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A solution for a model of mass diffusion from a drug-eluting stent to the arterial wall is addressed. The
coating layer is described as a porous reservoir where the drug is initially loaded in polymer-encapsu-
lated solid-phase, and then released both to the coating and to the arterial tissue in a liquid-phase.
The endothelium, intima, internal elastic lamina and media are all treated as homogeneous porous media
and the drug transfer through them is modelled by a non-homogeneous set of coupled partial differential
equations that describe a local mass non-equilibrium diffusion problem. Drug concentration levels and
mass profiles in each layer at various times are computed as a spectral decomposition: numerical results
show a delayed release depending on the physico-chemical drug properties combined with the micro-
structure of the polymeric-coated stents.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The most popular approach for the prevention of arterial reste-
nosis consists in the insertion of a drug-eluting stent (DES), a de-
vice able to release antiproliferative drugs into arterial wall. The
DES consists of a metallic wired platform coated with a polymer
film that encapsulates a therapeutic drug aimed at reducing vessel
remodelling. The polymeric surface can include a rate-limiting bar-
rier that provides a more controlled release. For high performance,
both the stent geometry and the coating design should be opti-
mized. The success of an antirestenotic drug therapy from a DES
is dependent on the extent of drug elution from the stent, the rate
of release, accumulation of drug and receptor binding in the arte-
rial wall [1]. The local drug concentrations achieved are directly
correlated with the biological effects and local toxicity, and finding
the optimum dose to be delivered to tissues still remains a chal-
lenge [2].

Many studies have been carried out about DES, on their efficacy,
their optimal design, either with experimental methods [3] and
with numerical simulations [4–6]. Nonetheless, many questions
remain unanswered for bioengineers and clinicians who continue
to explore and evaluate this technology. Several researches have
been proposed to address fundamental questions of pharmacoki-
netics, to estimate the drug elution in the biological tissues over
a period of time [7]. Validated mathematical models for computing
the drug concentration in the wall can be a useful tool in the design
and development of better properties of DES [8]. The model should
incorporate the pharmacokinetics responsible for the drug release
and can be used to study the effect of different coating parameters
and configuration on the drug elution [8,9]. Hossainy and Prabhu
developed a mathematical model to predict the transport reaction
of drug release in biodurable materials or with degradation of bio-
degradable polymers [10]. Such a model has been recently ex-
tended in [11]. The multiphase release of drug from the coated
stent and its distribution in the arterial wall must be carefully tai-
lored to achieve the optimal therapeutic effect and to deliver the
correct dose in the required time [12]. The pharmacological effects
of the drug, tissue accumulation, duration and distribution could
potentially have an effect on its efficacy and a delicate balance be-
tween adequate amount of drug delivered over an extended period
of time and minimal local toxicity should be found [13]. Although a
large number of mathematical models are available nowadays for
drug dynamics in the wall, there is a limited effort to explain the
drug elution mechanism from the coating platform. This is a very
important issue indeed, since the polymer acts as a drug reservoir,
and a strategical design of its characteristics would improve the re-
lease performances. It is worth to emphasize that the drug elution
depends on the properties of the ‘‘coating-wall’’ system, taken as a
whole.

In most studies, the coating is considered as a continuum where
the drug is incorporated at liquid phase. As a matter of fact, at a
microscopic scale, the polymer is a porous medium where solid
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Nomenclature

c volume-averaged drug concentration in fluid phase.
cs,f intrinsic volume- averaged drug concentration in the

phase s, f.
d⁄ penetration distance.
Ds,f effective drug diffusivity coefficient in phase s, f.
k partition coefficient.
K0 solid–liquid mass transfer coefficient.
l layer thickness
M dimensionless mass per unit of area.
P membrane permeability coefficient.
rh hydraulic radius.
t time.
t0 characteristic solid–liquid transfer time.
x space coordinate.
X eigenfunction.

Greek symbols
c nondimensional drug diffusivity coefficient.
� porosity.
k eigenvalue.
/ nondimensional permeability.
h fraction of drug mass.

Subscripts–superscripts
0 0-th layer (coating).
i i-th wall layer.
f,s fluid, solid phase.
n layer number.
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and fluid phases coexist [14]. In particular, the solid matrix acts as
a drug reservoir, where it is initially loaded in solid phase [15].
Subsequently, after stent insertion, expansion and contact with
vascular tissues, a part of the drug is first transferred in fluid-
phase, at a rate depending on the porosity, permeability, and drug
characteristics, and then diffused to the surrounding tissues [7].

In addition, the multi-layered structure of the wall has to be in-
cluded for an accurate description of the release mechanism
through the biological tissue [14]. This aspect has been recently ad-
dressed in a series of models in a hierarchy of increasing complex-
ity [16–18] to which the reader is referred for further details. In the
present work, we develop an extension of [18], where a relatively
simple model for a better understanding of the drug release mech-
anism in the coating and its subsequent dynamics into the multi-
layered wall is derived. Any other mechanical effect (i.e. compres-
sion, expansion) due to the metallic or polymeric degradation/ero-
sion is neglected. The porous structure of the polymeric matrix
leads to a two-phase representation for the drug concentration
where a characteristic transfer time is defined as a function of
the drug composition and coating manufacture. In a simplified
model, this brings to a non-homogeneous differential problem. A
semi-analytical expression is given for drug concentration and
mass in each layer at various times. An alternative perturbation
solution is also provided. The simulations can be used to assess
experimental procedures to evaluate drug delivery efficacy, in
the design of polymer-coated stents, and to provide valuable in-
sights into local vascular drug-delivery systems.
Fig. 1. A drug-eluting stent implanted in an artery.
2. The mathematical model

A drug-eluting stent (DES) consists of a tubular wire mesh
(strut), inserted in a stenosed artery and coated with a thin layer
(coating) of biocompatible polymeric gel containing a therapeutic
drug to be delivered (Fig. 1). Drug release from a polymeric-coated
stent depends on many factors, such as physical and geometrical
parameters of the coating and biochemical properties of the drug.
Once the drug is released into the wall, its dynamics, reaction, and
absorption are depending on the characteristics of the wall layers,
such as drug diffusivity [4].

