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In  order  to  address  the  problem  of  blood  flow  over  the  endothelium  in  small  arteries,  the  near-endothelial
region  is  here  studied  in more  detail.  The  method  used  is  a finite-volume  discretisation  of a  Lattice
Boltzmann  equation  over  unstructured  grids,  named  unstructured  Lattice  Boltzmann  equation  (ULBE).  It
is  a  new  scheme  based  on  the  idea  of placing  the  unknown  fields  at  the  nodes  of  the  mesh  and  evolving
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attice Boltzmann methods

them  based  on  the  fluxes  crossing  the  surfaces  of  the  corresponding  control  volumes.  The  study  shows  a
significant  variation  and  a high  sensitivity  of  wall  shear  stress  to  the  height  of  the  endothelium  corrugation
and  the  presence  of erythrocytes.  The  latter  were  modelled  as  deformable,  viscous  particles  within  a fluid
continuum.

© 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
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. Introduction

The flow of blood in arteries induces a viscous drag between the
utermost laminae of the fluid and the vessel wall. This mechanism
as a potential impact on the pathogenesis of arterial diseases. The
hear stress imposed on the wall can affect the functional and struc-
ural integrity of the endothelial cells (EC’s), and the possibility that
uch effects might be related to the development of atherosclero-
is has stimulated a great deal of investigation [1,2]. Stretching of
C’s may  modify the properties of the cell’s membrane in the form
f its permeability and receptors. Lesions usually occur at specific
oints of the arterial tree, which suggests that differences in local
tress may  play some role in its initialization. It is now commonly
ccepted that the preferred occurrence of atherosclerosis is in low
all shear regions, and variation of wall shear stress is playing a key

ole in the development of aneurysms, even in medium sized arter-
es [3].  Already early work by Caro et al. [4] observed that “From
ur own observations, and those of others, we show that the distri-
ution of early atheroma in man  is coincident with those regions in

hich arterial wall shear rate is expected to be relatively low, while

he development of lesions is inhibited or retarded in those regions
n which wall shear rate is expected to be relatively high”. Malek

∗ Corresponding author. Tel.: +39 0649270927; fax: +39 064404306.
E-mail address: giuseppe.pontrelli@gmail.com (G. Pontrelli).

350-4533/$ – see front matter ©  2011 IPEM. Published by Elsevier Ltd. All rights reserve
oi:10.1016/j.medengphy.2011.03.009
et al. [5] link atherosclerotic-prone sites to low shear stress <0.4 Pa
and above 1.5 Pa with an atheroprotective gene expression profile.
Sato and Ohashi give the range of EC shear stress exposure as vary-
ing from 1 to 4 Pa in large arteries [6].  Recently, Punchard et al.
show that in vitro monolayer EC’s have a dysfunctional response
to low wall shear stress (0.5 Pa) as observed by gene expression
[7]. While wall shear stress is now unanimously accepted as a key
factor in endothelial response and atherogenesis in large arteries,
detailed study of the near-wall region, with the exception of Ref.
[8],  is lacking. However, this becomes particularly necessary in the
case of small arteries, where the endothelial surface layer (ESL) is
more prominent.

Several studies concerning flows over wavy walled boundaries,
both from analytical [9,10],  numerical [11–13] and experimental
[14] points of view have been carried out. These studies are based
on a regular pattern of the wall profile, say sinusoidal or arc-shaped
with different amplitudes, and use perturbation analysis. Most are
concerned with relatively moderate and high Reynolds numbers
and aim to understand transition from laminar to turbulent flow,
by evidencing the formation of vortices and flow separation. In [15]
the characteristics of mass transfer are studied in relation to the
onset of turbulence.
In this study, though, we consider the undulation of the wall
as a sequence of EC’s with their dimension as obtained from the
literature (Fig. 1). Only recently it has been recognized that the
endothelial glycocalyx may  contribute to the protection of the vas-

d.
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Fig. 1. The rough surface of the endothelium (from Ref. [28]). Arrows point to gran-
ular structures on EC’s surface, white line marks scanning line for height profile
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order in the local Mach number:
valuation, scale bar corresponds to 5 �m.

ular wall in small vessels against disease by reducing friction to
he flow of blood and serving as a barrier for loss of fluid through
he vessel wall. In times of inflammation, though, the endothelial
ayer may  be sheared off, exposing the ‘bare surface’ of the wavy
ndothelium. This allows leukocytes to be attached to the surface
nd facilitates the transfer of plasma across the vessel wall into the
nderlying structure [16]. In this work, however, only mechanical
ffects are considered, while all chemical and biological processes
f the endothelium are neglected. The haemodynamic problem
s solved by using a Lattice Boltzmann (LB) approach [17]. The

ain advantages of LB are its simplicity and amenability to parallel
omputing [18–20].  With due implementation effort, high parallel
fficiency can be preserved also in image-based geometries exhibit-
ng real-life complexity [21–23].  In particular, owing to its kinetic
ature, the pressure field and the stress tensor are locally avail-
ble, without the need of solving any (usually expensive) Poisson
roblem.

