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Multiple-component lattice Boltzmann equation for fluid-filled vesicles in flow
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We document the derivation and implementation of extensions to a two-dimensional, multicomponent lattice
Boltzmann equation model, with Laplace law interfacial tension. The extended model behaves in such a way that
the boundary between its immiscible drop and embedding fluid components can be shown to describe a vesicle
of constant volume bounded by a membrane with conserved length, specified interface compressibility, bending
rigidity, preferred curvature, and interfacial tension. We describe how to apply this result to several, independent
vesicles. The extended scheme is completely Eulerian, and it represents a two-way coupled vesicle membrane
and flow within a single framework. Unlike previous methods, our approach dispenses entirely with the need
explicitly to track the membrane, or boundary, and makes no use whatsoever of computationally expensive and
intricate interface tracking and remeshing. Validation data are presented, which demonstrate the utility of the
method in the simulation of the flow of high volume fraction suspensions of deformable objects.
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I. INTRODUCTION

The flow of incompressible fluids containing a large volume
fraction of deformable particles, or vesicles, is a fundamental
matter which impacts upon inter alia the microscale flow of
blood in vessels of diameter <100 μm, where it (blood) cannot
be considered a continuum.

Secomb and Pries and their coworkers have worked
extensively on flows containing single red blood cells, vesicles,
and capsules. These authors have developed a range of analyses
and computational models, based upon traditional numerical
techniques, which address problems ranging from the physics
of individual vesicles in flow (see Skotheim and Secomb
[1] and the references therein) to careful models of single
red blood cells flowing along microcapillaries with complex
boundary shapes and interactions (see, e.g., Secomb et al. [2]
and the references therein).

Other previous work is more closely related to ours here,
which is based upon hydrokinetic methods. Using a boundary
integral technique to represent a single membrane-enclosed
vesicle in flow, Kaoui and his coworkers have considered
fundamental questions of red blood cell shape asymmetry [3]
and computed the migration of a single, deformable bicuspid
vesicle in an unbounded shear flow [4]. The latter approach was
combined, with a hydrokinetic or lattice Boltzmann equation
(LBM) flow solver, to simulate tank-treading motion under
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confined shear [5]. Similar “immersed-boundary” techniques
[6] were combined with LBM by Zhang et al. to address the
problem of up to four, deformable capsules in two dimensions
[7] and recently by Krüger et al. [8], who assess very carefully
the accuracy of the general method.

In practical terms, the work of Dupin et al. [9] is a bench-
mark. Dupin was the first to address the high concentration,
fully three-dimensional (3D) regime, using LBM-based meth-
ods, successfully simulating of the order of a hundred red blood
cells, flowing in cylindrical, large-capillary scale confined
geometry. While Dupin et al. pointed a way to simulations
of blood at this scale, with moderate numbers of explicitly
resolved, deforming cells, their approach was not without
limitations. The demonstrability of the physical boundary
conditions at the vesicle surface, control of ballistic impact
between vesicles and the algorithmic complexity, necessary
to convect and deform 3D vesicles, using a separate surface
mesh of points and facets for every vesicle, represent important
limitations. Possibly the most important recent innovation in
the explicit simulation of blood is due to Melchionna et al., who
devised an LBM-based simulation which retains a carefully
calculated, minimal, but still explicit representation of rigid red
blood cells and can, as a consequence, access cardiovascular
scales [10,11].

The studies identified above already incorporate all the
membrane physics included in the present work, though
by use of very different methods and with different de-
grees of verifiability. The present work is an advance in
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technique; its objective is to provide an analytically verifiable,
single-framework methodology, for the accurate simulation
of multiple vesicle systems, with an accessible algorithm and
access to a scaling of computation which is predictable and
efficient, as both the number of vesicles and the dimensionality
of the problem are increased [12]. To this end, we consider how
to embed a similar concept of a membrane (and, hence, vesicle)
into a different class of LBM simulation, the multicomponent
lattice Boltzmann (MCLB) method.

The list of areas in which LBM [13–15] has advantages
over traditional computational fluid dynamics is of restricted
length. Computation of the flow of immiscible, interacting
fluid components is, however, close to its top. In this article,
we extend an MCLB technique for multiple immiscible fluids,
described in the isothermal, continuum regime of arrested
coalescence, generalizing the extant method of maintaining an
interface between separated fluids to allow one to model the
physical properties of a closed membrane of given interfacial
tension, bending rigidity, and interface compressibility, while
conserving enclosed volume and membrane area.

There are excellent reasons to found the simulation of
multiple, discrete vesicles upon MCLB simulation: (1)
vesicle volume is automatically conserved, since the internal
fluid is incompressible, (2) MCLB techniques with arrested
coalescence and appropriate interface kinematics (free from
unphysical cross-interfacial fluxes) already exist, (3) MCLB
techniques with efficient representation of many mutually
immiscible phases already exist [12,16,17], and (4) simulation
of many vesicle systems requires the parallelization, by domain
decomposition, to which MCLB is well adapted. Hence, we
will augment an appropriately chosen MCLB algorithm, with
the intention of adding to its existing Laplace law interfacial
tension property, those additional properties listed above. By
selecting an appropriate MCLB, vesicles’ volume conservation
and mutual immiscibility will accrue automatically, making
for efficient multiple vesicle simulations.

We begin by setting out the assumptions implicit in our
approach. Next we derive an appropriate membrane force
density. We then proceed to a review of one particular,
existing MCLB simulation for completely immiscible fluids
separated by an interface with only Laplace law interfacial
tension, then show how the immersed boundary force density
in such a simulation may be straightforwardly modified, to
include bending rigidity and conserved area effects. We will
then consider the extension of this method to more than
two mutually immiscible fluids, i.e., to multiple vesicles.
Finally, we present simulation data and conclusions. For
clarity, mathematical detail is placed in the Appendix, where
we will also state the model extension to three dimensions,
reserving detail for later publications. For simplicity we work
in two dimensions throughout the majority of this work.

II. PHYSICAL AND MODELING ASSUMPTIONS

It is important to distinguish between, on one hand,
the algorithmic details of the way in which an appropriate
membrane boundary is created in MCLB simulation, and, on
the other, the physical system which we attempt to approximate
and its mathematical encapsulation. In this section, we are
concerned with the latter.

Since we address a vesicle membrane within the continuum
approximation of fluid mechanics, the membrane has no
resolved internal structure: It is manifest as a boundary
condition, controlling the interaction between two otherwise
independent, incompressible flows. Put another way, any
structure is an accidental artifact of our approach. We also
assume that the membrane is impermeable, with a negligi-
ble flux of fluid across it. The membrane we consider is
similar to that considered by Kaoui et al. [4]. Physically,
such a membrane is a phospholipid bilayer which may be
viewed as a 2D incompressible fluid. Hence, any flow of
the membrane must be everywhere in the direction of its
local tangent plane. We pursue this matter in detail in the
Appendix.

We suppose that the microscale properties of the membrane
allow local strains to relax very rapidly, relative to time scales
characteristic of the continuum regime of viscous flow, in
which regime both the separated fluids and the membrane faces
must move at the same speed, locally. The boundary conditions
on the flow may therefore be stated as a requirement that the
separated, immiscible fluids and the interface, or membrane,
should move together (velocities would still need to match if
the components were partially miscible; in the present case,
however, the diffusive current also vanishes). The kinematic
condition of mutual impenetrability is the requirement that the
velocity of the separated fluids must match at the boundary. We
consider the extent to which our method meets this requirement
in the Appendix. We note that, to recover, e.g., tank-treading
behavior in the vesicle, the interface, or membrane, must be
able to move in the direction parallel to its local tangent plane,
which is consistent with the kinematic condition of mutual
impenetrability.

We shall assume that the reader is familiar with the lattice
Boltzmann method [13], and we will discuss only the most
relevant aspects of our core method in this article.

In summary, the final motion of the local membrane,
from which tank-treading, shape deformation, and lubrication
effects must all emerge, will rely on the membrane’s ability to
move in a manner consistent with (1) the kinematic conditions
of mutual impenetrability and (2) any membrane strains
accompanying the relaxation of local stresses. The treatment
in the Appendix proves that requirement (1) is present in our
model. The same analysis shows that negligible unphysical
fluid fluxes cross the membrane. In respect of (2), recall that
the present work contains an assumption of rapid relaxation
of interfacial strains; i.e., we model a membrane which is
always close to mechanical equilibrium where it is highly
incompressible.

III. A MEMBRANE FORCE

Let us consider a plane, 2D vesicle, enclosed by a membrane
represented by a closed, two-dimensional curve. That is,
we describe the membrane location with a continuous, 2D
regularly parameterized curve γ (t) : I → R2 with traditional
parameter t , which corresponds to distance measured along
the undeformed membrane. No confusion should arise from
this notation, as time does not appear as a variable outside the
Appendix. We denote by s the distance measured along the
strained membrane.
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Denote by F(r) that external force density which it is
necessary to impress in an MCLB fluid, to portray the
membrane. To be consistent with previous work [18] this force,
arising from the membrane length element, must eventually be
applied as a force density, throughout a local volume element
of LBM fluid. A given volume element of fluid will be subject
to both viscous and membrane forces. The former appear
automatically in MCLB, but the membrane force density must
be imposed as that external, immersed boundary force density
which we begin to consider here.

