerical simulation of the behaviour of a solid dispersion in a hot melt extrude
numerically integrating the initial boundary value problem defined in Section 4.1. The co
The weight fraction of drug here is 50%, and the other parameter values can be found in S
an initially coarse mixture is heated and then cooled to form a well-mixed dispersion.
larger value 0:007 to simulate a coarse initial mixture in a hot melt
extruder.

In Fig. 5, we plot the phase diagram for the Felodipine/HPMCAS
system. All that is required to calculate the phase diagram here is a
knowledge of the Flory-Huggins interaction parameter, and this
has been given in (47). The spinodal curve Ts /dð Þ is obtained by set-

ting eDeff /dð Þ ¼ 0 in (43) to obtain

1þ 1
m

� 1
� 	

/d � 2vdp/d 1� /dð Þ ¼ 0; ð49Þ

where vdp is given by (5). Solving (49) for T gives the spinodal curve

Ts /dð Þ ¼ 2b/d 1� /dð Þ
1þ 1

m � 1
� �

/d � 2a/d 1� /dð Þ
where a ¼ �18:767; b ¼ 7830:4; m ¼ 46:6630 for the Felodipine/
HPMCAS system. The binodal curve was estimated numerically.
The calculation involved simultaneously solving the pair of equa-

tions lb
d X1u

d

� �
¼ lb

d X2u
d

� �
and lb

p X1u
d

� �
¼ lb

p X2u
d

� �
for the binodal

points X1u
d , X2u

d with X1u
d < X2u

d . This was implemented using the
fsolve command in MAPLE.

4.3. Numerical results

The first numerical calculations we display simulate the hot
melt mixing process for a Felodipine/HPMCAS system. To imple-
ment this, we used a time dependent temperature profile that
r. The simulations here are for a FD/HPMCAS solid dispersion and were obtained by
lours correspond to different mole fractions of the drug as defined by the colour bar.
ection 4.2 and Section 4.3. These simulations represent a successful extrusion where
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treats the case where the mixture begins at 25 �C and rises in tem-
perature at a rate of 10 �C per minute until it reaches 145 �C. We
then assumed for simplicity that the melt cooled linearly back
down to 25 �C over a period of 30 min. The results of the calcula-
tion are shown in Fig. 6. We see in Fig. 6(a) that the initial drug/
polymer mixture is quite coarse (badly mixed). As the temperature
rises, we see from Fig. 6(b) that the mixture becomes increasingly
homogenous. By the time the mixture has achieved its maximum
temperature, Fig. 6(c), it is quite well-mixed. Fig. 6(d) shows that
the amount of phase separation that occurs during the cooling pro-
cess is insignificant. Hence, the numerical results shown here pre-
dict a successful hot melt extrusion process for the manufacture of
a solid dispersion. We note that different heating and cooling
regimes are easily simulated using the model.

In Fig. 7, we superimpose numerical solutions on a phase
diagram for the Felodipine/HPMCAS system. Each of these solu-
tions corresponds to an evolution time of 6 months, with the
dispersion mixture beginning from an initially approximate
uniform state. We see that there is no significant phase sepa-
ration for the 30 �C cases, and for the cases in the metastable
and stable regions. This predicts that Felodipine/HPMCAS sys-
tems should not suffer considerable phase separation under
normal storage temperatures. However, we should caution that
we are modelling the case of zero relative humidity here. For
the cases that do exhibit significant phase separation, we note
a coarser separation morphology for higher temperatures. In
these figures, dark red corresponds to drug-enriched domains
(relative to the initial concentration) while dark blue corre-
Fig. 7. Numerical solutions superimposed on a phase diagram for the Felodipine/HPMCA
parameter values used can be found in Section 4.2. The dark blue regions are polymer-en
cases where phase separation is not significant. (For interpretation of the references to c
spond to polymer-enriched domains. We also note the occur-
rence of polymer droplets and strings – we return to this
issue below.

Further numerical simulations are displayed in Figs. 8–11, and
these correspond to weight fractions of drug of 80%, 60%, 40%
and 20%, respectively. Recall that decreasing weight fractions of
drug correspond to increasing weight fractions of polymer since
the system is binary. In a given figure, each column corresponds
to a given temperature as labelled, and reading a column from
top to bottom corresponds to increasing time for the dispersion
for the given temperature. We have chosen here not to use the
same times for the different temperatures since the rate at which
a dispersion evolves depends on temperature.

We now highlight some notable features of these numerical
simulations.

 Two phases eventually emerge. The numerical results show that
the systems eventually evolve into two distinct phases, charac-
terized by deep blue domains (polymer-rich) and deep red
domains (drug-rich).