Let us consider a stent coated by a thin layer (of thickness l0) of gel
containing a drug and embedded into the arterial wall. As most of the
mass dynamics occurs along the direction normal to the polymeric
surface (radial direction), and by assuming axial symmetry, we re-
strict our study to a simplified 1D model. In particular, we consider
a radial line crossing the metallic strut, the coating and the arterial
wall and pointing outwards and, the wall thickness being very small
with respect to the arterial radius, a Cartesian coordinate system x is
used along it. It is generally accepted that the arterial wall consists of
a sequence of contiguous layers of different physical properties and
thickness, say the endothelium, the intima, the internal elastic lam-
ina (IEL), the media and the adventitia (see [19] for an anatomic and
physiological description of them).

Without loss of generality, let us assume x0 = 0 is the coating-wall
interface. In a general 1D framework, let us consider a set of intervals
[xi�1, xi] i = 0,1, 2, . . ., n having thickness li = xi � xi�1 modelling the
coating (layer 0) and the wall (layers 1,2, . . . ,n) (Fig. 2).

2.1. From microscopic to mesoscopic scale

In many studies the polymeric layer covering the stent is mod-
eled as a biocompatible substrate where the drug is initially con-
tained and subsequently diffused and transported in adjacent
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Fig. 2. A sketch of the layered wall. The 1D wall model is defined along the line normal to the strut stent surface.

846 G. Pontrelli et al. / International Journal of Heat and Mass Transfer 66 (2013) 844–854
wall layers. In this paper we are interested in non-local mass trans-
fer processes in the coating, where the drug passes from solid
(polymer-encapsulated) to liquid phase [15]. A microscopic ap-
proach would require the knowledge of the specific and local
geometry of the individual pore structure networks, that is unfea-
sible. Therefore, both the polymeric matrix and the wall layers are
treated as macroscopically homogeneous porous media by appro-
priately defining averaged variables over a sufficiently large repre-
sentative elementary volume Vref (r.e.v., for short) [7,15,20–22].

The time and length scales of the r.e.v. (mesoscale) are much
larger than the pore scale (microscale), but considerably smaller
than the typical length scale of the problem (macroscale). Two dif-
ferent ways of averaging over a volume exist. One is based on the
volume of each phase contained in r.e.v., that is Vf

ref , for the fluid-
phase1 (which is a fraction k� of the r.e.v.) and Vs

ref for the solid-
phase (which is the fraction 1 � k� of the r.e.v.). Another way is to
average over the whole r.e.f. Vref ¼ Vf

ref þ Vs
ref (for more details, see

subs 3.2.1.1. of [22]). In the first case, we refer to intrinsic volume-
averaged drug concentration in fluid and solid phases cf and cs

(lg/ml), in the second, to volume-averaged drug concentrations, �cf

and �cs (lg/ml). They are related by the relationships:

�cf ¼ k�cf �cs ¼ ð1� k�Þcs ð2:1Þ

where k� represents the available volume fraction which provides
the ratio of the available volume to Vf

ref [7]. In detail, �(61) is the
porosity, that is the ratio Vf

ref =Vref ; and k( 6 1) is the so-called parti-
tion coefficient defined as the ratio of the available volume (portion
of void volume that is accessible to a drug or solute) to Vf

ref . It can
happen, in fact, that a pore is inaccessible to a solute if the size of
1 Superscripts s and f denote solid and fluid phases, respectively.
the pore itself or of its surrounding is smaller than those of the sol-
ute molecules.

As the drug passes from solid (polymer-encapsulated) to liquid
phase [15] in the coating (local mass non-equilibrium, LMNE for
short) and, subsequently is transported in the arterial wall, we will
not make use of the volume-averaged drug concentration �cs. Thus,
for the sake of brevity, �cf will be simply denoted by c and, hence,
the first of Eq. (2.1) becomes:

cðx; tÞ ¼ k� cf ðx; tÞ ð2:2Þ
2.2. The coating two-phase diffusion model

The coating of a DES is made of a porous polymeric matrix that
encapsulates a therapeutic drug in solid phase; as such, it is unable
to diffuse and to be delivered into the tissue [5]. Nevertheless,
when expanded and deployed into the arterial wall, the stent coat-
ing embeds the surrounding biological fluids. As a consequence,
such fluids fill the interstitial spaces of the polymer and form a net-
work of liquid channels, acting as a release medium for the drug.
Thus, a fraction of the drug mass is first transferred, in a finite time,
to the liquid channels formed in the polimeric matrix, and then re-
leased and diffused into the arterial wall. We attempt to carry out a
mesoscale description of the intrinsic volume-averaged drug con-
centrations in the liquid ðcf

0Þ and solid ðcs
0Þ phases considered sep-

arately to achieve a LMNE description. Strictly speaking, the
structure of a porous medium, the flow and the mass transport
processes though it, are described spatially by two or three dimen-
sional models. However, many concepts (granularity, tortuosity,
porosity) can also be represented and employed by one-dimen-
sional models [10]. The equations governing the drug diffusion in
the solid and liquid phases of the coating (layer 0) are:
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ð1�k0�0Þ
@cs

0

@t
¼ð1�k0�0ÞDs

0
@2cs

0

@x2 �
K0

rh
k0�0 cs

0�cf
0

� �
in ð�l0;0Þ ð2:3Þ

k0�0
@cf

0

@t
¼k0�0Df

0
@2cf

0

@x2 þ
K0

rh
k0�0 cs

0�cf
0

� �
in ð�l0;0Þ ð2:4Þ

In the above equations Ds
0 (resp. Df

0) (cm2/s) is the effective drug dif-
fusivity in the solid (resp. liquid) mixture of the coating, averaged
over the solid (resp. liquid) phase. Both of them are intrinsic volume
averaged diffusivities, meaning with that the diffusivity in the pres-
ence of a porous medium, which accounts for the tortuosiy of path-
ways and for local boundaries. Moreover, �0 is the porosity, k0 is the
partition coefficient, rh the hydraulic radius (defined as the free-
flow area over the wetted perimeter), that can be considered the
mean radius of a typical pore, and K0 the solid–fluid mass transfer
coefficient (cm/s) discussed below.

