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Abstract

A mathematical model for the diffusion–transport of a substance between two porous homogeneous media of different properties and
dimensions is presented. A strong analogy with the one-dimensional transient heat conduction process across two-layered slabs is shown
and a similar methodology of solution is proposed. Separation of variables leads to a Sturm–Liouville problem with discontinuous coef-
ficients and an exact analytical solution is given in the form of an infinite series expansion. The model points out the role of four non-
dimensional parameters which control the diffusion mechanism across the two porous layers. The drug-eluting stent constitutes the main
application of the present model. Drug concentration profiles at various times are given and analyzed. Also, qualitative considerations
and a quantitative description to evaluate feasibility of new drug delivery strategies are provided, and some indicators, such as the empty-
ing time, useful to optimize the drug-eluting stent design are discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In last years, polymeric gels are widely used as drug car-
riers devices in many biotechnological applications, such as
tissue engineering [1]. A matrix of gel is filled with a specific
drug which is subsequently released into the living tissue.
To have a desired therapeutic effect, the concentration of
the drug in the tissue should lie within a given range. If
below that, the therapy results ineffective. On the other
hand, if the concentration is above a threshold value, the
drug can produce a toxic effect [2].

A recent clinical application of such a technology are the
drug-eluting stents: these are complex medical devices
inserted in the arterial wall aimed to widen the lumen of ste-
nosed arteries, to prevent occlusion, and to restore the
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blood flow perfusion to the downstream tissues [2–4]
(Fig. 1). Drug-eluting stents combine the mechanical sup-
port with local drug delivery to the arterial tissue to fight
early restenosis caused by proliferation of smooth muscle
cells. To this aim, a polymeric matrix (gel) is added to the
metallic struts and loaded with a drug which is released after
implantation. The stent struts can be uniformly covered by
the polymer (coated stent) or it can contain honeycombed
strut elements with an inlaid polymer (stent with drug reser-
voirs) (Fig. 2) [5]. It is recognized that the time and rate of
the drug release is crucial for the therapy. This process is
influenced by many factors, such as properties of the drug
(hydrophily), coating (structure and material parameters)
as well as the transport characteristics of the arterial wall.
Although intravascular stents are designed to operate in sta-
tic regimes, they act under complex stress conditions, vary-
ing in time and it is difficult to forecast their performance
and efficiency over long times. Mathematical models pre-
dicting the dynamics of solute concentration and mass flux
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Nomenclature

ci mass volume-averaged concentration in the ith
layer

c0i fluid-phase concentration in the ith layer
Di drug diffusive coefficient in the ith layer
J mass flux at the interface x = 0 (Fig. 3)
k partition coefficient
L thickness ratio, L1

L2
.

Li thickness of the ith layer
Mi dimensionless mass per unit of area in the ith

layer
P membrane permeability coefficient
S concentration jump at the interface x = 0

(Fig. 3)
t time

tE emptying time of drug
x space coordinate
Xi eigenfunction of the ith layer

Greek symbols

c diffusivity ratio, D1

D2

� medium porosity
ki eigenvalue of the ith layer
r material ratio, k1�1

k2�2

/ nondimensional permeability, PL2

D2k2�2

Subscripts

1 first layer (coating)
2 second layer (wall)

Fig. 1. Sketch of a stented artery.

Fig. 2. Section of a stented artery with the struts (in black) embedded into
the wall (courtesy of P. Zunino).
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are of interest for biomedical engineers and clinicians, as
they offer a simple tool for optimizing the drug delivery
design and technology.

A number of recent studies has been devoted to the mass
transfer process in the arterial wall, modelled as a multi-
layered medium, coupled with the transport in the lumen
[6,7]. Some work has been done to correlate the number
and the location of the metallic net structure of a stent with
the extension of the perfused area [8]. Other mathematical
models have been developed to predict the release of a sub-
stance in a tissue and the influence of the physical proper-
ties of the drug. However, computational difficulties in
coupling different geometrical scales are reported [5,9].