Another key property of LB is that non-linearities are local, man-
festing in a quadratic dependence of the local equilibrium on the
ow field, and the non-localities are linear, because advection pro-
eeds along constant, straight lines defined by the discrete speeds.
his is a very useful property, not shared by the Navier–Stokes
quations, in which non-linearity and non-locality come together
nto the same convective term, that is, the fluid moves its own

omentum along a space-time changing direction defined by
he flow speed itself. However, a recognized weakness of LB
s its restriction to regular, uniform lattices (Cartesian grids).
his limitation is particularly severe whenever high local reso-
ution is required, as is the case for most flows of biomedical
nterest. For instance, curved boundaries must be approximated
y staircase profiles aligned with the gridline coordinates, an
pproximation which can lead to severe inaccuracies, unless a
ophisticated treatment of the boundary is devised or high grid
esolution applied [24]. The problem has motivated a wide body
f research aimed at extending the LB method to non-uniform
rids with boundary conditions capable of accommodating curved
oundaries [25]. Particularly interesting are the recent attempts to

ormulate LB on fully unstructured grids using cell-vertex finite-
olume schemes [26] and its extension to non-Newtonian flows
27].
g & Physics 33 (2011) 832– 839 833

2. Formulation of the problem

In nearly all studies of haemodynamics in arteries, blood is
assumed to be an incompressible, Newtonian fluid, the arterial wall
to be smooth, being the sub-micrometric corrugations neglected
and the endothelium surface considered flat: this does not imply a
significant variation in the flow field, but it can be relevant in com-
puting WSS, which is constant in a flat-walled artery. Indeed, the
internal surface of the vessel wall is covered by EC’s that form a
continuous, wavy layer. We assume that the EC membrane is solid-
like, so the cells keep their shape while subjected to the shear stress
due to the blood stream. An EC has been estimated to be about
15 �m long by 0.5 �m high [28] (see Fig. 1). We  consider a two-
dimensional channel flow between two boundary surfaces located
at y = ±h(x), with the x-axis in the direction of the mean flow. The
shape of each internal wall appears as a smoothly corrugated sur-
face: the channel semi-width is obtained as a perturbation around
a reference value H:

h(x) = H ± ı(x) = H(1 ± ε)

where ı(x) is given by repeating the profile of a single EC several
times and subsequently smoothing it [29]. In the above equation
ε = ı/H represents the corrugation degree.

Although the wall surface is, in reality, constituted by an irreg-
ular (randomly rough) sequence of ECs, for simplicity we assume
that they are regularly aligned and equally distributed over both
upper and lower walls, and that their size is independent of the
channel semi-width, H. For all H, the aspect ratio of the channel has
been fixed at 3, unless otherwise stated.

The aim of this work is to investigate the dependence and the
sensitivity of the WSS  to the wall roughness and the corrugation
height, and to quantify the WSS  differences with the variation of
vessel diameter and flow rates. Assuming axi-symmetry, this study
is limited to a two-dimensional straight channel, where a Newto-
nian fluid of viscosity � and density � flows, being driven by a force
(pressure difference) which is constant over the cross-sectional
area. Due to the absence of secondary flows, the fluid dynamics
predictions are based on a steady case, on the assumption that the
mean flow in pulsatile conditions is similar to steady flow with the
same time averaged velocity. On the other hand, the importance
of pulsatility reduces with reducing vessel diameter [30]. As blood
is not, strictly speaking, a continuous fluid, we  proceed briefly to
examine, in Section 6, the extent to which WSS  may  further vary
due to its true nature as a dense particulate suspension.

3. Lattice Boltzmann methodology

Let us consider the classical differential form of the single-time
relaxation Lattice Boltzmann equation:

∂tfi + �ci · ∇fi = −ω (fi − f eq
i

) + Fi (1)

The above equation models hydrodynamic fluid flow by tracking
the time-evolution of the density distribution function of pseudo-
particles (or populations), defined as fi(�x, t) ≡ f (x, �v = �ci, t) , where
fi is the probability of finding a particle at site �x,  at time t mov-
ing along the lattice direction defined by the discrete speed �ci.
In Eq. (1) Fi represents the effect of external/internal sources of
mass/momentum/energy. The left-hand side of Eq. (1) represents
the particle free-streaming, whereas the right-hand side represents
molecular collisions via a single-time relaxation towards local equi-
librium f eq

i
on a typical timescale 1/ω  [31]. The local equilibrium

is the Maxwell–Boltzmann distribution function expanded second
f eq
i

= �wi

[
1 + ˇui + ˇ2

2
(u2

i − u2)

]
(2)
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here  ̌ = 1/c2
s , being cs the lattice sound speed, � =

∑
ifi the

uid density, �u =
∑

i
�cifi/� is the fluid speed and wi are weight

oefficients (normalized to unity) associated with zero-flow global
quilibriums. In the limit of weak departures from local equi-
ibrium, i.e. small Knudsen numbers, it can be shown through

 Chapman–Enskog analysis that the discrete LB recovers the
ynamic behaviour of a fluid with pressure p = �c2

s and kinematic
iscosity � = c2

s ((1/ω)  + k�t), where k is a numerical coefficient
epending on the specific time-marching scheme (k = 0 in the con-
inuum time limit, and k = −1/2 for the standard LB equation on
niform Cartesian grids [31]).