A. Analysis of a 2D vesicle

The analysis of this section considers a single vesicle and
assumes that stresses in the membrane relax quickly.

The equilibrium shape of a neutrally buoyant vesicle at rest
may be obtained by constrained minimization of its excess free
energy functional, subject to constraints of constant surface
area and constant enclosed volume [19]. For our model, we
choose to approach the constraint of constant surface area
by introducing a force contribution and conservation of the
volume enclosed by the membrane is automatically fulfilled
(because the vesicle’s interior is incompressible)and need not
be considered explicitly.

Let us determine the net force acting on a length element
of an isolated, 2D membrane, by forming the variational
derivative of a convenient excess free energy functional,
A[r(t)]. The position of a point on the deformed membrane is

r(t) = (x(t),y(t)), (1)

and the local arc length is

ds =
√

ẋ(t)2 + ẏ(t)2 dt ≡ u(ẋ,ẏ) dt, (2)

in which we note that u(ẋ,ẏ) has no explicit t dependence. It
follows that the membrane length in the strained state

L =
∫ L0

0
u(ẋ,ẏ) dt, (3)

where we denote by L0 the unstrained length at mechanical
equilibrium.

It is natural to consider a set of physically distinct
contributions to the excess free energy. If the membrane is
stretched from its original length, its free energy increases.
The associated excess free energy is

AL[r(t)] = α

2

∫ L0

0
[u(ẋ,ẏ) − 1]2dt, (4)

in which α is the membrane compressibility. The free energy
arising from the membrane’s departure from its preferred
curvature, K0, is

AK [r(t)] = κ

2

∫ L0

0
[K(ẋ,ẏ,ẍ,ÿ) − K0]2u(ẋ,ẏ) dt, (5)

where κ is the membrane bending rigidity. Note that the
integrand depends upon second derivatives of x(t) with respect
to t . Finally, the contribution from the interfacial tension of the
membrane is

AS[r(t)] = σ

∫ L0

0
u(ẋ,ẏ) dt, (6)

where σ is the membrane’s interfacial tension parameter. Here,
the vesicle interior fluid is assumed to be incompressible, so no
volume changes can occur. However, for completeness, the ex-
cess free energy associated with 2D volume (i.e., area) changes
may be evaluated as follows. If the vesicle has initial volume V0

and is assumed to be filled by a medium with compressibility
C, the excess pressure is p = C{V [r(t)]/V0 − 1}, where the
functional V [r(t)] = ∫ L0

0 y(t)ẋ(t) dt : The excess free energy

due to compressibility is then AV [r(t)] = ∫ V

V0
p dV .

When the vesicle volume is constant, the excess free energy
may be expressed without this contribution as the following
functional:

A[r(t)] = AL[r(t)] + AS[r(t)] + AK [r(t)]. (7)

The incremental force, Fdt , acting upon a membrane length
element of length ds may be now obtained from the variational
derivative of Eq. (7):

F(t) = −δA[r(t)]

δr(t)
≡ FL(t) + FS(t) + FK (t), (8)

with FL(t) ≡ − δAL[r(t)]
δr(t) , etc. Using our stated assumptions, we

show in detail in the Appendix that

FL(t) = α
L

L0

(
1 − L

L0

)
Kn̂, (9)

FS(t) = −σ
L

L0
Kn̂, (10)

FK (t) = κ
L

L0

[
1

2
K

(
K2 − K2

0

) + d2K

ds2

]
n̂, (11)

where n̂ is positive in the direction pointing away from the
volume enclosed by the membrane. Despite its composite
character, the net force on length element, ds, is apparently
directed purely in the surface-normal direction, which assists
the stability of the method. The above expressions are similar
to and consistent with those derived by Kaoui et al. [4].

It is appropriate to recall that we have derived, in this
subsection, a force per unit length of membrane. It is necessary
to convert this force to a suitable force density.

B. Application to MCLB simulation

How is the membrane physics of the previous section to be
incorporated into a MCLB simulation? The most accessible
MCLB interface is that due to Lishchuk et al. [20]. We consider
first how to adapt Lishchuk’s method to the simulation of
single vesicles. Subsequently, we will present an extension to
multiple vesicles. We will consider the extent to which other
MCLB interface methodologies (e.g., the popular Shan-Chen
method [21]) might be utilized in our discussion.

Since the pioneering work of Gunstensen and Rothman
[22], several two-component MCLB methods have arisen.
Each is distinguished by the way in which it imposes an
interface. Where the kinematics of phase separation must
be considered, free-energy methods [23,24] and their ther-
modynamically consistent extensions, due to Wagner and
coworkers [25–27], based, as they are, on the Cahn-Hilliard
theory, are appropriate. For workers with a background in
molecular simulation, the Shan-Chen method [21] is a natural
choice. We use the MCLB interface of Lishchuk et al. [20],
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which is adapted to completely arrested coalescence, i.e.,
completely immiscible fluids, considered in the continuum
approximation. Lishchuk’s method for interfacial tension [20],
used with appropriate component segregation [28], furnishes
a robust MCLB technique with assigned surface tension and
continuum interfacial kinematics and dynamics. A further, key,
advantage of MCLB methods, including Lishchuk’s method,
is that one can restrict computational memory requirements,
such that, in two dimensions, for a number of immiscible
components M > 5, computational memory requirements do
not increase and execution time increases only slowly [16,17].
While it is not relevant here, it is important to note that gener-
alization of Lishchuk’s method to M > 2 mutually immiscible
components requires care (if correct Laplace-Young behavior
is to emerge [18]).

In Lishchuk’s method, Laplace law and “no-traction”
effects arise from a curvature-dependent external force density,
impressed primarily in regions where the fluid components’
phase field varies most rapidly. Suppose two fluid distributions
which occupy lattice link i, at position r to be described
by distribution functions, Ri(r) and Bi(r) [of course, with
fi(r) = Ri(r) + Bi(r)]. The nodal density of the red and blue
fluids,

ρR(r) =
∑

i

Ri(r), ρB(r) =
∑

i

Bi(r), (12)

is used to define A local phase field [28]:

ρN (r) = ρR(r) − ρB(r)

ρR(r) + ρB(r)
. (13)

Surfaces ρN = const define the interface, and ρN = 0 is
taken to be its center. Throughout the narrow but distributed
interfacial region, the local interface normal is

n̂ = − ∇ρN

|∇ρN | . (14)

With this definition, for a red drop in a blue fluid, the interface
normal unit vector, n̂, points away from the enclosed red
fluid. Local interfacial curvature is obtained from the surface
gradient of n̂ = (n̂x,n̂y), which, in two dimensions, is [20]

K ≡ n̂x n̂y

(
∂n̂y

∂x
+ ∂n̂x

∂y

)
− n̂2

y

∂n̂x

∂x
− n̂2

x

∂n̂y

∂y
. (15)

All the derivatives in Eqs. (14) and (15) may be computed to
third-order accuracy with an appropriate stencil:

∂f

∂xα

= 1

k2

∑
i �=0

tif (r + ci)ciα + o(h4), (16)

where h denotes lattice spacing, the lattice isotropy constant
k2 = c2

s = 1/3 for our D2Q9 lattice, and the summation omits
the rest link direction i = 0. The above stencil’s convenience
and accuracy arises indirectly, as a consequence of the careful
way in which LBE simulation lattice geometries are chosen
[13]. Clearly, the number of grid points required to calculate a
gradient depends upon the cardinality of the LBE lattice unit
cell’s basis set, Q. To avoid misleading the reader, however, let
us consider the number of grid points implicit in the calculation
of second-gradient K , being a gradient of n̂, itself a gradient in
ρN . Q − 1 neighbors are visited to compute the gradient of n̂,

with each neighbors’s value of n̂ itself requiring Q − 1 visits,
implicating a total of (Q − 1)2 neighbors in the calculation
of K . However, this overestimate neglects repeated visits to
common neighbors. In the case of a D2Q9 lattice, visits may
be rationalized, using a predetermined stencil (based directly
upon that above) involving only 25 neighbors.

Application of the normally directed force density:

F = 1
2∇ρNσK, (17)

in which 1
2∇ρN is an appropriate weight biasing phase field

boundary regions [20], may be shown to recover correct
dynamics for the continuum regime [20]. That is, a Laplace law
pressure step [29] across interfacial regions and the no-traction
condition arise from the force density in Eq. (17).