The present paper provides a fundamental study of the
transient mass elution between two homogeneous porous
media having different thickness and material properties.
The treatment is quite general and can be applied to several
mass transfer diffusion dominated problems in composite
materials. The main application is the drug-eluting stent,
where the whole drug is initially in a polymeric matrix coat-
ing the metallic structure and is subsequently released into
the arterial wall. Being interested in the pharmacokinetics
only, any structural analysis as well as all mechanical
effects of the stent are neglected. The chemistry and the
binding of the drug to the tissue are beyond the scope of
the present work and will not be considered here. An out-
line of the paper is now given.

Section 2 presents the time–space diffusion–transport
equation for the dynamics of a substance across a double
layer structured material in the general case. Due to a pre-
valent flux direction, the problem is written in one dimen-
sional case in terms of nondimensional variables. This
results in a coupled system of partial differential equations
in two domains with an interface condition. Despite the
surprising analogy between mass transfer and heat conduc-
tion problems, solutions of identical form are admitted
provided that not only the differential equations, but also
the initial and boundary conditions match [10]. In the
current case, however, the boundary conditions at the
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Fig. 3. Cross-section of a stented artery with a zoomed area near the wall
that shows the metallic mesh and the two-layer medium at the adventitial
side described by the model (2.1) and (2.2): (a) stent strut, (b) coating, (c)
topcoat, (d) arterial wall. Due to an initial difference of concentration,
drug is diffusing in the arterial wall from (b) to (d) through the permeable
membrane (c). An analogous two-layer pattern is present on the opposite
side of the strut, referring to the drug diffusion towards the lumen
(lumenal side).
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interface do not have a counterpart in the heat diffusion
problem. Differently that in the case of two-layer heat con-
duction, the mass flux is continuous, but a concentration
jump may occur at the interface. This follows from the
equilibrium conditions with regard to mass transfer (equal-
ity of the chemical potential of each component in each
phase, see [11, chapter XI]). As a consequence, the solution
to the transient two-layer heat conduction problem pro-
posed in [16] cannot entirely be transferred to the analo-
gous mass diffusion process of interest here. However, the
same theoretical procedure based on separation of vari-
ables for solving the differential problem may be reformu-
lated, as shown in Section 3. Thus the correspondent
Sturm–Liouville problem is analyzed and the correspon-
dent eigenvalue equation is solved. Finally, the concentra-
tion solution is expressed in the form of a Fourier series
(Section 3).

Compared to a fully numerical method, the analytical
approach provides a greater insight into the physical sense
of the drug delivery process. As a matter of fact, the pres-
ent one-dimensional model is shown to catch most of the
relevant aspects of the drug dynamics. By showing relation-
ships among the relevant variables and material para-
meters, it can be used to identify simple indexes or
clinical indicators of biomechanical significance. Moreover
the methodology can be easily extended to a multi-layered
coating and wall structure. The model enables the effect of
important factors such as drug diffusivity, coating thick-
ness, and membrane permeability to be analyzed. Tuned
in optimal way, they can be used to design novel release
mechanisms, as well as to improve drug delivery protocols
used in therapy and diagnostics.

2. Formulation of the problem

A drug-eluting stent (DES) is a metallic prosthesis
(strut) implanted into the arterial wall and coated with a
thin layer of biocompatible polymeric gel that encapsulates
a therapeutic drug (coating). Such a drug, released in a con-
trolled manner through a permeable membrane, is aimed at
healing the vascular tissues or at preventing a possible
restenosis by virtue of its anti-proliferative action against
smooth muscle cells. In the present work we are interested
in the mechanism of drug elution into the arterial tissue. As
a matter of fact any other effects, such as the drug meta-
bolism in the living tissue and a possible decomposition
of the polymeric matrix, are neglected.

Let us consider a stent coated by a thin layer (of thick-
ness L1) of gel containing a drug and embedded into the
arterial wall (of thickness L2), as illustrated in Fig. 3. The
complex multi-layered structure of the arterial wall has been
disregarded and a homogeneous material with averaged
properties has been considered for simplicity (fluid-wall

model) as in Refs. [9,13]. Both the coating and the arterial
wall are treated as porous media [14]. Because most of the
mass transport process occurs along the direction normal
to the two layers (radial direction), we restrict our study
to a simplified 1D model. In particular, we consider a radial
line crossing the metallic strut, the coating and the arterial
wall and pointing outwards and, being the wall thickness
very small with respect to the arterial radius, a Cartesian
coordinate system x is used along it (Fig. 3).