 Ostwald ripening/coarsening. Another notable feature in many of
the numerical illustrations is the formation of polymer droplets
(blue discs) in the dispersion, followed by a subsequent growth
in their size; see, for example, the third column in Fig. 8. This is
a well-known and common phenomenon in multicomponent
solid systems, and is often referred to as Ostwald ripening or
coarsening [42]. We also note the general trend that dispersions
at higher temperature tend to be coarser.
S system. The numerical solutions shown here are all for a time of six months. The
riched and the dark red regions are drug-enriched. The green panels correspond to
olour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Simulations of a FD/HPMCAS solid dispersion obtained by numerically integrating the initial boundary value problem defined in Section 4.1. The colours correspond to
different mole fractions of the drug as defined by the colour bar. The weight fraction of drug here is 80%, and the other parameter values can be found in Section 4.2. In the
above frame of figures, each column corresponds to a different temperature, and reading a column from top to bottom corresponds to increasing time for the dispersion for
the given temperature.
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 Phase inversion. The system exhibits the phase inversion phe-
nomenon [31] as the polymer content increases. To see this,
consider the panels in Fig. 8. These correspond to the case
where the polymer content is low (20% by weight), and we
see the emergence of polymer droplets in drug-dominated
domains. Compare these with the panels in the third column
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Fig. 9. See the caption for Fig. 8. The weight fraction of drug here is 60%.
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of Fig. 11. These correspond to the case where the polymer con-
tent is high (80% by weight), and we see the emergence of drug
droplets in polymer-rich domains, the reverse of the low poly-
mer content case.
 Polymer strings and droplet-to-string transitions.We note the for-
mation of polymer strings in some of the panels; see the first
and second columns of Fig. 11 for examples. The central column
in Fig. 11 is of particular interest since the behaviour exhibited
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Fig. 10. See the caption for Fig. 8. The weight fraction of drug here is 40%.
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here is an example of a droplet-to-string transition [43]. In this
droplet-to-string transition, drug droplets coalesce to form long
drug-rich strings. In the panel for 23 days, we observe that drug
droplets are in the process of chaining [43]. Another droplet-to-
string transition is shown in Fig. 12.

 The formula (45) for the timescale for phase separation. The
detailed numerical results here enable us to test the utility of
our simple formula (45) for the timescale for phase separation.
Consider, for example, the panel corresponding to 1 day in the
third column of Fig. 8. Here we see that polymer droplets with
characteristic lengthscale of l 
 0:3 mm have formed. Our
formula (45) predicts that such droplets should form over a
timescale dictated by
s 
 0:3ð Þ2 mm2

j eDeff /d ¼ 0:8006ð Þ j

 11 h
which is consistent with the time t = 1 day for the panel since
1 day 
 2s. It should be emphasized that s does not predict
the time for the droplets to form, but rather estimates the time-
scale over which such droplets form.



Fig. 11. See the caption for Fig. 8. The weight fraction of drug here is 20%.
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5. Conclusions

Solid dispersions have been the subject of intensive research in
recent years because of their potential to improve the solubility of
drugs, and numerous excellent studies have been published. How-
ever, detailed theoretical studies considering the non-equilibrium
behaviour of solid dispersions are lacking. Hence, in this study
we have developed a general diffusion model for a dissolving solid
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Fig. 12. Numerical results illustrating a droplet-to-chain transition. In these panels, the mass fraction of drug is 20% and the temperature is T ¼ 75 �C. The panels should be
read from left to right, starting at the top row. In the panel for 16 days, we see the formation of drug droplets. The panels for 20 and 30 days show the drug droplets in the
process of chaining to form strings. Subsequent panels show the evolution of the drug strings.
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dispersion. We then considered the particular case of a binary sys-
tem modelling a solid dispersion in storage, and developed a for-
mula for the effective diffusion coefficient of the drug. We then
specialized further to the case of a Flory-Huggins statistical model.
Within the context of this theory, we make the following predic-
tions, some of which should be testable experimentally:

1. A solid dispersion can always be made stable by choosing a suf-
ficiently low drug loading; see Fig. 3(a).

2. For unstable regimes, the relationship between the local drug
volume fraction /d and the rate of phase separation is not obvi-
ous; see Fig. 3(a). There is in fact a well-defined value of /d that
corresponds to the most rapid rate of phase separation, with the
rate decreasing for values of /d either side of this value.

3. For unstable regimes, the rate of phase separation increases
with increasing polymer chain length m; see Fig. 3(a).

4. Dispersions become more unstable with increasing value of the
Flory-Huggins interaction parameter vdp; see Fig. 3(b).

5. Binary drug/polymer systems are capable of exhibiting a rich
set of dynamical behaviours. In the numerical simulations per-
formed in the current study, we observed the formation of poly-
mer droplets and strings, the phase inversion phenomenon,
Ostwald ripening, and droplet-to-string transitions.

The model can be evaluated empirically using microscopy by
comparing the theoretical simulations with corresponding images
seen in the microscope. Hot-stage polarized light microscopy is
one notable possibility – see [44] for a discussion of relevant exper-
imental techniques.
There is ample scope for extending the modelling work pre-
sented in the current study. One limitation of the binary model
considered here is that it assumes that the polymer is perfectly
dry. However, if the dispersions are stored in humid conditions,
this is not a good assumption since even small amounts of mois-
ture in the dispersion may significantly affect the mobility of the
drug. Another avenue for extending the modelling work developed
here is to use statistical models that capture more of the detail of
the drug-polymer interaction in the dispersion; see, for example,
SAFT models [35]. Viscoelastic effects may also play a significant
role in the separation process since the polymer molecules are
much larger than the drug molecules in a solid dispersion, giving
rise to dynamic asymmetry between the components. Such models
are significantly more complex than the model we have considered
in the current study; see [45] for some discussion of such models.
Another valid critique of the current modelling is that it is inca-
pable of distinguishing between crystalline and amorphous drug.
Finally, the we have only considered the storage problem here,
and have not addressed the dissolution behaviour at all. The disso-
lution of solid dispersions is at best partially understood, and there
are many open issues that mathematical modelling may help
resolve.

It is noteworthy that the current study is the first (that we are
aware of) that models in detail the spatiotemporal evolution of
solid dispersions. Another novel feature of the current study is
the development of an effective diffusion coefficient for the drug
in the dispersion, the utility of which has been demonstrated in
the results sections. An unusual feature of our modelling is that
in Eq. (11) for the flux of species i, we have included the concentra-
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tion ci of species i. This concentration term is frequently omitted in
other studies, and a compositionally dependent mobility is
assumed instead – see, for example, [31] or [32].
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