Correct interfacial kinematics arise from an appropriate
segregation step. The kinematic property of mutual impen-
etrability emerges from correctly chosen, postcollision color
segregation rules [28]. In the Appendix, we consider the cross
section of the interface (it is central to this work that phase
fields have constant width, irrespective of interface orientation,
relative to the lattice)

He et al. [30] and Guo et al. [31] generalized the LBGK
model, originally devised by Qian et al. [32], to describe
lattice fluid subject to a known, spatially variable external force
denisty, F. Collision and forcing of the distribution function
are

f
†
i = f

(0)
i (ρ,ρu) +

(
1 − 1

τ

)
f

(1)
i (∇ρ, . . . ,∂xuy, . . . ,F)

+Fi(τ,F,u), (18)

where the dagger superscript indicates a postcollision, pre-
propagate quantity, f

(0)
i (ρ,u) denotes the equilibrium distri-

bution function [13], and the source term, Fi is

Fi = ti

(
1 − 1

2τ

)[
ci − u

c2
s

+ (ci · u)(ci)

c4
s

]
· F, (19)

where all symbols have their usual meaning; see, e.g.,
Ref. [28].

Shortly, we shall write a generaliazed form of the force
density in Eq. (17), which imparts membrane physics. We
stress that this generalized force density can be handled
without any further modification of the methodology outlined
in this subsection.

C. MCLB membrane force density

To avoid unphysical transverse fluxes, the interface or
membrane must advect in flow in a manner consistent with
the kinematic condition of mutual impenetrability, without
dispersion and without introducing significant noise in the
underlying flow simulation method. The analysis in the
Appendix shows that these requirements are met in our model.
Further to these kinematic conditions, additional physics is
required. This is obtained by generalizing the MCLB force
density for “Laplace law” physics, embedded in Eq. (17), into
a form which accords with the membrane force introduced in
Sec. III A.

To obtain an expression for membrane force density, we
transform the force acting on a length ds, Fdt , given by Eq. (8),
by dividing by an expression for ds. Recall that parameter,
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t , corresponds to length measured along the equilibrium
membrane shape, which has length L0. By assuming that
the stresses in the strained membrane, length L, relax rapidly
relative to flow time scales and that membrane strain is uniform
throughout, one obtains ds

dt
= L

L0
, or ds = (L/L0)dt . Hence,

using Eq. (8) and canceling factors of L/L0, the force per unit
length of membrane, or membrane force density is

F = 1

2
∇ρNK

[
σ − α

(
1 − L

L0

)
− κ

2

(
K2 − K2

0

)]

− κ

2
∇ρN d2K

ds2
, (20)

The assumptions we have made results in this expression,
which is particularly convenient for computation. Note that
the phase field gradient 1

2∇ρN , which is introduced as a
weight, is positive in the direction of −n̂, the factor 1/2
being necessary to produce the correct cumulative force, since∫ 


−


dρN

dx
dx = ρN (
) − ρN (−
) = 2 (here, ±
 are locations

deep within the blue and red fluids, where ρN = ±1). Also note
that in the distributed force density of Eq. (20), K = 1/R varies
with position. Let us estimate its expectation value as follows.
〈 1

R
〉 = 1

2

∫ 


−


dρN

dx
( 1
R0+x

)dx, in which R0 is the radius of

curvature of the ρN = 0 contour. Suppose x/R0 < 1 and take
a binomial expansion to o[(x/R0)2] in the integrand. Noting
that the weight dρN

dx
is an even function, the term linear in

x/R0 gives an odd contribution and 〈 1
R0

〉 � 1
2R0

(
∫ 


−


dρN

dx
dx +

2
R2

0

∫ 


0
dρN

dx
x2 dx). Approximating the second integral using

the trapezium rule returns a value of 3.45, hence the 〈 1
R
〉 =

1
R0

+ 3.45
R3

0
. From this, it is possible to estimate the error in

K = 1
R0

attending the use of the distributed force density in
Eq. (20): For R0 > 8, this error is less than 5%.

Let us return to the membrane force density in Eq. (20).
We note that Laplace law behavior is restored by setting
α = κ = 0 (which then corresponds to the force density of
Lishchuk’s method), that a weight 1

2∇ρN , introduced in place
of n̂, produces a smoothly varying external force density, with
the correct cumulative effect in unit length of membrane (see
next section), that F still acts purely in the direction of the
interface normal, that an effective, length-dependent surface
tension:

σ ′(σ,L,L0,α) = σ − α

(
1 − L

L0

)
, (21)

which can be negative can be considered to act, that, in
comparison with a Laplace law model, the membrane force
density requires only the additional calculation of interface
length, L, and, finally, that the second gradient of curvature
must calculated, after Eq. (15), using a surface gradient
calculation:

dK

ds
= n̂x n̂y

(
∂K

∂x
+ ∂K

∂y

)
− n̂2

y

∂K

∂x
− n̂2

x

∂K

∂y
, (22)

repeatedly. Henceforth, we set the preferred curvature, K0 = 0,
corresponding to a flat membrane.

The membrane force density of Eq. (20) has three steady
contributions, controlled by parameters κ , α, σ , and L. Since
α, σ , and L span a single effective interfacial tension, the

membrane force density has only two independent parameters,
σ ′ and κ . Moreover, the force density is always normally
directed. These facts underlie the stability of the present model,
but this stability will be jeopardized by extensions of the
model’s physical content, such as the fluid density contrasts to
be discussed in Sec. III F and when resolution is inadequate
accurately to compute Eq. (22) (see Sec. IV).

D. Numerical measurement of interface length and width

The membrane force density in Eq. (20) depends upon a
measurement of vesicle boundary length, L. We must therefore
devise an accurate, robust, efficient, and easy to implement
interface length measurement which takes into account the
fact that the phase field which defines the interface, ρN , varies
in two dimensions. (In bulk fluids, ρN has a constant value but
changes “continuously” at the interface between phases.)

Let the interface occupy region r : |∇ρN |(r) < 1.0 × 10−8.
Suppose that n̂ · ∇ρN depends only on the scalar dis-
tance, n, measured perpendicular from the ρN = 0 contour,
in the direction of n̂; i.e., suppose that n̂ · ∇ρN is independent
of the orientation of the interface relative to the lattice. To
provide a value for L, the 2D area, A0, of the interfacial region
is defined and measured, then divided by an appropriately
defined interface width, W0, measured in the direction of ∇ρN .
Clearly, it is essential that the boundary phase field has a trans-
verse variation which is independent of orientation relative to
the lattice, independent of motion relative to the lattice and
allows W0 to be considered a small, global constant. These
properties are considered in the Appendix and assumed here.

Assuming the variation of the phase field is described by
ρN = tanh(βn), with β the segregation parameter used in
Lishchuk’s method [28], convenient numerical values for A0

and W0 are obtained as follows. An appropriate choice of an
interfacial weight function is |∇ρN | = β(1 − ρN 2

) [18] (β =
0.67 in this work). The lattice area, A0, occupied by interfacial
fluid is now defined as a surface integral, which is well
approximated by a quadrature, or whole lattice summation:

A0 ≡
∫ ∫ (

1 − ρN 2)
dS �

∑
r

[1 − ρN (r)2]. (23)

This is essentially a discrete summation of |∇ρN |. For unit
length of interface, we define a second integral, which we
again approximate as a lattice summation:

W0 ≡
∫ (

1 − ρN 2)
dn �

∑
r∈S0

[1 − ρN (r)2], (24)

in which summation the discrete values of r are restricted to
a subset, S0, of the lattice which corresponds to strip of unit
width, orientated perpendicular to the contour ρN = 0. For
a D2Q9 lattice [13], a numerical integration; i.e., a lattice
summation yields 2.947 � W0 � 2.985, depending upon the
orientation of the interface with respect to the lattice. W0

is considered to be a constant. The summation in Eq. (23),
however, must be evaluated at every time step, the length of
the membrane interface being conveniently defined as follows:

L = A0

W0
. (25)
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Tests of this method conducted on flat interfaces, inclined
at a range of angles relative to the lattice, show the value of
interfacial length obtained in this way compares well to its
geometrical length, the maximum error corresponding to 4% .