By using Eq. (2.2), Eqns (2.3)–(2.4) can be rewritten as:

@cs
0

@t
¼ �q0

t0
cs

0 �
c0

k0�0

� �
in ð�l0;0Þ ð2:5Þ

@c0

@t
¼ Df

0
@2c0

@x2 þ
k0�0

t0
cs

0 �
c0

k0�0

� �
in ð�l0;0Þ ð2:6Þ

where the diffusion coefficient Ds
0 , extremely small in general, has

been neglected and:

q0 ¼
k0�0

1� k0�0
t0 ¼

rh

K0
ð2:7Þ

are, respectively, the void ratio and a characteristic solid–fluid
transfer time associated with the exchange between the two
phases. The latter, t0, comes naturally from Eqs. (2.5) and (2.6)
and, by definition, is a function of physico-chemical properties of
the substance and of the microstructure of the porous material.
The determination of an appropriate value of K0 is a critical aspect
of using LMNE approach. However, non-local theories and direct
pore-scale simulations are able to estimate its value [23]. In the cur-
rent case, as convection is absent in the coating, we simply have a
polymeric matrix from which the solute is removed by using a stag-

nant liquid solvent (plasma). Because of that, K0 ¼
Df

0

rh
(see Subs.

1.4.1.3 of Ref. [24]) and hence, t0 becomes proportional to r2
h . An

order of magnitude for t0 is one day, while some experimental data
indicate a characteristic time of ten days [12].

Together with these equations the initial conditions are given:

cs
0ðx;0Þ ¼ Cs

0 c0ðx;0Þ ¼ 0 ð2:8Þ

expressing that, at initial time, the whole drug exists in the solid
phase at maximum constant concentration and, subsequently, re-
leased into the liquid phase and to the wall. Since the metallic strut
is impermeable to the drug, no mass flux passes through the bound-
ary surface x = x�1 = � l0; here we impose a no-flux condition:

Df
0
@c0

@x
¼ 0 at x ¼ �l0 ð2:9Þ

Flux conditions at coating-wall interface
In the coating only the fluid phase takes part to the mass ex-

change with the wall (liquid phase). Let us impose the balance of
flux at the coating (0) – wall (1) interface (x = 0) for the fluid-
phase:

Df
0
@c0

@x
¼ Df

1
@c1

@x
at x ¼ 0 ð2:10Þ

In addition, a permeable membrane (called topcoat or rate-limiting
barrier) is located at x = 0 to control and sustain the drug release
rate. Being much thinner than the other layers, it has not been mod-
elled spatially, but its effect is described by means of a resistance of
permeability P (cm/s) [3,10]. A continuous mass flux passes through
it orthogonally to the coating film with a possible concentration
jump. In the present case, the mass transfer through the topcoat
can be described using the second Kedem–Katchalsky equation
[25]:

�Df
0
@c0

@x
¼ P

c0

k0�0
� c1

k1�1

� �
at x ¼ 0 ð2:11Þ
2.3. The multi-layered wall model and interface conditions

In the n layers of the wall, the drug dynamics is described in
terms of the volume- averaged drug concentration in fluid phase
by the following advection–diffusion–reaction equations and re-
lated initial conditions:

@ci

@t
¼ Df

i

@2ci

@x2 � di
@ci

@x
� bici in ðxi�1; xiÞ i ¼ 1;2; . . . ;n

ciðx;0Þ ¼ 0 ð2:12Þ

where Df
i (cm2/s) is the effective diffusivity of drug, and di(cm/s) ac-

counts for a constant characteristic convection parameter. Since the
contribution of the filtration velocity is small with respect to the
other terms [17], it will be neglected.

The last term on the r.h.s. of Eq. (2.12.1) represents the drug
reaction on the surface of smooth muscle cells (SMCs) inside the
media layer. This is modelled by a linear term, bi > 0(s�1) being
an effective first order consumption rate coefficient. The spatial
dependence of the reaction terms are implicitly incorporated in
the multi-layered wall structure. However, it has been shown
that their contribution is negligible [17]. Hence, we assume
di = bi = 0 for all i.

To close the previous mass transfer system of Eq. (2.12), flux
and fluid-phase concentration continuity conditions have to be as-
signed at each layer interface x = xi:

ci

ki�i
¼ ciþ1

kiþ1�iþ1
Df

i

@ci

@x
¼ Df

iþ1
@ciþ1

@x
at x ¼ xi

i ¼ 1;2; . . . n� 1 ð2:13Þ

Finally, a boundary condition has to be imposed at the limit of
adventitia xn. The concept of penetration distance d⁄ is useful to de-
fine the ‘‘physical limit’’ of the arterial wall. This is defined as the
distance where the concentration and the mass flux vanish, at a gi-
ven time, within a prescribed tolerance. The penetraton distance
over a multi-layered medium depends on the thicknesses li’s and
the diffusion coefficients Di’s. A precise definition of it and its esti-
mates are given in [18]. Thereby the concentration and mass flux at
that point equate their initial value there, say zero, at d⁄ and the
boundary conditions can be posed as:

cn ¼ 0 or
@cn

@x
¼ 0 at x ¼ xn ¼ d� ð2:14Þ
2.4. Nondimensional equations

All the variables and the parameters are now normalized to get
easily computable dimensionless quantities as follows:

�x ¼ x
d�

�li ¼
li

d�
�t ¼ Df

max

d�ð Þ2
t �t0 ¼

Df
max

d�ð Þ2
t0

ci ¼
Df

i

Df
max

/ ¼ Pd�

Df
max

�ci ¼
ci

Cs
0

ð2:15Þ

where subscripts max denote maximum values across the n + 1 lay-
ers. By omitting the bar for simplicity, the mass transfer problem



848 G. Pontrelli et al. / International Journal of Heat and Mass Transfer 66 (2013) 844–854
(2.5)–(2.14) can now be written in dimensionless form. The solid-
phase dynamics is governed by the equation:

@cs
0

@t
¼ �q0

t0
cs

0 �
c0

k0�0

� �
in ðx�1;0Þ ð2:16Þ

supplemented with the initial condition:

cs
0ðx;0Þ ¼ 1 ð2:17Þ

The fluid-phase concentration equations in the multi-layered med-
ium are:

@c0

@t
¼ c0

@2c0

@x2 þ
k0�0

t0
cs

0 �
c0

k0�0

� �
in ðx�1;0Þ ð2:18Þ

@ci

@t
¼ ci

@2ci

@x2 in ðxi�1; xiÞ i ¼ 1; . . . ;n ð2:19Þ

with the following initial conditions:

ciðx;0Þ ¼ 0 i ¼ 0;1; . . . ;n ð2:20Þ

and the following interface and B.C.’s:

@c0

@x
¼ 0 at x ¼ x�1

c0
@c0

@x
¼ c1

@c1

@x
� c0

@c0

@x
¼ /

c0

k0�0
� c1

k1�1

� �
at x ¼ 0

ci

ki�i
¼ ciþ1

kiþ1�iþ1

ci
@ci

@x
¼ ciþ1

@ciþ1

@x
at x ¼ xi i ¼ 1;2; . . . ;n� 1

cn ¼ 0 at x ¼ 1 ð2:21Þ
3. Method of solution

The Eq. (2.16) can be rewritten as

@cs
0

@t
¼ �h1cs

0 þ h2c0 ð3:1Þ

where

h1 ¼
k0�0

t0ð1� k0�0Þ
h2 ¼

1
t0ð1� k0�0Þ

ð3:2Þ

The solution of Eq. (3.1) is:

cs
0ðx; tÞ ¼ expð�h1tÞ þ expð�h1tÞ

Z t

0
expðh1sÞh2c0ðx; sÞds ð3:3Þ

We now follow a similar approach as in Ref. [18], where the cor-
respondent problem for t0 ? 0, is solved. The solution ci of problem
(2.18)–(2.21) admits a spectral decomposition:

ciðx; tÞ ¼
X1
k¼1

GkðtÞXk
i ðxÞ i ¼ 0;1; . . . ;n ð3:4Þ

with

ciðx;0Þ ¼
X1
k¼1

Gkð0ÞXk
i ðxÞ ¼ 0 i ¼ 0;1; . . . ; n ð3:5Þ

where the coefficient Gk have to be found, and
Xk

i ¼ ai cos kk
i x

� �
þ bi sin kk

i x
� �

are the eigenfunctions of the
Sturm–Liouville problem as in [18] (ci satisfy the same boundary
and interface conditions, for i = 0,1,2 . . . ,n). By replacing c0, ex-
pressed as in (3.4), in Eq. (3.3):

cs
0ðx; tÞ ¼ expð�h1tÞ þ h2

X1
k¼1

HkðtÞXk
0ðxÞ ð3:6Þ
HkðtÞ ¼
Z t

0
GkðsÞ expðh1ðs� tÞÞds ð3:7Þ

By replacing this expression into Eq. (2.18), by multiplying Eq.
(2.18) by Xk

0, Eq. (2.19) by Xk
i , integrating across the corresponding

layer, dividing by ki�i and summing all the layer contributions, we
end up with:

dGk

dt
¼ �c0 kk

0

� �2
Gk þ

1
Nkt0

expð�h1tÞ
Z 0

�l0

Xk
0ðxÞdxþ h2 expð�h1tÞ

�

�
Z t

0

X1
p¼1

GpðsÞ
Z 0

�l0

Xp
0ðxÞX

k
0ðxÞdx

� �
expðh1sÞds�

1
k0�0

X1
p¼1

GpðtÞ

�
Z 0

�l0

Xp
0ðxÞX

k
0ðxÞdx

�
¼ �c0 kk

0

� �2
Gk þ

1
Nkt0

bk
0 expð�h1tÞ

h

þ
X1
p¼1

akp
0 h2HpðtÞ �

GpðtÞ
k0�0

� �#

Gkð0Þ ¼ 0 ð3:8Þ

where the norm

Nk ¼
Xn

i¼0

1
ki�i

Z xi

xi�1

Xk
i

� �2
dx

can be made explicit as in [18] and the spatial integrals:

bk
0 ¼

Z 0

�l0

Xk
0ðxÞdx ¼ � bk

0

kk
0

akh
0 ¼

Z 0

�l0

Xk
0ðxÞX

h
0ðxÞdx

¼ ak
0ah

0

Z 0

�l0

cos kk
0x

� �
cos kh

0x
� �

dxþak
0bh

0

Z 0

�l0

cos kk
0x

� �
sin kh

0x
� �

dx

þbk
0ah

0

Z 0

�l0

sin kk
0x

� �
cos kh

0x
� �

dxþbk
0bh

0

Z 0

�l0

sin kk
0x

� �
sin kh

0x
� �

dx

¼ ak
0ah

0

sin l0 kk
0�kh

0
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2ðkk

0�kh
0Þ

þ
sin l0 kk

0þkh
0
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2 kk

0þkh
0

� �
2
4

3
5

þbk
0bh

0

sin l0 kk
0�kh

0
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0�kh
0
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sin l0 kk
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0
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2ðkk