At the initial time (t = 0), the drug is contained only in
the coating and it is uniformly distributed at a maximum
concentration C1 and, subsequently, it is released into the
wall. Here, and throughout this paper, a mass volume-
averaged concentration c(x, t) (mg/ml) is considered. Since
the strut is impermeable to the drug, no mass flux passes
through the boundary surface x = �L1. Moreover, it is
assumed that the plasma does not penetrate the surface
of the stent. Thus, the dynamics of the drug in the coating
(first layer) is described by the following 1D differential
equation:

oc1

ot
� D1

o2c1

ox2
¼ 0 in ½�L1; 0�;

� D1

oc1

ox
¼ 0 at x ¼ �L1;

c1 ¼ C1 at t ¼ 0;

ð2:1Þ

where D1 is the drug diffusivity in the coating.
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Let us now consider the drug dynamics in the wall (sec-
ond layer). In principle, drug diffusion occurs from the
coating towards both the lumen and the adventitia. There-
fore an inner double layer system (lumenal side (lum)) and
an outer double layer system (adventitial side (adv)) have to
be distinguished. The relative importance of them depends
on the penetration depth of the stent, but the adventitial
side is generally larger in size and deemed more relevant
from a clinical point of view (Fig. 3). Even though the
results in the sequel of the paper are mainly referred to
it, the following analysis is general and applies to both
inner and outer sides.

At adventitial side, being L2� L1, the concentration c2

at x = L2 does not change as the time increases and hence it
remains equal to its initial value, namely zero. Similarly, in
the case of the lumenal side, concentration is nearly zero,
because of the extremely high mass transfer coefficient of
the blood stream (washout). Therefore, in both cases, we
end up with an homogeneous boundary condition of the
first kind at x = L2 leading to a fraction of drug lost in
the tissues adjacent to the adventitia and a fraction dis-
persed in the lumen.

In general, mass transport in the wall is not governed by
diffusion only, but convection is equally important and an
advective transport term is added into the model. Thus, we
have the following equations:

oc2

ot
þ o

ox
a2u2

�2

c2 � D2

oc2

ox

� �
¼ 0 in ½0; L2�;

c2 ¼ 0 at x ¼ L2;

c2 ¼ 0 at t ¼ 0;

ð2:2Þ

where D2 is the drug diffusion coefficient in the wall and �2 its
porosity. The coefficient a2 is the so-called hindrance coeffi-
cient in the x-direction [9]. Finally, u2(x,t) denotes the vol-
ume-averaged filtration velocity of the plasma over a cross
section. Such a variable is not known a priori and constitutes
a strong coupling term with the fluid-dynamics. In the pres-
ent case, however, it may simply be estimated as follows.

2.1. Plasma convection

For the unidirectional flow of an isothermal and incom-
pressible fluid in a porous medium the velocity is time inde-
pendent. The mass conservation gives u2(x) = U2 = const in
[0,L2]. Assuming the plasma viscosity l2 and the wall per-
meability K2 as constants, integration of Darcy equation
over [0,L2] gives [14]:

U 2 ¼
Dp

l2L2=K2

ð2:3Þ

In human medium sized arteries, the pressure difference
between lumen and adventitia, at normal conditions, does
not exceed 100 mmHg and hence the numerator of Eq.
(2.3) is less than that. Consequently U2 � 10�6 cm/s. By a
scaling analysis, the orders of magnitude of the convective
and diffusive terms in (2.2) are estimated [10]:
a2U 2c2

�2

¼ OðC1U 2Þ; D2

oc2

ox
¼ O

C1D2

L2

� �
: ð2:4Þ

In the present application D2/L2 is one order (resp. three
orders) of magnitude larger than U2 at the adventitial side
(resp. lumenal side) and the convective term remains negli-
gible in comparison with the diffusive one. This result is
also confirmed by Zunino in Ref. [9], where it is shown that
after 6 h up to 76% of heparin is lost into the blood for the
case of finite filtration velocity, versus a 72% lost in the case
without it.