The value of W0 does not estimate the geometrical interface
width. A measure of the latter is obtained by considering
the distribution of the force density in Eq. (20), as follows.
Consider a flat interface. The weight of the force density is
1
2

dρN

dx
, where x is distance perpendicular to the interface and

let ρN (0) = 0. Hence 〈x〉 = 0. The interface width may be
estimated from

√
〈x2〉. 〈x2〉 = ∫ 


−

1
2

dρN

dx
x2dx. Now, weight

1
2

dρN

dx
is an even function well approximated by β[1 − ρN (x)2]

[18] where β = 0.67 is the segregation parameter [28,33]
defined in Eq. (A20). We analyze the segregation process in
the Appendix. Now 〈x2〉 = ∫ 


−

1
2β(1 − ρNx2)x2 dx ≈ 1.727

using a trapezium rule approximation. Hence, the finite
geometrical width of the interface may be estimated:√

〈x2〉 ≈
√

1.727 = 1.314 (26)

for β = 0.69. The value of interface segregation parameter,
β, would clearly affect this number. β = 0.69 is a maximum
for stable operation [28] and 1.314 lattice units represents the
minimum interface thickness. Moreover, any layer of fluid
of thickness <1.314, being thinner than the interface must
be regarded as badly resolved. We return to this point. The
above value of

√
〈x2〉 is well supported by simulations, is

independent of the interface orientation and local flow (see
the Appendix), and is not influenced by any parameter other
than computational resolution (considered below) except for
Laplace law interfaces with large interfacial tension, when
pressure (i.e., lattice fluid density [13]) varies rapidly in the
interfacial region, and the assumptions made in predicting
the interfacial width degrade. In the present context, the
pressure step across the membrane is very small, and the
width of the interface, i.e., the ρN variation is independent of
mechanical parametrization and local flow environments. This
observation is, again, supported by simulations. In Sec. IV, we
shall return to assess, in context, the effect of resolution on
the sharp interface behavior of the present vesicle model. Note
that our model converges on a stable interfacial profile in time
steps on the order of a hundred, independent of the value of β.

E. Bulk vesicle properties in MCLB

A vesicle is, in general, filled with an incompressible fluid,
red fluid, which may have a significantly different viscosity
from the embedding blue fluid. In principle, the internal fluid
may also have a density contrast, though for our envisaged
applications, the latter is likely to be small.

Our MCLB model will accommodate significant viscosity
contrast satisfactorily, by continuously varying the LB colli-
sion parameter, τ , from τB to τR , with a profile which matches
the phase field variation (data not shown):

τ (r) = τR + τB

2
− ρN (r)

(
τR − τB

2

)
, (27)

but its ability to accommodate a significant density contrast
is more restricted. In the past, we developed a method
for simulating a density contrasts across the closely related

Laplace law interface, which relies upon the action of a
tangentially directed, “insulating” force, acting only in the
interfacial region, to regulate the transmission of shear stresses
in accord with an assumed density contrast (which is different
from the LB density, ρ) [34]. In principle, this method could
also be applied the the present model directly. However,
the convenient structure of the membrane force density in
Sec. III C, is undermined by a tangential force component,
which would have destabilizing effects, certainly at low
resolutions. Nevertheless, with adequate resolution, moderate
effective density contrasts may be accessible to the present
method, which matter we will pursue in a future publication.

F. Multiple vesicles in MCLB

Different vesicles must not coalesce, overlap or attach in
flow. We describe, in this subsection, minimal modifications
which adapt, to the case of many vesicles, one MCLB
technique [18] for M � 2 multiple, mutually immiscible
liquid drops, characterized by Laplace and Young-Laplace law
behavior. This method recognizes that it is impossible to define
curvature at a contact point between three mutually immiscible
fluids, and so it relies on point thermodynamic arguments [35]
which remove the need to measure interface curvature. We note
that, in a different context (that drop break-up), this essential
problem was first recognized and solved by the same essential
idea by Zaleski et al., as long ago as 1995 [36]. We will use
the notation of reference [18].

Before defining a behavior (1) between embedding and
vesicle fluids and (2) between two different vesicle fluids, we
remark that, in the case of many vesicles, Young-Laplace law
contact behavior is inappropriate, and ballistic contact between
two suspended vesicles may be rare, due to a the presence
of a lubrication layer of the fluid in which the vesicles are
embedded. We effectively ensure that such a lubricating layer
always remains in the contact, in this work.

(1) Vesicle-embedding fluid interaction. Since no Laplace-
Young contact need exist for vesicles, it is possible to revert to a
body force density based upon the computation of the curvature
between the embedding, 0, fluid and the mth fluid, which we
denote K0m, m �= 0,m < (M − 1). Consider a drop of fluid
m �= 0 to be the interior of a vesicle embedded or supported
in the background plasma of fluid m ≡ 0. Let us here denote
the color degree of freedom on the LBM distribution function
by a superscript as follows: f m

i . The associated vesicle fluid
density, ρm, phase field relative to the embedding fluid, ρN

0m

and interfacial normals, n̂0m, are defined in Eqs. (61), (63), and
(64) of Ref. [18], respectively. The local membrane curvature
for the mth vesicle is computed by adapting Eq. (15):

Km0 = n̂m0x n̂m0y

(
∂n̂m0y

∂x
+ ∂n̂m0x

∂y

)
− n̂2

m0y

∂n̂m0x

∂x

− n̂2
m0x

∂n̂m0y

∂y
. (28)

The appropriate body-force density for the mth vesicle fluid
and membrane is simply obtained from Eq. (20) of the
previous subsection of this article, with K → Km0. Finally, the
postcollision fluid-component segregation step is performed
using Eq. (69) of Ref. [18].
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(2) Vesicle-vesicle fluid interaction. Vesicles in close
approach may trap a film of the fluid in which they are
embedded. In principle, this film may be thinner than the
width of the membrane in our model (which was quantified
in Sec. III D). We chose to impose an interface body force
density corresponding to large Laplace law interfacial tension
between vesicle fluid n �= 0 and vesicle fluid m �= 0, using
precisely the local interface method of Ref. [18], without any
modification whatsoever. This choice guarantees that vesicles
do not coalesce and provides a well-defined behavior, but it
also ensures that a thin layer embedding fluid is induced to
remain in the region between two independent vesicles.

We reserve a discussion of the consequences of (2) to the
Results and Discussion section.

IV. RESULTS AND DISCUSSION

Throughout this section, we will use LB units. It is possible
straightforwardly to calibrate simulations using dimensionless
groups. We aim to present results which demonstrate the key
credentials of our purely Eulerian, MCLB-based, membrane
method and to provide computational validation. Since the
purpose of this work is to furnish a new means of simulating
flows containing multiple vesicles, we are concerned with
membranes which are close to mechanical equilibrium, at all
times, and we will not consider the dynamics of membrane
relaxation. Recall that the vesicle membrane material is
assumed to have a preferred curvature, K0 = 0 (corresponding
to a sheet of material which is naturally flat), all simulation
data presented were obtained using that LB model usually
designated the D2Q9, single relaxation time “LBGK” variant
[13], and no viscosity contrast was applied between the internal
and external fluids.

Unless otherwise stated, τ = 1 for both internal and
external fluids and vesicles were all initialized with an ellip-
soidal shape, characterized by a semimajor (semiminor) axis
length of a = 22 (b = 18) lattice units. Euler’s approximate
expression π

√
2(a2 + b2) for the perimeter of the ellipse

(appropriate for such as aspect ratio as ours, here) was used to
compute an initial vesicle “volume” to length ratio close to ten
(9.85) lattice units. The area (a conserved quantity, of course)
is, accordingly, A0 = πab for all the data presented. Some
data use τ �= 1 and vary the initial vesicle size, in order to
make valid comparisons with other workers’ data or to verify
the robustness of our model.

Figure 1 shows, for what we anticipate is a typical
parametrization, pressure, and microcurrent of a pair of
aligned, stationary bicuspid vesicle membranes. The interfa-
cial microcurrent or spurious velocity field which arises in
MCLB interfaces is clearly small for the parametrization used
here, due in part to the fact that the internal and external fluids
are at similar pressure (that inside the vesicle being slightly
lower than that in the embedding fluid). The microcurrent esti-
mates the error attending the analysis of the Appendix, since it
alone is responsible for any unphysical cross-membrane fluxes.
Experience with Laplace law interfaces strongly suggests
microcurrent activity may be regulated by using the smallest
possible values of parameters α and σ .

The remainder of our results aim to validate and demon-
strate, in particular, that multiple vesicles induced to flow past
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FIG. 1. Note that the microcurrent activity (right panel) is greatly
amplified in this figure. The left panel depicts the pressure field. For
the final simulation state of two parallel vesicles, shown in this figure,
the membrane compressibility, or interface length parameter, α =
0.015 lattice units, the interfacial tension parameter σ = 0.008 lattice
units, the bending rigidity κ = 0.55, and the membrane’s preferred
length is 176. The final length of both vesicles is 174 lattice units.
Both the steady-state pressure step and the interfacial microcurrent
activity are very small and localized for this parametrization.

each other retain their individual integrity and behave in a
physically correct manner throughout the encounter. Given
the scope of extant methods on single vesicles, the latter data
are key to potential utility of this work.

A. Isolated vesicle at rest

A significant excess length is required if a bicuspid shape
is to emerge as the final vesicle shape. Thus, the preferred
length of the vesicle membrane is set to be a factor Q0 = 1.4
greater than the initial length, i.e., parameter L0 = 176 lattice
units, unless stated otherwise. For sufficiently large values
of interface compressibility α (see below) this target value
of L0 is, typically, reached within 104 time steps, with the
final value of the measured length lying within 3.5% of
the set value. Length alone is not a good indicator of the
mechanical equilibrium, or steady state. While L approaches
final L0 promptly, the equilibrium vesicle shape takes longer
to emerge. It should also be noted that the parameter α, should
be chosen to maintain membrane incompressibility in dynamic
simulations.