In order to recover the correct fluid dynamic equations in the
acroscopic limit, the set of discrete speeds must satisfy mass,
omentum and energy conservation, as well as rotational symme-

ry. It should be noted that only a limited class of lattices exhibits
he right symmetry to ensure the conservation constraints. In the
resent work we shall refer to the two-dimensional nine-speed
odel (known as D2Q9) defined by the following set of discrete

peeds:

�c0 = (0,  0), �c1 = (1,  0), �c2 = (0,  1),
�c3 = (−1, 0), �c4 = (0,  −1), �c5 = (1,  1),
�c6 = (−1, 1), �c7 = (−1, −1), �c8 = (1,  −1).

ith weights w0 = 4/9, w1–4 = 1/9, w5–8 = 1/36 in Eq. (2).  The afore-
entioned low-Mach number expansion restricts the use of the

iscrete Boltzmann equation to quasi-incompressible flows, with
egligible space-time variation of the fluid density. On the other
and, since the discrete LB fluid obeys an ideal equation of state,
ignificant pressure drops can only be sustained by supplement-
ng/replacing the pressure gradient with an external body force
force per unit volume), �F .  In a steady plane-channel flow, the mag-
itude of the body force is determined by imposing an exact balance
ith dissipative effects, i.e. F = �∂yyux. This delivers:

 = 2�Umax

H2
.

This approach is equivalent to assign a pressure gradient
 = 2�Umax/H2 along the channel length. The effect of the body force
n the discrete populations in Eq. (1) is given by:

i = wi
�F · �ci

c2
s

hich finally results in the following forcing term:

i = 2Umax

ωH2
(3)

Boundary conditions are no-slip at top/bottom walls and peri-
dic at inlet/outlet.

. LB on unstructured grids

The presented standard LB method is macroscopically similar to
 uniform Cartesian-grid solver, and this represents a severe lim-
tation for solving complex geometries typical of haemodynamic
ows. To overcome this drawback, the classical LB method has
een extended to use irregular grids. This approach is based on a
nite-volume scheme of the cell-vertex type consisting of a tessel-

ation based on triangular elements. The use of unstructured grids
ith control volumes of arbitrary polygonal shape allows local grid

efinements which are not possible with the standard LB. To solve
q. (1),  the nine discrete populations fi(�x, t) associated to each node

 of the discrete grid (Fig. 2) represent the unknowns of the prob-

em. The finite volume over which Eq. (1) is integrated is defined by

eans of the set of K triangles, which share P as a common vertex.
ince the discrete grid is unstructured, each node is identified by its
oordinates and the connectivity (P,Pk,Pk+1) is free to change from
Fig. 2. The cell-vertex finite-volume discretisation around a grid point P.

node to node. As shown in Fig. 2, the portion of the control volume
˝k = [Ck,Ek,P,Ek+1] that refers to the k-th triangular element is built
through the union of the two sub-grid triangles ˝−

k
= [P, Ek, Ck] and

˝+
k

= [P, Ck, Ek+1], where Ck is the centre of the grid element and
Ek and Ek+1 are the midpoints of the edges that share P as a common
vertex. Populations at off-grid points Ek and Ck are calculated with
standard linear interpolations. Application of the Gauss theorem
to each finite volume portion yields the following set of ordinary
differential equations:

∂tfi(P, t) = 1
VP

∑
k

(˚ik − 	ik) (4)

where the sum k = 0, K runs over the control volume ˝P =
⋃

k˝k
obtained by joining the centres Ck with edge midpoints Ek, VP is the
volume of ˝P and the index k = 0 denotes the pivotal point P. Finally,
˚ik denote the fluxes associated with the streaming operator and
	ik the integral of the collision operators of the i-th population at
the k-th node, respectively. The detailed expressions of the stream-
ing and collision matrices Sik and Cik give the following general form
of the Unstructured Lattice Boltzmann Equation (ULBE):

∂tfi(P, t) =
K∑

k=0

Sikfi(Pk, t) − ω

K∑
k=0

Cik[fi(Pk, t) − f eq
i

(Pk, t)]

and they obey to the following sum rules [26]:

K∑
k=0

Sik = 0,

K∑
k=0

Cik = 1 ∀i

It is readily checked that the stress tensor ˘˛ˇ is related to the
non-equilibrium component of the momentum flux tensor by the
following local expression:

˘˛ˇ  =
∑

i

(fi − f eq
i

)ci˛ciˇ

where ˛,  ̌ run over spatial dimensions.
Boundary conditions for ULBE need to cope with the fact that

the corresponding control volumes do not close up, leaving two
external edges exposed on the boundary. To date, the best strategy
to deal with this problem is provided by the so-called covol-
ume method. Within this method, the boundary nodes are treated
exactly as fluid nodes, the only difference being that the edge fluxes

are evaluated explicitly by using interpolation at the boundary
edges. The boundary condition is then given in terms of enforced
macroscopic values in the equilibrium distribution function (U = 0
for the no-slip boundary condition). The covolume method works
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Reynolds (Re < 25) and with moderate wall corrugation, we  are
under the critical regime to be attained for the flow separation and
the flow remains laminar.
ig. 3. The 2D arterial segment (diameter 25 �m)  covered by a refined triangular
esh.

or generic boundary geometries and has proven to support rela-
ively strong boundary gradients [26].

. Computational results

First of all, a benchmark test was intended to assess the efficacy
f the ULBE methodology on a flat-walled artery fully developed
ow model. We  considered a uniform unstructured automatically
enerated grid on a 2D channel [−3H,3H] × [−H,H], consisting of
634 equidistributed elements, and the simulations were per-
ormed for a wide range of Reynolds numbers. A comparison of
LBE solution with the Poiseuille velocity profile:

(y) = Umax

(
1 − y2

H2

)
(5)

xhibits a maximum, non-dimensional error of E � 10−5, while the
iscrepancy with the wall shear stress

 = 4�Umax

D
(6)

esults of E � 10−4. Other benchmark tests on ULBE method and its
xtension to shear-thinning flows have been recently carried out
27]. Typical values for arterioles (microcirculation) are:

� = 1 g/cm3 � = 0.027P
D = 2H = 25–150 �m Umax = 1–40 cm/s

hat combine in a range of Re = �DUmax/� ∼= 0.1–20. Although these
alues can be larger than those pertaining to the arterioles, this
umerical set is aimed to understand the flow dependence on the
eometrical-physical parameters on a wider range and, in partic-
lar, the sensitivity of the solution on the degree of corrugation ε
nd on the Reynolds number.

The COMSOL package was used to generate the grid, with a mesh
efinement near the wall to suit the wavy profile. For this case, the
rid size ranges from 3830 (D = 25) to 7960 (D = 150) triangular ele-
ents. The grid is refined near the wall to suit the wavy endothelial

urface (Fig. 3). The channel maximum semi-width is normalized
o H = 1. The time step �t  is chosen in relation to the smallest grid
ize (which typically reduces as H increases) in order to satisfy the
FL condition.

At such small Reynolds number the velocity profiles preserve
he parabolic shape (Fig. 4), but the wall corrugation causes a
ocal change of the velocity derivative and hence an oscillation
n the WSS  values. As Fig. 5 shows, the stress rises linearly in
he transverse direction, except near the wall. Here the variation
n cross-sectional width generates a substantial local difference in
he shear rates and stresses. Fig. 5 shows that the consequence is

 local variation of these quantities in a boundary layer close to
he wall and an oscillation of the shear rates and WSS  along the
ndothelium.
As expected, an increase in the maximum shear stress, 
+ with
elocity, U is observed along the endothelium. Fig. 6 shows that 
+

ncreases essentially linearly with velocity, but inversely with D;
his is consistent with Eq. (6).  A similar behaviour holds for 
−. As
Fig. 4. Parabolic velocity profiles (×100) along the wavy-walled channel
(U = 40 cm/s, D = 50 �m).

a consequence, WSS  oscillates between a minimum 
− and maxi-
mum 
+ values, which match the undulation of the wall, that is, in
the studied low Reynolds number regime, the minimum and max-
imum of 
 correspond to the maximum and minimum diameters,
respectively.

Their values depend on the diameter and flow rate, but their
ratio 
−/
+ remains almost constant (Table 1), though numerical
instabilities, which can be attributed to the grid discreteness near
the wavy wall, are present in the WSS  values and are bound within
a few percent. Because it is argued that the amplitude of the time-
dependent fluctuating WSS  can play a relevant role in the formation
and development of atherosclerotic diseases we  also investigated
the question of geometry dependency. In the next section an analy-
sis of this is carried out. In Fig. 7, 
+ and 
− are shown as a function
of the corrugation degree ε. In the absence of experimental data
specifically for arterioles the limiting conditions used were those
for large arteries given in [6].  We  would expect the two conditions
of high and low shear stress to be similarly detrimental in small
arteries. The trend shown for both, 
+ and 
− is not unexpectedly
linear.

In agreement with previous studies [10,11], at such low
Fig. 5. Cross-stream variation of shear stress: continuous line – peak of EC; dashed
line  – valley of EC (LB units).
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Table 1
The ratio 
−/
+ at different velocities (cm/s) and diameters (�m).  The corresponding Reynolds numbers are bracketed.