0þkh
0Þ

2
4

3
5

þak
0bh

0
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0
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0

� �2
� kh

0

� �2þ
cos l0 kk

0þkh
0
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2 kk

0þkh
0
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cos l0 kk

0�kh
0
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2 kk

0�kh
0

� �
2
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3
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cos l0 kk
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for k – h

akk
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Z 0

�l0

Xk
0ðxÞX

k
0ðxÞdx

¼ ak
0

� 	2
Z 0

�l0

cos2 kk
0x

� �
dxþ bk

0

� �2
Z 0

�l0

sin2 kk
0x

� �
dx

þ 2ak
0bk

0

Z 0

�l0

sin kk
0x

� �
cos kk

0x
� �

dx

¼ ak
0

� 	2 þ bk
0

� �2
� �

ðl0=2Þ þ ak
0

� 	2 � bk
0

� �2
� �

�
sin 2kk

0l0

� �
4kk

0

� ak
0bk

0

sin2 kk
0l0

� �
kk

0

are computed analytically once. Note that for t0 ? 0 the problem
(2.16)–(2.21) is led back to the one presented in [18] and the
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solution of (3.8) reduces to Gk ¼ exp �c0k
2
0t

� 	
. Eqs. (3.7)–(3.8) split

as a system of linear non-homogeneous ODE’s:

dGk

dt
¼ �c0 kk

0

� �2
Gk þ

1
Nkt0

bk
0 expð�h1tÞ þ

X1
p¼1

akp
0 h2HpðtÞ �

GpðtÞ
k0�0

� �" #

dHk

dt
¼ �h1Hk þ Gk

Gkð0Þ ¼ 0
Hkð0Þ ¼ 0

ð3:9Þ
3.1. Perturbation solution

A perturbation solution of Eq. (3.9) is developed here as an
alternative to the numerical integration.

The coating thickness (l0) being much smaller (about four or-
ders of magnitude) of the distance d⁄ where the diffusion takes
place (l0� d⁄), an asymptotic analysis over l0 will be carried out,
for t0 large enough. From inspection of their definition

Nk ¼ Oð1Þ; bk

Nk
¼ Oðl0Þ;

akp

Nk
¼ Oðl0Þ

(for simplicity we omit the sub-index 0 from a and b). By setting:

~bk ¼
bk

l0Nk
¼ Oð1Þ; ~akp ¼

akp

l0Nk
¼ Oð1Þ

Eq. (3.9) can be rewritten as

dGk

dt
þ c0 kk

0

� �2
Gk ¼

l0
t0

~bk expð�h1tÞ þ
X1
p¼1

~akp h2HpðtÞ �
GpðtÞ
k0�0

� �" #

dHk

dt
þ h1Hk ¼ Gk ð3:10Þ

By expanding Gk and Hk as a power series of l0, i.e.

Gk ¼ G0
k þ l0G1

k þ l2
0G2

k þ l3
0G3

k þ � � �
Hk ¼ H0

k þ l0H1
k þ l2

0H2
k þ l3

0H3
k þ � � �

ð3:11Þ

substituting in (3.10) and equating terms of the same power, we
get, at order 0:

dG0
k

dt
þ c0 kk

0

� �2
G0

k ¼ 0

dH0
k

dt
þ h1H0

k ¼ G0
k

ð3:12Þ

that, together with the (homogeneous) initial conditions (3.9.3)–
(3.9.4), yields

G0
kðtÞ ¼ 0 H0

kðtÞ ¼ 0 ð3:13Þ

Therefore, at order 1, we get

dG1
k

dt
þ c0 kk

0

� �2
G1

k ¼
~bk

t0
expð�h1tÞ

dH1
k

dt
þ h1H1

k ¼ G1
k

ð3:14Þ

By enforcing homogeneous initial conditions, we get, if
c0 kk

0

� �2
– h1:

G1
kðtÞ ¼

~bk

t0

expð�h1tÞ � expð�c0 kk
0

� �2
tÞ

c0 kk
0

� �2
� h1

H1
kðtÞ ¼

1

c0 kk
0

� �2
� h1

~bk

t0
t expð�h1tÞ � G1

kðtÞ
" #

ð3:15Þ
The limiting case c0 kk
0

� �2
! h1 gives the solution

G1
kðtÞ ¼

~bk

t0
t expð�h1tÞ H1

kðtÞ ¼
~bk

t0

t2

2
expð�h1tÞ ð3:16Þ

We can now consider the general case for order n P 2. By setting:

N n
kðtÞ ¼

X1
p¼1

~akp h2Hn
pðtÞ �

Gn
pðtÞ

k0�0

 !
ð3:17Þ

we have:

dGnþ1
k

dt
þ c0 kk

0

� �2
Gnþ1

k ¼ 1
t0
N n

k

dHnþ1
k

dt
þ h1Hnþ1

k ¼ Gnþ1
k

Enforcing initial conditions, we obtain

Gnþ1
k ðtÞ ¼ 1

t0

Z t

0
exp c0 kk

0

� �2
ðs� tÞ

� �
N n

kðsÞds

Hnþ1
k ðtÞ ¼

Z t

0
exp½h1ðs� tÞ�Gnþ1

k ðsÞds ð3:18Þ

that give the perturbed solution at the order n + 1, expressed as a
recursive combination of exponential functions of lower order. In
the appendix we derive an alternative form for the G2

k and H2
k in

terms of G1
k and H1

k . For their simple analytical form, the first and
the second-order expansions (3.15) and (3.18) are likely to be used
for t0 large enough. Results showing the effectiveness of such per-
turbed solutions will be presented in Section 5.
4. Mass dynamics