We quantify the effect of the model’s finite interface width
by consider an isolated vesicle subject to shear flow, in the
next subsection.

The data presented in Fig. 2 illustrate the influence of
the bending rigidity, κ , on dynamics. For Fig. 2, α = 0.07,
σ = 0.008, L0 = 176 (corresponding to Q0 = 1.4), and T =
4.5 × 104. These values are all consistent with a bicuspid shape
when the bending rigidity lies in the range 0.3 � κ � 0.003.
For a given time, we note that the larger values of κ give
larger aspect ratios (the aspect ratio of the κ = 0.3 data,
shown, is approximately 11/3) and better resemble the shape of
erythrocytes. For κ = 0.3,

√
κ/σ � 6. Inequality

√
κ/σ < a

characterizes biological objects. Data produced for κ = 0.55,
σ = 2 × 10−5 (not shown), corresponding to

√
κ/σ � 10a,

with a the initial vesicle semimajor axis recall, produce a
shape very similar to that shown with κ = 0.3 but with a still
larger aspect ratio (11/3).
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κ = 0.3
κ = 0.03
κ = 0.003

FIG. 2. For the membrane shapes shown in this figure, the
interface length parameter α = 0.07 lattice units, the interfacial
tension parameter σ = 0.008 lattice units, and the membrane’s
preferred length is 176 and the time T = 4.54. The bending rigidity is
varied 0.3 � κ � 0.003. A bicuspid shape clearly emerges for a wide
range of bending rigidities, but more rapidly for larger value of κ .

The data presented in Fig. 3 illustrate the influence of the
length relaxation parameter, or membrane compressibility, α.
We expect that α will have an important influence on relaxation
dynamics of the membrane but neglect this matter, since
a majority of the applications we envisage will require the
membrane to be close to a mechanical equilibrium at all times,
choosing to concentrate instead on the influence of α upon final
equilibrium shape. That said, practical considerations press
the need for a broad range of usable parameters. Figure 3 was
compiled for the following data (all stated in lattice units or
dimensionless): κ = 0.5, σ = 0.008, L0 = 176 (Q0 = 1.4).
The preferred length is achieved, to within 5%, only for
α > 0.15.

As one might expect, the effect of the membrane compress-
ibility, α, must be considered alongside the chosen value of
interfacial tension, σ . To understand the connection, observe
that the pressure step across the vesicle membrane is small for
all shapes, irrespective of the value of bending rigidity, κ . It is
tempting to neglect the role of κ and to consider a form of local
Laplace law behavior in the membrane, characterized by an
effective interfacial tension σ − α(1 − L

L0
). On approximating

the local pressure step to zero and canceling the local curvature

α = 0.03
α = 0.05
α = 0.07
α = 0.15

FIG. 3. For the final membrane shapes shown in this figure, the
bending rigidity parameter, κ = 0.55 lattice units, the interfacial
tension parameter σ = 0.008 lattice units, and the preferred length
of the membrane L0 = 176. The interface length parameter, 0.03 �
α � 0.15 lattice units. A bicuspid shape clearly emerges for value of
α > 0.05, although the preferred value of length is reached only to
within 5% for α > 0.15.

Q = 1.2
Q = 1.3
Q = 1.4
Q = 1.5

FIG. 4. For the final membrane shapes shown in this figure, the
bending rigidity parameter, κ = 0.55 lattice units, the interfacial
tension parameter σ = 0.008 lattice units, the membrane compress-
ibility, α = 0.15 lattice units, and the preferred lengths of the
membrane L0, determined also by the parameter Q0, were specified
as follows: L0 = 151 (Q0 = 1.2), L0 = 163 (Q0 = 1.3), L0 = 176
(Q0 = 1.4), and L0 = 188 (Q0 = 1.5).

(which is not zero, note), we obtain σ − α(1 − L
L0

) = 0, which
may be rearranged to provide a useful expression for the final
length of the membrane at mechanical equilibrium:

L = min

[
L0

(
1 − σ

α

)
,2

√
πA0

]
, (29)

in which the ration σ/α is dimensionless. The last result
recognizes that the length of the membrane cannot be less
the perimeter of a circle of area equal to the initial area, A0.
The last equation is useful in calibrating membrane shape. In
fact, all tested parametrizations obey Eq. (29), which appears
to relate parameters L, σ , κ , α, and L0 very well.

Clearly, our model’s interface compressibility parameter
affects the final length of the membrane, at steady state.
However, once a final vesicle membrane length is achieved,
that length is maintained constant, which is consistent with
our assumptions, particularly of a membrane which does not
compress.

The data presented in Fig. 4 aim to illustrate the influence
of the preferred length, L0, or Q0 on the final shape. For this
data, the bending rigidity parameter, κ = 0.55, σ = 0.008,
α = 0.15, and the preferred lengths of the membrane L0,
determined also by the parameter Q0, were specified as
follows: L0 = 151 (Q0 = 1.2), L0 = 163 (Q0 = 1.3), L0 =
176 (Q0 = 1.4), and L0 = 188 (Q0 = 1.5).

To validate the static properties of the vesicles which
emerge in our method, we employ the dimensionless deflation,
reduced volume, or swelling parameter, defined after Kaoui
et al. [3,4]. Deflation α′ (not to be confused with our interface
compressibility parameter) is defined in terms of the vesicle
perimeter, L, as follows:

α′ ≡ S

π
(

L2

2π

) = 4πS

L2
, (30)

in which S denotes the measured area of the vesicle. Deflation,
in two dimensions, is the ratio of the area of a circle also
having perimeter L to the vesicle area, S. Figure 5 shows
a range of final vesicle shapes, classified by the computed
value of α′, obtained using the present method. These static
shapes are independent of the value of κ used (in agreement
with Kaoui et al. [3,4]) and correspond very well with those
shown in Fig. 2 of Ref. [5], which were obtained using a
boundary-integral based technique. Note that the shapes in
Fig. 5 are rotated by π/2 radians relative to others presented
in this section solely to facilitate comparisons with data in
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FIG. 5. Static validation. In these data, parameter α′ denotes
vesicle deflation. The figure shows final vesicle shapes for a range
of reduced volume, α′ = 4πS L2, where S denotes the measured
area of the vesicle. The final vesicle shapes shown here are in good
agreement with those obtained by Kaoui et al. [5], who use an
unrelated boundary-integral-based technique.

Ref. [5]. The data presented in this figure were obtained using
a resolution which corresponds as closely as possible to that
used by Kaoui et al. In the next section we will use the deflation
to perform computational validations.

B. Single vesicle in confined flow

Using a boundary integral method, Kaoui et al. [4] com-
puted the migration of a single, deformable bicuspid vesicle
in an unbounded Poiseuille flow [4] and Secomb and Pries,
and their coworkers, have conducted leading in silico studies
of single red blood cells, which often include impressive detail
of the complex interaction between the cell and the containing
vessel wall (a glycocalyx-lined capillary should be treated as
a compressible porous medium [37]).

Convergence to the narrow interface limit in our model
and its relationship to resolution was assessed by applying a
fixed shear to a confined vesicle, characterized by a fixed set
of parameters, while increasing system resolution. Figure 6
shows a progression in steady-state vesicle deformation, (L −
B)/(L + B), until a certain level of resolution. Note that the
inset image shows convergence to steady shape and angle of
inclination. R0 denotes the initially circular vesicle’s radius
and, temporarily, L (B) denotes the semimajor (semiminor)
axis length of the steady-state shape (inset image).

Figure 7 represents a line of equally spaced, identical 2D
vesicles, each parameterized like those in previous figures
(σ = 0.008 lattice units, κ = 0.55 lattice units, α = 0.15
lattice units, Q0 = 1.4) to produce a bicuspid shape in
mechanical equilibrium. These vesicles are confined between
infinite horizontal boundaries y = 0,122 lattice units and
subject to a horizontal body force density of 2.0 × 10−6

lattice units, which accelerates them in the axial direction.
The MCLB distribution functions were constrained to be
symmetric about the horizontal symmetry axis in order to
minimize simulation effort (a fully resolved simulation at
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FIG. 6. (Color online) Convergence to the narrow interface limit
and its relationship to resolution. A fixed shear was applied to a
confined vesicle, characterized by a fixed set of parameters, while
increasing system resolution. There is a progression in steady-
state vesicle deformation, (L − B)/(L + B), until a certain level
of resolution. The inset image confirms that the steady angle of
inclination is invariant. R0 denotes the initial vesicle radius, and,
for this figure only, L (B) denotes the semimajor (semiminor) axis
length of the steady-state shape (inset image). For this data, α′ = 1.0,
χ = 0.4, Ca = 1.0, Re = 9.45 × 10−2 or Kaoui et al. [4].