D = 25 D = 50 D = 100 D = 150

U = 1 0.55 (0.09) 0.54–0.55 (0.185) 

U  = 20 0.55 (1.85) 0.54–0.55 (3.7) 

U  = 40 0.55 (3.7) 0.54–0.55 (7.4) 

Fig. 6. Variation of the maximum wall shear stress profile for varying diameter for
various maximum inlet velocities (cm/s). Stars indicate results from simulations,
continuous lines are fitting curves.

F
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v
a

T
T
v

cal system boundaries [38]. To represent erythrocytes, the initial,
ig. 7. Linear rise of 
− and 
+ as a function of corrugation degree ε for the case of
max = 1 cm/s. The region between 4 and 1 Pa shows the typical range of WSS  in large
rteries [6].

Tables 2 and 3 show the spatial amplitude of the oscillation
 = (
+ − 
−)/2 and demonstrate the (almost) linear increase with

. The ratio of the amplitude over the corresponding straight wall
alue 
* is nearly 25% in all cases. The results show a marked vari-
tion of 
 with the diameter, which increases for smaller sized

able 2
he spatial amplitude of oscillation of 
 and its ratio to the corresponding flat-walled
alue 
* at Umax = 1 cm/s and at several diameters.

D (�m) ε = ı/H A (Pa) A/
*

150 0.0067 0.177 0.24
100 0.01 0.272 0.25

50  0.02 0.576 0.26
25 0.04 1.152 0.26
0.55–0.56 (0.37) 0.55–0.57 (0.55)
0.55–0.56 (7.4) 0.55–0.57 (11.11)
0.55–0.56 (14.81) 0.55–0.57 (22.22)

arteries. Although the wall corrugation does not influence the flow
pattern notably, it induces a significant variation in 
.

6. WSS  variation due to the particulate nature of blood

The preceding section investigates in detail the WSS  behaviour
of blood approximated as an incompressible Newtonian fluid with
a realistic EC or “wavy” wall boundary conditions. In reality, blood
is a complex particulate fluid in which an incompressible Newto-
nian plasma advects deformable erythrocytes. As a consequence,
spatial-temporal WSS  fluctuations must occur. A detailed study of
such WSS  effects is beyond the scope of the current article but some
evaluation is called-for, to estimate the particulate influence.

Models of the motion of a single erythrocyte with an elastic
membrane and restricted deformation in non-uniform capillar-
ies, as presented by Secomb and Hsu [32] have been extended to
account for a deformable ESL. It was found that this deformable
ESL will reduce the impact of irregularity on flow resistance and,
possibly, protect RBC’s from damage from fluctuating stresses [33].
Also, many deformable erythrocytes have been modelled in uni-
form capillaries with LBM [34,35].  Clearly, a flow in which particles
are free to redistribute themselves cannot be described as steady,
even when its short-time averaged external driving conditions are
constant. Furthermore, the structure of the WSS  fluctuations must
vary with hematocrit, Re and geometry, even in smooth vessels
[34].

In this section we  confine ourselves to assessing the statistics of
particulate-induced WSS  fluctuations in a system closely related
to that studied in the previous section which, we argue below,
allows for simpler models of elasticity. Restricting hematocrit fur-
ther justifies the use of less demanding LBM models, which are
more accurate in other respects, as is explained below.

We consider an axially symmetric system containing, in terms of
Fig. 3, only five erythrocytes, all equally-spaced in the axial direc-
tion, one per spatial wall wavelength. The latter, denoted �, was
chosen to be � = 15 �m and, to reduce computational overhead,
the total channel height was reduced to H = 2�/3 = 10 �m.  There is,
therefore, one or zero erythrocyte(s) at a given axial location, at any
instant. Each erythrocyte was  modelled as a deformable, viscous
drop with appropriate kinematic viscosity contrast (increase factor
of 7), advecting under the influence of a specified axial pressure gra-
dient. A multi-component LB method [36] was  used to represent the
deformable particles, along with an appropriate sub-grid “continu-
ous bounce-back” representation for the wavy walls [37]. Flow was
driven by a specified pressure difference, applied across the verti-
undeformed, drop radius should approximate one third to one half
of the wavy walls’ wavelength, �. We  chose an initial drop diameter
of �/3 (and an initial spherical shape), resulting in an effective two-

Table 3
The spatial amplitude of oscillation of 
 and its ratio to the corresponding flat-walled
value 
* at Umax = 20 cm/s and at several diameters.

D (�m) ε = ı/H A (Pa) A/
*

150 0.0067 3.733 0.25
100 0.01 5.52 0.25

50  0.02 11.2 0.25
25 0.04 21.76 0.25
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Fig. 8. The measured temporal maximum, minimum and mean WSS  values, for 13% hematocrit, normalized to the spatial-temporal maximum, WSS0, measured at 0%
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ithout  markers corresponds to the steady WSS  at 0% hematocrit. The small irregul

losure.

imensional hematocrit given by �(�/6)2/2�(�/3) = �/24, which is
lose to 13%.