The analytical form of the solution given by Eqs. (3.4) and (3.6)
allows an easy computation of the dimensionless drug mass (per
unit of area) in both coating and wall layers as function of time:

Ms
0ðtÞ ¼ ð1� k0�0Þ

Z 0

�l0

cs
0ðx; tÞdx MiðtÞ ¼

Z xi

xi�1

ciðx; tÞdx

MwðtÞ ¼
Xn

i¼1

MiðtÞ

(all masses refer to volume-averaged concentrations, both in fluid-
and solid-phases). From Eqs. (3.4)–(3.6) we have:

Ms
0ðtÞ ¼ ð1� k0�0Þ expð�h1tÞl0 þ h2

X
k

bk
0 HkðtÞ

 !
ð4:1Þ

MiðtÞ ¼
X

k

1

kk
i

� �2

dXk
i

dx
xi�1ð Þ � dXk

i

dx
ðxiÞ

" #
GkðtÞ

¼
X

k

ak
i sin kk

i xi

� �
� sin kk

i xi�1

� �h i
� bk

i cos kk
i xi

� �
� cos kk

i xi�1

� �h i
kk

i

� GkðtÞ i ¼ 0;1; . . . ;n ð4:2Þ

In particular, we have:

Ms
0ð0Þ ¼ ð1� k0�0Þl0 Mið0Þ ¼ 0 i ¼ 0; . . . ;n ð4:3Þ

Moreover, from a property of Gk, it follows that limt?1Mi(t) = 0 for
all layers. Nevertheless, for a large enough, yet finite, time, all the
mass remains confined in the outermost layer, bounded by the pen-
etration distance (see subsection 2.3). Summing over all the layers
1,2, . . .,n, the terms that correspond to intermediate layers cancel
out and we have:
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MwðtÞ ¼
X

k

1

kk
1

� �2

dXk
1

dx
ð0Þ � 1

kk
n

� �2

dXk
n

dx
ð1Þ

2
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75GkðtÞ

¼
X

k

bk
1

kk
1

� bk
n cosðknÞ � ak

n cosðknÞ
kk

n

" #
GkðtÞ ð4:4Þ

We compute the fraction of drug mass retained in each layer
(including solid and liquid phase in layer 0), as:

hs
0 ¼

Ms
0ðtÞ

Ms
0ð0Þ

hiðtÞ ¼
MiðtÞ
Ms

0ð0Þ
i ¼ 0;1; . . . ;n ð4:5Þ

Having posed the boundary condition (2.14), a negligible mass loss
occurs out of the wall bound d⁄. In other words, due to the absorb-
ing condition cn = 0, all drug mass is transferred in the outermost
layer at a sufficiently large time and the total mass (sum of liquid
phase in all layers and of the residual of solid phase in layer 0) is
preserved and equals its initial value (say the drug mass in solid
phase in coating Ms

0ð0Þ) (see section 5):

Ms
0ð0Þ �Ms

0ðtÞ �
Pn

i¼0MiðtÞ
Ms

0ð0Þ
¼ 1� hs

0ðtÞ �
Xn

i¼0

hiðtÞ ’ 0 ð4:6Þ
Table 1
The parameters used in the simulations for the coating and the wall layers. The penetratio
and depends on the maximum simulated time.

Coating (0) Endothelium (1) Int

li = xi � xi�1(cm) 5 � 10�4 2 � 10�4 10
Di(cm2/s) 10�10 8 � 10�9 7.7
�i 0.1 5 � 10�4 0.6
ki 1 1 1
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Fig. 3. Concentration profiles in the six layers at three instants, for t0 = 10�3 (note the di
(red starred) and liquid (black) phase concentration are depicted. (For interpretation of th
of this article.)
Thus, any truncation of the domain before d⁄ is arbitrary and
does not ensure a conservative model, because the concentration
and the mass flux are not completely damped out (see
Eq. (2.14)).
5. Results and discussion

Let us consider the arterial wall subdivided in four layers: endo-
thelium (1), intima (2), IEL (3), and media (4), in contact with the
adventitia and external tissues (5). Despite of the low geometrical
dimension, a large number of interconnected parameters influence
the process and a complete characterization of the physiological
data set remains a difficult task. In this paper, we focus on the
dependence of the concentration and mass profiles on the phase
transfer characteristic time t0. To set up a realistic simulation,
the parameters given in Table 1 and the values

P ¼ 10�6cm=s d� ¼ 1 cm ð5:1Þ

have been chosen in agreement with the typical scales in DES and
data in literature for the arterial wall and heparin drug in the coat-
ing layers [13]. Here, these values are left unchanged as reference
n distance d⁄ estimates the wall bound, provides the thickness l5 of the external layer

ima (2) IEL (3) Media (4) Adventitia (5)

�3 2 � 10�4 2 � 10�2 d⁄ � x4

� 10�8 4.2 � 10�8 7.7 � 10�8 12 � 10�8

1 4 � 10�3 0.61 0.85
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2
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fferent scale for coordinates and concentrations). In the coating (top left), both solid
e references to colour in this figure caption, the reader is referred to the web version



Table 3
Percentage of the drug mass retained in each layer at different times for t0 = 10�4.

t (adim.) t (dim.) d:h:m hs
0 h0 h1 h2 h3 h4 h5

10�4 13 m 92 5.9 < 0.01 0.7 < 0.01 0.2 < 0.01
5 � 10�4 1 h:9 m 83 7.5 < 0.01 2.1 < 0.01 4.9 1.5
5 � 10�3 11 h:34 m 34 3.1 < 0.01 1.4 < 0.01 12.9 48
5 � 10�2 4d:17 h 0.1 0.01 < 0.01 0.1 < 0.01 3.8 95

Table 2
Relative L2 norm error (as in Eq. (5.2)) between the numerical and the first- and
second-order perturbed solutions.

t0 Err (G1) Err (G2) Err (H1) Err (H2)

10�3 0.26 0.089 0.191 0.054
10�1 0.004 3.35 � 10�4 0.009 0.005
1 0.0015 0.0015 0.001 0.0006
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parameters. We are interested to investigate the effect of t0 only, in
order to understand the relative importance of solid–liquid mass
transfer on the release process. All the series appearing in the solu-
tion (see Eq. (3.4) and following) have been truncated at a number
of terms m = 50. The outermost layer results much thicker than the
others and needs a higher number of base points to be conveniently
resolved.