Re > 1 will introduce the possibility of lateral migration of a
deformed vesicle which has lost its front-to-back symmetry).
The membrane length did not change significantly, as flow was
applied, indicating an incompressible membrane. The data of
the figure show the resulting steady state of the system. The
data in Fig. 7 clearly show the vesicle membrane behaving
as a fluid. Consider the stagnation point at the intersection of
the horizontal symmetry axis and vesicle membrane, to the
right of the figure. Above (below) this point, the internal and
external fluids in immediate contact with the membrane have
a positive (negative) y-velocity component. In the continuum
approximation the relative motion of the separated fluids must
vanish at a boundary, and so, relative to the boundary, there
can be no normal component of velocity and the fluids layer
confined to the interface, or membrane, is conserved. This is
consistent with our assumptions. In fact, the same observations
apply to a simple droplet, which does not have a conserved
surface area.

In the data of Fig. 8 the vesicle assumes a more familiar
shape, in response to a different set of simulation parameters
(see figure caption). It should be noted that symmetry was
enforced along the midchannel, in the data of Figs. 7 and 8.
Therefore, the vesicle shape depicted here may not represent
the stable state of an unconstrained system [3].

In order to validate the present model computationally, we
choose to compare data from our model with Kaoui’s data
for a single vesicle in confined, shear flow [5]. For a range
of Kaoui’s confinement parameter χ , we plot, in Fig. 9, the
inclination of the steady-state vesicle, quantified by the angle
subtended at the shear direction of the vesicle long axis, as
a function of the vesicle deflation parameter, α′. The data of
Kaoui et al. was obtained manually from the Fig. 3, presented
in Ref. [5]. The LBGK relaxation parameter τ = 1.2 for these
data, the simulation lattice measured 60 × 120 lattice units,
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FIG. 7. For the final membrane shape (solid line) and steady-state
flow (broken lines, see below) shown here, σ = 0.008 lattice units,
κ = 0.55 lattice units, α = 0.15 lattice units, Q0 = 1.4. The vesicle
depicted is one of an infinite sequence of identical, equally spaced
vesicles which are sedimenting under gravity. The gravitational body
force density applied to the vesicle fluid (only) was 2.0 × 10−6 lattice
units. The broken lines image relative flow: They represent contours
of constant value of the rectangular stream function, computed in the
rest frame of the vesicles. The lack of symmetry is solely an artifact of
the plotting package. It should be noted that symmetry was enforced
along the midchannel. Therefore, the vesicle shape depicted here may
not represent the stable state of an unconstrained system.

the initial vesicle radius being 12, to match the resolution used
by Kaoui et al. The data presented are insensitive to doubling
the simulation resolution. These facts encourage a view that
our method is sensibly robust and practical. Given that the
two techniques are very different, the agreement between data

FIG. 8. For the more familiar final membrane shape (solid line)
and steady-state flow (broken lines, see below) shown here, σ =
0.016 lattice units, κ = 0.35 lattice units, α = 0.15 lattice units, Q0 =
1.4. The vesicle depicted is one of an infinite sequence of identical,
equally spaced vesicles which are sedimenting under gravity. The
gravitational body force density applied to the vesicle fluid (only) was
increased to 1.0 × 10−5 lattice units. Again, any lack of symmetry is
an artifact of the plotting package.
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FIG. 9. (Color online) In this data, parameter α′ denotes vesicle
deflation, not interface compressibility. Validation of the present
model against Kaoui’s data for a single vesicle in confined, shear
flow [5], for a range of confinement parameter χ . The inclination
of the steady-state vesicle, quantified by the angle subtended at the
shear direction of the vesicle long axis is plotted as a function of
deflation, α. The LBGK relaxation parameter τ = 1.2 for these data,
the simulation lattice measured 60 × 120 lattice units, the initial
vesicle radius being 12, to match the resolution used by Kaoui et al.

from the present model and that obtained by Kaoui et al. is
good, with our data spanning a similar range of observations
to that of Kaoui et al., while exhibiting a similar trend.

C. Multiple sedimenting vesicles in unbounded flow

The data presented in this section aim to demonstrate our
model’s facility with multiple vesicles, which encounter each
other in flow. We consider an infinite 2D array of identical
bi-cuspid vesicles, each represented by a different fluid. The
image in Fig. 10 is the unit cell. The embedding fluid, and
the fluid which fills both vesicles are all mutually immiscible
but have identical physical properties. The interface between
the vesicle fluids is characterized by a Laplace law interfacial
tension [18].

Consider the array of static vesicles depicted in part (a)
of Fig. 10. To these vesicles, body forces will be applied.
Suppose the initial vertical spacing between horizontal layers
is reduced to zero, that is, vesicles are initialized to overlap.
If the interfacial tension between mutually immiscible vesicle
fluids, σ ′, is set to be large compared with membrane interfacial
tension (here σ ′ = 10σ ), then even vesicles initialized in direct
contact (without a film of embedding fluid) will separate,
embedding fluid flowing into the narrow gap. The interface
in MCLB simulation is not discontinuous. In our variant, the
interfacial phase field varies as tanh(βn). Recall that n denotes
distance measured in the direction of the interfacial normal
(see the Appendix). At mechanical equilibrium, define the
width, W , of the layer of embedding fluid in the contact, after
equilibration:

W =
∫

ρ0(n)n2 dn∫
ρ0(n) dn

. (31)
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(a) (b)

FIG. 10. (a) The solid line represents the initial shape of a multiple
vesicle simulation, showing the two vesicles which make up the unit
cell of this simulation, which uses periodic boundary conditions on
all sides of the box, or unit cell. The static bicuspid vesicles and
embedding fluid are comprised of mutually immiscible fluids. The
vesicle membrane parameters are σ = 0.008 lattice units, κ = 0.55
lattice units, α = 0.15 lattice units, and Q0 = 1.4. (b) Evolved state
of the multiple vesicle simulation depicted in (a) after a body-force
density of 5.0 × 10−5 lattice units has been applied for 1.25 × 104

time steps. In (b) the relative velocity field is coarse grained, having
been plotted every third lattice site, for clarity.

Replacing the integrations with appropriate summations (see
Sec. III D), we measure W = 2.37 from simulations, which is
small. Indeed, flow-induced ballistic contact between vesicles
was observed not to arise in simulations. Hence, it is possible to
set σ ′ small in practice. This freedom to select a small vesicle-
vesicle fluid interfacial tension results in a small external
force density in the region where membranes encounter each
other. Consequently, one will observe only hydrodynamics
(but see below) in that region, which may therefore be
characterized as a parallel, locally flat membranes confining a
layer of embedding fluid. No vesicle contact lubrication force
is postulated in this data presented here. In Sec. III D, we
have calculated a characteristic interface width in our model
which is greater than the lattice spacing, recall, and it may be
argued that a thinner layer of embedding fluid is improperly
resolved and that an effective lubrication force should therefore
be necessary above the sublattice threshold. Such a lubrication
correction was proposed for LB by Nguyen and Ladd [38]. The
approach of Nguyen and Ladd might be applied to our model,
though to overcome the destabilizing effect previously noted,
attending the imposition of another force, larger resolution
would be required. We return to this matter in our conclusions.

For the data of Fig. 10, the static vesicle membrane
parameters are σ = 0.008 lattice units, κ = 0.55 lattice units,
α = 0.15 lattice units, and Q0 = 1.4. From the initial steady
state in part (a) of Fig. 10, the upper (lower) vesicle is
induced by a body-force density, of magnitude 5.0 × 10−5

lattice units, to move downwards (upwards). The magnitude
of the acceleration of both vesicles is identical. Their horizontal
spacing means that, in “counter-sedimenting” they must pass
close to each other at 1.25 × 104 time steps, while undergoing
noticeable deformation. The image in part (b) of Fig. 10
represents the later state of the flow field and the membrane
boundaries. Note that the velocity field is represented by
coarse-grained vector field (see caption), since it is not possible
to define a stream function for an unbounded environment.
We note, also, that interfacial tension postulated to act in
the interface between vesicle fluids is very small and has no
observable effect on flow.

V. CONCLUSION AND FURTHER WORK

We have presented an extension to a 2D multiple immiscible
fluid component lattice Boltzmann simulation method. While
preserving the underlying simplicity of the algorithm and all its
computational advantages, the resulting fluid-vesicle method
extends the physics of a fluid-fluid “Laplace-law” interface, to
impart additional membrane properties of preferred curvature,
bending rigidity and membrane compressibility, producing
a simulated vesicle with conserved membrane length and
volume, embedded in a viscous fluid. Crucially, the method
is shown to generalize straightforwardly to multiple vesi-
cles in flow. Uniquely, our method is completely Eulerian
and uses only the framework of multicomponent lattice
Boltzmann equation, and we make no use whatsoever of,
e.g., remeshing or hybrid Lagrangian schemes. None of our
easy-to-implement algorithmic extensions further compromise
the multiple-component lattice Boltzmann equation method’s
inherent affinity with parallel computation, the model has
an extensive stable parameter space, and the value of lattice
Boltzmann method collision parameter, τ , is not restricted by
their use.