Previous LBM based computational modelling of multiple,
xplicitly represented erythrocytes in plasma represents the lat-
er as elastic Dirichlet boundaries of conserved area, which are
eformed and advected by flow stresses [34,35]. Such models are
nnecessary in the present context, given that hematocrit and
ssociated volume exclusion effects, Reynolds number and particle
eformation are all small. Further, problems arise in LBM with solid
agrangian particulates, for lattice sites cross moving boundaries,
nter the flow domain and therefore require initialization, which
rocess can result in instabilities. The relatively simple immiscible
rop algorithm employed in here is free of such problems, its hydro-
ynamics is physically accurate (in the contact region, this means
hat our drop model recovers kinematic and dynamic conditions
rom which we derive the lubrication and squeeze flow dynamics
ssential in portraying the EC-particulate contact: see [39] and ref-
rences therein) and it automatically returns constraints of volume
onservation and exclusion. However, the erythrocyte membrane
eformation is certainly best characterized as occurring at constant
rea, accommodated by an arbitrary variation in interfacial ten-
ion, whereas in our drop model, interfacial tension is constant.
n improved model, which retains the advantages we note above,
ight be produced by postulating an interfacial tension which

epends upon local interface curvature and imposing the constraint

f constant surface area. We  have these developments in hand:
eanwhile, the implicit assumption which is made in this work

s that, in the absence of strong shape perturbations, membrane
lasticity may  be adequately approximated by interfacial tension.

ig. 9. The time-variation of the instantaneous WSS  ratio, 
−/
+ (crosses). The broken line
his  modality of WSS  cannot be recovered by an incompressible, Newtonian fluid approx
BE system) for all spatial positions on the wavy wall. For reference, the broken line
 at certain values of x/� result from a small artefact associated with the LBE lattice

The regular lattice, single relaxation-time multi-component LB
simulation used [36] in this section may  be classified D2Q9 LBGK
[17]. For all results reported in this section, the wavelength, �, of
the wavy-wall was  resolved on 300 regular lattice sites, giving
a spatial resolution �x  ≡ �/300 = 15 × 10−6/300 = 5 × 10−8 m.  The
plasma fluid component was  represented by LB relaxation param-
eter, ω = 1/
  (see Eq. (1))  given by ω = 0.8, and the drop fluid by
ω = 0.174 (consistent with a viscosity contrast of 7). Equilibrated
flows were defined to have (i) equi-spaced particles, all with their
centre close to the horizontal axis of symmetry and (ii) a veloc-
ity residual characterized by a single time constant, T0 = �/〈 ud 〉,
corresponding to one erythrocyte “transit” over one wavy wall
wavelength, �. Here 〈ud〉 is the time-averaged drop drift velocity.
The Reynolds number, now defined as:

Re = �〈ud〉H
�

,

with H = 2�/3 the channel half-width, had a value close to unity.
Note that this definition of Re differs slightly from that used in the
previous section. The instantaneous WSS  distribution at the wavy-
wall surface was measured at regular time intervals during one
particle transit, at all 300 distinct grid positions. Fig. 8 shows, for all
spatial positions on the wavy-wall, the temporal maximum, mini-
mum and mean WSS  values, normalized to their spatial-temporal
maximum value WSS0, measured without any particles present, i.e.

at 0% hematocrit. We  note that, within the present, albeit very lim-
ited context, with a low hematocrit, the evident correspondence
between the erythrocyte transit time averaged, mean WSS  (diag-
onal crosses) and the 0% hematocrit value (broken line) clearly

 corresponds to the constant value of 
−/
+ ≈ 0.55 characteristic of the continuum.
imation.
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upports a view of continuum haemadynamics as a “mean value”
egime, even at the present scale. Notwithstanding the previous
emark, we note the very large fractional fluctuations in WSS  appar-
nt in Fig. 9, which assesses the time-variation of the instantaneous
SS  ratio, 
−/
+. Recall, 
−(
+) is measured at location x = 0 (x = �/2),

orresponding to the valley (peak) of the wavy-wall. Note that this
odality of WSS  cannot be recovered by an incompressible New-

onian fluid approximation alone. To underscore this point, the
roken horizontal line in Fig. 9 corresponds to value of 
−/
+ = 0.55
ypical of our continuum calculations. The time-averaged, mean
alue of the ratio 
−/
+ was computed, by numerical integration,
o be approximately 0.4857.