We compute the functions Gk(t) and Hk(t) by solving the system
of ODE’s (3.9) with a numerical method based on a 4-th order Run-
ge–Kutta scheme. Because of a possible stiffness, an adaptive time
step over a sequence of times tj, j = 1, 2, . . ., m is used. For t0 large
enough, the perturbed solutions wP

1 and wP
2 are shown to have a suf-

ficient accuracy. The numerical solution wN will be used for com-
parative purposes and the relative error measured as:

Errð/Þ ¼ kw
P � wNk
kwNk

¼
PM

k¼1

Pm
j¼1 wP

kðtjÞ � wN
k ðtjÞ

� 	2
h i1=2

PM
k¼1

Pm
j¼1w

N
k ðtjÞ2

h i1=2 ð5:2Þ

where the first and second-order perturbed solutions are respec-
tively (cfr Eq. (3.11)):

wP
1 ¼ w0 þ l0w

1 wP
2 ¼ w0 þ l0w

1 þ l2
0w

2
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Fig. 4. Drug mass in the coating (layer 0, solid and liquid phase), intima (layer 2) and me
monotonically decreasing in the coating, while the liquid-phase mass has a characterist
depletion, the location and the magnitude of the peak critically depend on the transfer
Table 2 shows the discrepancy between the numerical and the
perturbation solution for three values of t0 with the same M and
m. The perturbed solution deteriorates for t0 [ 10�3 and more
terms of the expansion are necessary. On the other hand, the per-
turbed solution converges for t0 J 1 proving that the first- and
second-order approximation are sufficient to catch up the whole
solution.

Results from the LMNE model show that the concentration is
decreasing inside each layer, being possibly discontinuous at the
interfaces, with the mass flux continuity preserved. Interestingly
enough, the levels of volume-averaged drug concentration in
layer 2 (intima) are nearly constant and can be higher than in
the others, at intermediate times. This is in agreement with the
higher diffusivity D2 and relatively small layer thickness l2. The
drug distribution shows a strong dependence on the transfer time
t0 (Fig. 3).

It can be seen that drug is differently retained in each layer,
which receives mass from the inner and transmits to the outer,
in a cascade sequence, up to be completely damped out at dis-
tance d⁄ that constitutes the wall bound. From Fig. 4 it turns
out that the solid-phase mass is exponentially decreasing in the
coating, while the liquid- phase is first increasing up to some
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Table 4
Percentage of the drug mass retained in each layer at different times for t0 = 10�2. Note the slower release and the moderate absorption
with respect to the previous case. The coating emptying rate is greatly reduced.

t (adim.) t (dim.) d:h:m hs
0 h0 h1 h2 h3 h4 h5

10�4 13 m 99 0.09 < 0.01 0.01 < 0.01 < 0.01 < 0.01
5 � 10�4 1 h:9 m 99 0.3 < 0.01 0.07 < 0.01 0.12 0.03
5 � 10�3 11 h:34 m 94 0.4 < 0.01 0.1 < 0.01 1.1 3.4
5 � 10�2 4d:17 h 58 0.2 < 0.01 0.2 < 0.01 2.7 38
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Fig. 5. Drug mass at time t = 0.05 in the coating at solid phase (continuous line) and
the adventitial layer (dashed line) as a function of t0. It is seen that at very low t0

drug is quicky released through the DES to the tissue, while the release is much
slower at t0 P 0.1.
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upper bound and then decaying asymptotically in all layers. At
the first instants, the process is dominated by solid–liquid trans-
fer process and mass raises up to a peak value, while, at later
times, diffusion dominates. The location and the magnitude of
the peak influence the characteristics of the drug dynamics and
is critically dependent on the transfer time t0 (Fig. 4). As ex-
pected, the differences increase with t0 and are more marked at
early times and in the first layers, while the mass profiles tend
to coincide at later times and in the outermost layers. It is also
evident that for t0 ? 0 the behaviour of the solution (inasmuch
as t� t0) tends to that of model [18], where an instantaneous
mass transfer and a correspondent initial condition are imposed
(Fig. 4).

To measure the release rate and the different absorption rate
with the wall depth, we compute the fraction of drug retained
in each layer as in Eq. (4.5): the layers 1 and 3 retain a negligible
mass due to their thickness, whereas the drug accumulates in the
outermost layer (5) as the time proceeds. At a time large enough,
all the mass is transferred to the external wall layer, with a neg-
ligible loss. However, the therapeutic effects of DES is limited in
the endothelium – media, while the residual drug in the outmost
layer is considered lost. Tables 3 and 4 show the different distri-
bution in the coating and in the wall layers for two values of t0.
Looking at the more favorable case (t0 = 10� 2, Table 4), it is
shown a delayed emptying of the coating and a slower release
in all layers.