The extended, multiple immiscible component lattice
Boltzmann method for vesicles we present is an evolution
of a scheme for multiple liquids [18,20]. It benefits from its
demonstrably correct interfacial kinematics and near-complete
absence of unphysical fluxes and spurious velocities. The vesi-
cles in the present model can access the biological regime and
the method retains the advantageous scaling of computational
effort, as the number of vesicles is increased, reported in related
previous work [17]. It should be noted that the most widely
used multiple component lattice Boltzmann technique, due
originally to Shan and Chen [21] has recently been extended,
effectively to the regime of interrupted coalescence utilized
here. So-called double-belt Shan-Chen implementations [39]
therefore provide, we believe, a potential alternative vehicle
for our method. Whatever its encapsulation, a model such as
that we have advanced, with deformable vesicles, requires a
resolution which, currently, confines its application to capillary
scales. We propose below certain remedies of restricted
yet worthwhile scope. However, we note that, to address
cardiovascular scales, the lattice Boltzmann method-based
approach of Melchionna et al. [10,11], which employs rigid,
minimal particulates, is currently the only practical approach
(and one algorithmically consistent with the current model).

We have noted the interface in the present model is of
finite width, which, while small (Sec. III D), introduces an
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unphysical length scale, the presence of which will be felt most
as simulation resolution decreases. In the future, by adjusting
the membrane force density distribution weight function,
we aim to sharpen the membrane force density and, hence,
reduce the effective width. Once this question is answered, an
appropriate lubrication force can be consistently introduced.
A 3D model is also required. The appropriate, purely normal
force per unit area of interface is given in the Appendix,
the appropriate weight function being that used here, namely,
∇ρN . It would be necessary only to devise a robust membrane
area measure.

The present work paves a way to an equivalent 3D method
(see the Appendix) and, hence, to accurate and feasible
deformable particle-laden flow applications in the biosciences.
To address larger scales, this objective will necessitate simpli-
fication, multiscaling and appeal to ideas embedded in such
models as that due to Melchionna et al. [10,11].

APPENDIX: DERIVATION OF MEMBRANE FORCES

Here we present detail in the derivation of the expressions,
given in Sec. III, for the force contributions acting on a 2D
membrane length element, ds. Three expressions are obtained
by taking the variational derivatives of the appropriate free
energy contribution AL[r], AS[r] and AK [r], respectively.
These energies are defined in Sec. III.

Recall that the parameter, t ∈ [0,L0], corresponds to length
measured along the undeformed membrane at mechanical
equilibrium and that u(ẋ,ẏ) ≡

√
ẋ2 + ẏ2 has no explicit

t dependence. We denote the unit vector normal to the
membrane n̂(t) with n̂ = (ẏ/u(ẋ,ẏ), − ẋ/u(ẋ,ẏ)). For brevity,
in the remainder of this subsection we shall simply write u.

Let us consider the excess free energy associated with a
length perturbation. The variational derivative of AL[r] with
respect to x gives the x component of the membrane force
contribution, FL:

FLx = − δ

δx

[
α

2

∫ L0

0
(u − 1)2dt

]
. (A1)

Now, defining the variational derivative in the usual way, using
the Euler-Lagrange equations [19] and substituting for u =√

ẋ2 + ẏ2, we have

FLx = −α

2

[
∂

∂x
− d

dt

(
∂

∂ẋ

)]
(
√

ẋ2 + ẏ2 − 1)2, (A2)

and, upon noting that there is no explicit dependence on x and
t in the expression (

√
ẋ2 + ẏ2 − 1)2, straightforward algebra

yields

FLx = αẍ + αẏ

[
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2

]
(A3)

in which equation the term in square brackets corresponds to
the curvature, K . The y component of this force is obtained
from the variational derivative on y(t), yielding

FL = α(ẍ,ÿ) + αK(ẏ,−ẋ) = α
d2r
dt2

+ αK(ẏ,−ẋ).

(A4)

This general expression for FL may now be adapted into
a particularly advantageous form, for MCLB computation,
by assuming rapid relaxation of membrane stresses on flow
timescales and, consistent with this, that the strain is uniform
throughout the membrane. Recalling the role of parameter,
t , we write ds

dt
= L

L0
. Now, (ẋ,ẏ) = dr

dt
= ds

dt
dr
ds

. Using the

definition of the unit tangent, t̂, and our assumptions we have
(ẋ,ẏ) = L

L0
t̂ and, hence,

(ẏ,−ẋ) = L

L0
n̂. (A5)

Next write d2r
dt2 = d

dt
( dr
ds

ds
dt

) = d
dt

(t̂ ds
dt

) = t̂ d2s
dt2 + ds

dt
d
dt

t̂ =
t̂ d2s

dt2 + ( ds
dt

)2 d
ds

t̂. Given ds
dt

is constant throughout the

membrane, d2s
dt2 = 0 and, being careful to take the normal in

the direction pointing away from the region enclosed by the
curve, we obtain

d2r
dt2

= d2s

dt2
t̂ +

(
ds

dt

)2

Kn̂ = K

(
L

L0

)2

n̂, (A6)

where we have used the Frenet-Serret formulas to introduce
the local curvature, K(t). On appeal to Eqs. (A5) and (A6), we
find an appropriate interface length-conserving force:

FL = α
L

L0
K

(
1 − L

L0

)
n̂. (A7)

The derivation of the interfacial tension force, FS , is similar
to that for FL. By direct use of the Euler-Lagrange equations
[19] and the definition of curvature in two dimensions we
obtain

FS = − δ

δr

(
σ

∫ L0

0
u dt

)
= σK(ẏ,−ẋ), (A8)

in general and, invoking our assumption of rapid relaxation of
membrane stresses, in the form of Eq. (A5), it follows:

FS = −σ
L

L0
Kn̂. (A9)

The derivation of the curvature contribution, FK , is slightly
more involved. The variational derivative in the right hand
side of Eq. (5) may clearly be written as the sum of three
contributions:

FK = −κ

2

δ

δr

(∫ L0

0
K2udt + K2

0

∫ L0

0
u dt

− 2K0

∫ L0

0
Kudt

)
. (A10)

The second term in the right-hand side of the above equation
is very similar to the expression for FS and clearly

− δ

δr

(
K2

0

∫ L0

0
u dt

)
= K2

0
L

L0
Kn̂. (A11)

The third term in expression (A10) gives zero, following the
method we now apply to the first term. In Eq. (A10), the
first term has an integrand which depends upon the second
derivatives, ẍ and ÿ (through K). Accordingly, it is necessary to
use extended Euler-Lagrange equations [19] for its variational
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derivative. On noting that K2u has no explicit x dependence:

δ

δx

(∫ L0

0
K2u dt

)
= − d

dt

[
∂

∂ẋ
− d

dt

(
∂

∂ẍ

)]
K2u.

(A12)

Now, it is straightforward to show ∂
∂ẍ

K2u = − 2Kẏ

u2 and
∂
∂ẋ

K2u = K2ẋ
u

− 4Kẋ2ÿ−2Kẏ2ÿ−6Kẋẏẍ

u4 . From these results, it is
possible to obtain the following, after some algebra:[

∂

∂ẋ
− d

dt

(
∂

∂ẍ

)]
K2u = −K2ẋ

u
+ 2ẏ

u2

dK

dt
. (A13)

Substituting Eq. (A13) into the Eq. (A12), performing the time
differentiation, and using the identity udu

dt
= ẋẍ + ẏÿ there

results

δ

δx

(∫ L0

0
K2u dt

)
= K3ẏ − 2ẏ

u2

(
d2K

dt2
− 1

u

du

dt

dK

dt

)
.

(A14)

Now, using the Chain Rule, one can show d2K
ds2 = 1

u2
d2K
dt2 −

1
u3

dK
dt

dK
dt

and hence we find, for the first term in expression
(A10):

δ

δx

(∫ L0

0
K2u dt

)
= K3ẏ − 2ẏ

u2

d2K

ds2
. (A15)

The corresponding variational derivative with respect to y

is computed in identical fashion. Then, using Eqs. (A5) and
(A15), we obtain, for curvature force:

FK = κ
L

L0

[
1

2
K

(
K2 − K2

0

) + d2K

ds2

]
n̂. (A16)

1. Membrane force in three dimensions

For completeness, we state, here, the normal force on a 3D
membrane surface element. Let the surface have instantaneous
(preferred) area A (A0), a single preferred curvature, H0,
a mean local curvature H = (K1 + K2)/2 and a Gaussian
curvature K = K1K2, where K1 and K2 and the principal
curvatures. We allow for spatial variation in the bending
rigidity, κ . The normal force acing upon, or due to such a
membrane is

Fn = −2σH + κC + ∇sκ.∇s(H − H0) − 2α(A − A0)H,

(A17)

where ∇s is the surface gradient, 
s is the Laplace-Beltrami
operator, and

C = H
(
H 2 − H 2

0

) + 1
2
sH − (H − H0)K. (A18)

2. Interfacial isotropy and Galilean invariance

Here we consider, in detail, the salient isotropy properties of
a 2D interface. Explicit reference to the MCLB lattice structure
is necessary and we therefore work on a D2Q9 lattice, for
simplicity and to maintain parity with previous, related work
[18].