. Concluding remarks

While atheroma are pathologically associated with larger arter-
es, the high sensitivity of wall shear stress to the wall undulation
upports the hypothesis that the likely onset of clinical changes at
he artery wall also occurs in small arteries, of which remodelling is

 possibility. However, the endothelial surface is not only wavy in
ts geometry, but, at lower scale, it is covered by a ciliate layer called
lycocalyx (or ESL) [40], one of the functions of which is to provide
rotection to the endothelium. The remodelling may  occur partic-
larly in more progressed stages of the disease when the protective

ayer of the glycocalyx has been damaged or is no longer present.
hen the endothelium becomes directly exposed to the flow, a con-
ition consistent with the current model. Fig. 8 suggests that the
rythrocyte transit time-averaged WSS  spatial distributions largely
onform with the predictions of continuum hydrodynamics. How-
ver, Fig. 9 underscores the need to consider the particulate nature
f blood, as a suspension of deformable particles. In more detail,
ritical flow regions, such as low WSS, rapidly varying WSS  sites or,
n extreme cases, turbulence regions, are assumed to stimulate the
lycocalyx to send biochemical signals for the formation of fatty
tructures, such as atherosclerotic plaque. Recently, some mathe-
atical modelling work has been carried out by Arslan [41] and
incent et al. [42], using a porous medium to model the glycoca-

yx layer. However, none of these works includes the effect of the
oughness of the wall, which should be added for a realistic descrip-
ion that encompasses the fluctuating WSS  considered in Sections

 and 6. The presence of glycocalyx alters the boundary condition
f the problem, in particular the classical no-slip condition at the
essel wall may  have to be replaced to allow for plasma penetra-
ion through it. In turn, this may  lead to significant changes in the
redicted pressure drop and possibly to a smoothing of such fluctu-
tions, as identified in Section 6. A detailed discussion of models at
cales smaller than 10 �m is beyond the scope of the present work.
ince, however, an analysis of the extended corrugation/glycocalyx
odel is feasible, it will form an objective of future investigations.

onflict of interest statement

The authors disclose any financial and personal relationships
ith other people or organisations that could inappropriately influ-

nce (bias) this work.

eferences

[1] Nerem RM.  Vascular fluid mechanics, the arterial wall, and atherosclerosis. J
Biomech Eng 1992;114(3):274–83.

[2] Caro CG. Discovery of the role of wall shear in atherosclerosis. Arterioscl

Thromb Vasc Biol 2009;29:158–61.

[3] Shimogonya Y, Ishikawa T, Imai Y, Matsuki N, Yamaguchi T. Can temporal fluc-
tuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A
proposed novel hemodynamic index, the gradient oscillatory number (GON). J
Biomech 2009;42:550–4.

[

[

g & Physics 33 (2011) 832– 839

[4] Caro CG, Fitz-Gerald JM,  Schroter RC. Atheroma and arterial wall shear: obser-
vation, correlation and proposal of a shear dependent mass transfer mechanism
for atherogenesis. Proc R Soc Lond B 1971;177:109–59.

[5]  Malek AM,  Alper SL, Izumo S. Hemodynamic shear stress and its role in
atherosclerosis. JAMA 1999;282:2035–42.

[6] Sato M,  Ohashi T. Biorheological views of endothelial cell responses to mechan-
ical  stimuli. Biorheology 2005;42:421–41.

[7] Punchard MA,  Stenson-Cox C, O’Cearbhaill ED, Lyons E, Gundy S, Murphy L, et al.
Endothelial cell response to biomechanical forces under simulated vascular
loading conditions. J Biomech 2007;40:3146–54.

[8] Satcher RL, Bussolari SR, Gimbrone MA,  Dewey CF. The distribution of fluid
forces on model arterial endothelium using computational fluid dynamics. J
Biomech Eng 1992;114:309–16.

[9] Tsangaris S, Leiter E. On laminar steady flow in sinusoidal channels. J Eng Math
1984;18:89–103.

10] Sobey IJ. Flow through furrowed channels. Part I. Calculated flow patterns. J
Fluid Mech 1980;96:1–26.

11] Kaliakatsos Ch, Pentaris A, Koutsouris D, Tsangaris S. Application of an artifi-
cial compressibility methodology for the incompressible flow through a wavy
channel. Commun Numer Meth Eng 1996;12:359–69.

12] Luo H, Pozrikidis C. Shear-driven and channel flow of a liquid film over a cor-
rugated or indented wall. J Fluid Mech 2006;556:167–88.

13] Wang HL, Wang Y. Flow in microchannels with rough walls: flow pattern and
pressure drop. J Micromech Microeng 2007;17:576–96.

14] Focke WW,  Knibbe PG. Flow visualization in parallel-plate ducts with corru-
gated walls. J Fluid Mech 1986;165:73–7.

15] Nishimura T, Murakami S, Arakawa S, Kawamura Y. Flow observations and mass
transfer characteristics in symmetrical wavy-walled channels at moderate
Reynolds numbers for steady flows. Int J Heat Mass Transf 1990;33(5):835–45.

16] Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. Mechanotransduction and flow
across the endothelial glycocalyx. PNAS 2003;100(13):7988–95.

17] Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford:
Oxford University Press; 2001.

18] Amati G, Succi S, Piva R. Massively parallel Lattice-Boltzmann simulation of
turbulent channel flow. Int J Mod  Phys C 1997;8:869–77.

19] Desplat JC, Pagonabarraga I, Bladon P. LUDWIG: a parallel lattice-Boltzmann
code for complex fluids. Comput Phys Commun 2001;134:273–90.