A smaller t0 is responsible for a faster solid–liquid transfer in
the polymer and a quicker diffusion in the other layers, while a lar-
ger t0 ensures a prolonged release and a more uniform distribution.
Fig. 5 shows how rapid is the response of the DES (measured
through the level of mass present at coating and adventitial layer
at a given time) to the solid–liquid transfer time. It is shown that
for t0 < 10�3 the transfer is extremely fast and occurs almost
instantaneously. On the other way around, for t0 > 1 the transfer
results quite slow and the whole mass remains in the coating at
solid phase, all the dynamics being hampered (cfr. Fig. 4). A tech-
nologically advanced DES should guarantee an optimal release,
and this is controlled by a suitable drug solid–liquid transfer time.
Therefore, for the set of parameters chosen here, t0 remains in the
range [0.01,0.1] (that corresponds to a characteristic solid–fluid
transfer time of 1–10 days): picking a value in such an interval, a
controlled and effective drug release takes place.
6. Concluding remarks

Manufacturing of drug delivery system with consistent and
reproducible elution is a great challenge in today’s biomechani-
cal engineering. A deeper understanding of drug release kinetics
is necessary for rational design of stent-based drug delivery sys-
tem to optimize therapeutic efficacy and minimize local vascular
toxicity. One of the methods to evaluate the characteristics of
drug elution from the coating into the vascular wall and to opti-
mize the physico-chemical parameters is the mathematical mod-
elling and the numerical simulation. It is important to design
drug release kinetics such that the therapeutic effects cover
the timeline of the vessel wall remodelling. As a matter of fact,
a correct evaluation of the drug dynamics inside the polymeric
matrix is a starting point for the efficacy of the whole delivery
process.

In this paper a LMNE model for mass dynamics from a DES has
been developed to study the relative influence of the various fac-
tors affecting the drug release: the significant parameter we fo-
cused here is the mass transfer time which captures the solid–
liquid phase dynamics and depends on the microstructure of
the porous polymeric coating, combined with the chemo–physical
properties of the drug. It has been shown to which extent this
characteristic time influences the release process. Thus, the pre-
sented model offers a useful tool for predicting concentration pro-
files from different porous coating platforms and for devising
novel kinetics for other drug delivery systems. Results of LME
models generally underestimate the release time and models that
include non- equilibrium mass transfer processes can lead to
more accurate results that can have a significant impact in stent
design.

The model contains several parameters that need to be identi-
fied before it can be used in a predictive way and provide the sig-
nificant kinetics. Having done that, the proposed methodology can
be used to quantitatively characterize the drug elution, to improve
the technological performance and shows how the release rate can
be optimized for therapeutic purposes.
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Appendix

We develop here the analytical (recursive) form for the first-
and second-order perturbation solution given in Subs 3.1. Let us
first define the three argument function:

Gðn;g; tÞ 	 expð�ntÞ � expð�gtÞ
n� g

ðA:1Þ

having the following properties:

Gðn;g; tÞ ¼ Gðg; n; tÞ lim
n!g
Gðn;g; tÞ ¼ �t expð�gtÞ 	 Gðg;g; tÞ

@Gðn;g; tÞ
@n

¼ Gðn; n; tÞ � Gðn;g; tÞ
n� g

@Gðn;g; tÞ
@g

¼ Gðg;g; tÞ � Gðn;g; tÞ
n� g

@Gðn;g; tÞ
@g

¼ @Gðg; n; tÞ
@n

It can also be seen that:

lim
g!n

@Gðn;g; tÞ
@n

¼ lim
g!n

@Gðn;g; tÞ
@g

¼ t2

2
expð�ntÞ ¼ t

2
Gðn; n; tÞ ðA:2Þ

By this function G, we can rewrite G1
k and H1

k in Eq. (3.15) in a com-
pact form as:

G1
kðtÞ ¼ �

~bk

t0
Gðh1; c0 kk

0

� �2
; tÞ

H1
kðtÞ ¼

~bk

t0

@G h1; c0 kk
0

� �2
; t

� �

@ c0 kk
0

� �2
� � ðA:3Þ

with the limiting case h1 ! c0 kk
0

� �2
included.

Similarly, the computation of second-order term developed in
Subs 3.1 can be given in an explicit form. It is easy to verify that:

Iðn;g; f; tÞ 	
Z t

0
expðfðs� tÞÞGðn;g; sÞds

¼ Gðn; f; tÞ � Gðg; f; tÞ
n� g

ðA:4Þ

with

lim
n!g

Iðn;g; f; tÞ ¼ @Gðg; f; tÞ
@n

and

Jðn;g; f; tÞ ¼
Z t

0
expðfðs� tÞÞ @Gðn;g; sÞ

@g
ds

¼ Iðg;g; f; tÞ � Iðn;g; f; tÞ
n� g

ðA:5Þ

We also estimate convolution integrals:

IHðn;g; f; tÞ ¼
Z t

0
expðnðs� tÞÞIðn;g; f; tÞds

¼ Iðn; n; f; tÞ � Iðn;g; f; tÞ
n� g

ðA:6Þ

and

JHðn;g; f; tÞ ¼
Z t

0
expðnðs� tÞÞ J ðn;g; f; tÞ

¼ �Jðg; n; f; tÞ � IHðn;g; f; tÞ
n� g

ðA:7Þ
Note that G (resp. I,J) can be viewed as divided differences of first-
(resp. second-) order over exponential functions, having t as a
parameter. From Eq. (3.17) we have:

N 1
kðsÞ ¼

X1
p¼1

~akp h2H1
pðsÞ �

G1
pðsÞ

k0�0

 !

¼ 1
t0
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p¼1

~akp
~bp h2

@G h1; c0 kp
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� 	2
; t

� �
@ c0 kp

0

� 	2
� � þ 1

k0�0
G h1; c0 kp
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� 	2
; t

� �0
@

1
A

ðA:8Þ

Finally, by evaluating Eq. (3.18) for n = 1, we get:

G2
kðtÞ ¼

1
t0
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�
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