We consider only that class of LBM interface arising from
use of one particular LBM fluid component segregation rule

[18,28] and further restrict our attention to the case of a flat
interface with any orientation relative to simulation lattice.

We consider (1) a stationary phase field boundary and (2)
one embedded in a uniform flow, seeking to demonstrate
its isotropic structure and the model’s Galilean invariance.
Our overall approach is to extract the macroscale motion
of the phase field boundary from the expansion of discrete,
microscopic dynamics of LBM.

We consider two immiscible fluids, designated red and blue,
described by two distribution function components, Ri and Bi .
Throughout, we will use the notation of Refs. [28] and [18].

a. Isotropy of the interface

In a uniform fluid at rest, the red fluid density, now denoted
for clarity R ≡ ρR = �iRi , associated with a flat interface,
without interfacial tension, and with orientation defined by
normal vector n̂, evolves according to the rule

R(r,t + δt ) =
9∑

i=0

Ri(r − ciδt ,t), (A19)

where, for d’Ortona’s segregation [33],

Ri(r,t) = R(r,t)
ρ(r,t)

fi + βti
R(r,t)B(r,t)

ρ(r,t)
ci · n̂. (A20)

In the summation in Eq. (A19), terms with an even (odd)
value of i have link weight tp = 1/9 (1/36). The rest link
has t0 = 4/9 [32]. The position vector r is expressed in a
coordinate system (x,y) which is aligned with the underlying
simulation lattice. In the case of rest fluids, at steady state
(moving fluids are treated in the next subsection), we can
therefore write

R(r) =
N∑

i=0

tiR(r − ciδt ) + β

ρ0
n̂

N∑
i=0

ticiR(r − ciδt )

× [ρ0 − R(r − ciδt )], (A21)

where all symbols have their usual meaning. In Eq. (A21) we
have used the fact that ρ(r,t) = ρ0, fi = tiρ0 for a uniform
fluid. By Taylor expanding the terms in the right-hand side,
about r, to second-order in the lattice spacing, h, there results,
after some algebra:

∇2R − 2
β

h
(n̂ · ∇)R + 2

β

hρ0
(n̂ · ∇)R2 = 0. (A22)

In the steady-state equation (A22), the usual properties of
lattice tensors have been used:∑

i

tpciαciβ = c2
s δαβ, (A23)

∑
i

tpciαciβciγ ciδ = c4
s (δαβδγ δ + δαγ δβδ + δαδδβγ ), (A24)

c2
s = 1

3

h2

δ2
t

, (A25)

where h is the mesh-spacing, i.e., the length of the lattice link
characterized by an even value of i. Note that the last result is
specific to the D2Q9 lattice.

Now, the following rotation of coordinates through angle
θ = cos−1(n̂y/n̂x), measured anticlockwise, into a Cartesian
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system aligned with its x̄ axis parallel to n̂:

x̄ = cos(θ )x + sin(θ )y, ȳ = − sin(θ )x + cos(θ )y (A26)

is used to transform Eq. (A22) as follows:

d2

dx̄2
R − 2

β

h

d

dx̄
R + 2

β

hρ0

d

dx̄
R2 = 0. (A27)

Clearly, a first integral of the above equation exists. On
supposing that, at large distances in the direction −n̂, R

approaches ρ0 and that at large distances in the direction +n̂, R
approaches zero, the solution to this equation is easily shown
to be

R(x,y) = ρ0

[
1 − tanh

(
β

h
x̄
)

2

]
. (A28)

Equation (A28) describes an interface structure and thickness
which is independent of interface orientation on the lattice. It
agrees with that result which one of us (I.H.) clearly should
have stated in the Appendix of a previous, more restricted
analysis [28].

b. Galilean invariance of the interface motion

It is appropriate to emphasize that, in this subsection, we
seek to determine the motion of an interface in a fluid which
is supposed to be moving uniformly, for any combination of
interface orientation and direction of fluid motion, u.

In the case of a fluid in uniform motion, u, containing a flat
interface, Eq. (A21) must be generalized to the following:

R(r,t + δt )

=
N∑

i=0

R(r − ciδt ,t)

ρ0
f

(0)
i (ρ0,u)

+ β

ρ0
n̂

N∑
i=0

ticiR(r − ciδt ,t)(ρ0 − R(r − ci)δt ,t). (A29)

Into Eq. (A29) substitute the usual expression for the D2Q9
lattice equilibrium f

(0)
i (ρ0,u) [32]:

f
(0)
i (ρ0,u) = ρ0tp

(
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u2

2c2
s

)
(A30)

and take a Taylor expansion about r and t on both sides.
Retaining terms of order δ2

t , the following equation is obtained
straightforwardly but after lengthy calculation:

δt

∂R

∂t
+ δ2

t

2

∂2R

∂t2
= h2

6
∇2R − δt (u · ∇)R + δ2

t

2
(u · ∇)2R

− βh

3
(n̂ · ∇)R + βh

3ρ0
(n̂ · ∇)R2. (A31)

In Eq. (A31) all derivatives are taken at position r, time t .
Note also that, to obtain Eq. (A31), the isotropy properties of
the second and fourth-order D2Q9 lattice tensors, reproduced
above, have been used in conjunction with the relationship
δt |cix | = h with i an even number.

Again, the transformation defined in Eq. (A26) is useful.
The x̄ axis lies parallel to n̂. Expressed in this frame of

reference, Eq. (A31) becomes

δt

[
∂R

∂t
+ (u · ∇)R

]
+ δ2

t

2

[
∂2R

∂t2
− (u · ∇)2R

]

= h2

6
∇2

R − βh

3

∂

∂x
R + βh

3ρ0

∂

∂x
R2, (A32)

where u denotes the velocity of the fluid, measured in the local,
rotated coordinate system (x,y). Note that the system (x,y) is
not dimensionless.

Now, in an infinite, uniform system, there can be no
variation of R in the direction parallel to the interface (the
y direction), whatever the tangential component of velocity,
uy . We return to the issue shortly.

Removing y derivatives from Eq. (A32) and applying
a second transformation to the remaining terms in x as
follows:

η = x̄ + uxt, ζ = x̄ − uxt, t = t, (A33)

Eq. (A32) takes the form

2uxδt

∂R

∂η
− 2u2

xδ
2
t

∂2R

∂η∂ζ

= h2

6

(
∂2

∂x2 R − 2
β

h

∂

∂x
R + 2

β

hρ0

∂

∂x
R2

)
, (A34)

where we note that transformation (A35) has been applied
only to terms on the left-hand side. The right-hand sides of
Eqs. (A34) and (A27) are structurally identical. By inspection,
the solution to this partial differential equation is

R(x,y,t) = ρ0

[
1 − tanh

(
β

h
ζ
)]

2
, ζ = x̄ − uxt. (A35)

Let us return to the case of motion parallel to the interface.
Suppose that ux = 0, uy �= 0. Equation (A32) becomes

δt

(
∂R

∂t
+ uy

∂R

∂y

)
+ δ2

t

2

(
∂2R

∂t2
− u2

y

∂2R

∂y2

)

= h2

6
∇2

R − βh

3

∂

∂x
R + βh

3ρ0

∂

∂x
R2. (A36)

This equation, the left-hand side of which essentially consists
of superposed first- and second-order wave equations, has a
separable solution obtained from d’Alembert’s solution of the
wave equation:

R(x,y,t) = ρ0

{[
1 − tanh

(
β

h
(x − uxt

)]
2

}
f (y − uyt),

(A37)

in which the undetermined function, f , must be consistent with
the appropriate initial conditions. If the interface is uniform,
we obtain f = const. This finding is, of course, perfectly
consistent with fluid motion in the direction tangent to the
interface, which is implicit throughout the analysis of this
section.

Together, Eqs. (A35) and (A37) show that the time
development of a flat interface, of the type used in this
work, corresponds to advection at the same speed as
the underlying fluid, in the direction perpendicular to in-
terface. This is consistent with the kinematic condition
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of mutual impenetrability and demonstrates the Galilean
invariance of an algorithmic component crucial to this
work.

Finally, we note that, subject to approximations made in this
section, there are, in our model, no unphysical fluxes across
phase field boundary and hence the vesicle membrane.
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