20] Fyta M,  Melchionna S, Kaxiras E, Succi S. Multiscale coupling of molecular
dynamics and hydrodynamics: application to DNA translocation. Multi Model
Simul 2006;5:1156–73.

21] Mazzeo M,  Coveney PV. HemeLB: A high performance parallel lattice-
Boltzmann code for large scale fluid flow in complex geometries. Comput Phys
Commun 2008;178:894–914.

22] Artoli AM,  Hoekstra AG, Sloot PMA. Mesoscopic simulations of systolic flow in
the human abdominal aorta. J Biomech 2006;39:873–84.

23] Bernaschi M,  Melchionna S, Succi S, Fyta M,  Kaxiras E, Sircar J. MUPHY: a parallel
multiphysics/scale code for high-performance bio-fluidic simulations. Comput
Phys Commun 2009;180:1495–502.

24] Guo Z, Zheng C, Shu B. Discrete lattice effects on the forcing term in the lattice
Boltzmann method. Phys Rev E 2002;65:046308.

25] Peng G, Xi H, Duncan C. Lattice Boltzmann method on irregular meshes. Phys
Rev  E 1998;58:R4124.

26] Ubertini S, Succi S, Bella G. Lattice Boltzmann schemes without coordinates.
Phil Trans R Soc Lond A 2004;362:1763–71.

27] Janela J, Sequeira A, Pontrelli G, Succi S, Ubertini S. Unstructured Lattice-
Boltzmann method for hemodynamic flows with shear-dependent viscosity.
Int J Mod  Phys C 2010;21(6):1–17.

28] Reichlin T, Wild A, Dürrenberger M,  Daniels AU, Aebi U, Hunziker PR, et al.
Investigating native coronary artery endothelium in situ and in cell culture by
scanning force microscopy. J Struct Biol 2005;152:52–63.

29] König CS, Long Q, Collins MW,  Xu S. Numerical assessment of wall shear stress
along the endothelial surface layer in small arteries. The vascular endothe-
lium, basic and clinical aspects, 6th international congress. Abstract Biomed
Pharmacother 2006;60:480–7.

30] Safar ME. Peripheral pulse pressure, large arteries, and microvessels. Hyper-
tension 2004;44:121–2.

31] Benzi R, Succi S, Vergassola M.  The Lattice Boltzmann equation: theory and
applications. Phys Rep 1992;222:145–97.

32] Secomb TW,  Hsu R. Resistance to blood flow in non-uniform capillaries. Micro-
circulation 1997;4:421–7.

33] Secomb TW,  Hsu R, Pries AR. Blood flow and red blood cell deformation in
nonuniform capillaries: effects of the endothelial surface layer. Microcircula-
tion 2002;9:189–96.

34] Dupin MM,  Halliday I, Care CM,  Munn L. Modeling the flow of dense sus-
pensions of deformable particles in three dimensions. Phys Rev E 2007;75:
066707.

35] Hollis AP, Halliday I, Care CM.  An accurate and versatile lattice closure scheme
for  lattice Boltzmann equation fluids under external forces. J Comput Phys
2008;227:8065–82.

36] Halliday I, Hollis AP, Care CM.  Lattice Boltzmann algorithm for continuum mul-
ticomponent flow. Phys Rev E 2007;76:026708.
37] Bouzidi M,  Firdaouss M,  Lallemand P. Momentum transfer of a Boltzmann-
lattice fluid with boundaries. Phys Fluids 2001;13(11):3452–9.

38] Kim SH, Pitsch H. A generalized periodic boundary condition for lattice Boltz-
mann method simulation of a pressure driven flow in a periodic geometry. Phys
Fluids 2007;19:108101.



neerin

[

[

G. Pontrelli et al. / Medical Engi
39]  Halliday I, Spencer TJ, Care CM.  Validation of multicomponent lattice Boltz-
mann equation simulations using theoretical calculations of immiscible drop
shape. Phys Rev E 2009;79:016706.

40] Weinbaum S, Tarbell JM,  Damiano ER. The structure and the function of the
endothelial glycocalyx layer. Annu Rev Biomed Eng 2007;9:6.1.

[

[

g & Physics 33 (2011) 832– 839 839
41] Arslan N. Mathematical solution of the flow field over glycocalyx inside vascular
system. Math Comp Appl 2007;12(3):173–9.

42] Vincent PE, Sherwin SJ, Weinberg PD. Viscous flow over outflow slits covered
by an anisotropic Brinkman medium: a model of flow above interendothelial
cell cleft. Phys Fluids 2008;20(6):063106.


	Modelling wall shear stress in small arteries using the Lattice Boltzmann method: influence of the endothelial wall profile
	1 Introduction
	2 Formulation of the problem
	3 Lattice Boltzmann methodology
	4 LB on unstructured grids
	5 Computational results
	6 WSS variation due to the particulate nature of blood
	7 Concluding remarks
	Conflict of interest statement
	References