2.2. Interface conditions

To close the previous system of Eqs. (2.1) and (2.2),
the conditions at the interface x = 0 (the so-called inner
boundary conditions) have to be assigned. One of them is
obtained by imposing continuity of the mass flux:

D1

oc1

ox
¼ D2

oc2

ox
at x ¼ 0: ð2:5Þ

Also, to slow down the drug release rate, a permeable
membrane (called topcoat) of permeability P (cm/s) is
located at the interface (x = 0) between the coating and
the arterial wall. A continuous mass flux passes through
it orthogonally to the coating film with a possible concen-
tration jump. In the present case, the mass transfer through
the topcoat can be described using the second Kedem–Kat-
chalsky equation [9,13,15]. Thus, the continuous flux of
mass passing across the membrane normally to the coating
is expressed by

�D1

oc1

ox
¼ Pðc01 � c02Þ at x ¼ 0; ð2:6Þ

or, alternatively,

�D2

oc2

ox
¼ Pðc01 � c02Þ at x ¼ 0; ð2:7Þ

In Eqs. (2.6) and (2.7) the fluid-phase concentration c0 is
used. This is related to the volume-averaged concentration

c through the formula c0 ¼ c
k�

, where k is the partition coef-

ficient [3,9]. As one of the last three equations is redundant,
we can choose any two of them, for example Eqs. (2.5) and
(2.7).

Note that, when P ?1, Eqs. (2.6) and (2.7) reduce to
c01 ¼ c02. This equality contrasts with what occurs at the
interface of two-layer heat conduction problems where
the temperatures across the interface are always equal, if
the two bodies are in perfect thermal contact. In mass dif-
fusion, instead, because the media are porous and drug is
partly dissolved in the fluid and partly bound with the
polymeric matrix in solid phase, only the fluid-phase con-
centration enters to the flux dynamics.

2.3. Dimensionless form

Let us define the following nondimensional variables
and constants:
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�x ¼ x
L2

; �t ¼ D2

L2
2

t; �c1 ¼
c1

C1

; �c2 ¼
c2

C1

;

c ¼ D1

D2

; L ¼ L1

L2

; / ¼ PL2

D2k2�2

; r ¼ k1�1

k2�2

: ð2:8Þ

By setting

�x! x; �t! t; �c1 ! c1; �c2 ! c2; ð2:9Þ

and neglecting the convective term in Eq. (2.2), the two dif-
ferential problems (2.1) and (2.2) with B.C.’s (2.5) and (2.7)
may be rewritten in a dimensionless form as

oc1

ot
� c

o
2c1

ox2
¼ 0 in ½�L;0�;

oc1

ox
¼ 0 at x ¼ �L;

c
oc1

ox
¼ oc2

ox
at x ¼ 0;

c1 ¼ 1 at t ¼ 0;

ð2:10Þ

oc2

ot
� o

2c2

ox2
¼ 0 in ½0; 1�;

� oc2

ox
¼ /

c1

r
� c2

� �
at x ¼ 0;

c2 ¼ 0 at x ¼ 1;

c2 ¼ 0 at t ¼ 0:

ð2:11Þ

Note that if a linear mass consumption term (due to a
drug binding and chemical effects) is present in the wall
layer, the (2.10) and (2.11) can be written in the same form
through an appropriate transformation.

The IBVP problem (2.10) and (2.11) is analogous to the
problem of transient heat conduction between two-slab
shaped regions of different thermal properties, when a tem-
perature jump is initially present, with the only exception
of the inner boundary condition in Eqs. (2.11), as has
already been stated previously. For this reason, the analyt-
ical solution procedure developed in [12] for the transient
heat conduction in a one-dimensional composite slab will
be adapted to our problem in the next sections.
3. Solution of the governing equations

In general, the solution of a linear boundary value
problem can be given in a short- and in a long-time
form (see [16, chapter 5]). The former arises from the appli-
cation of Laplace transform and the long-time form is
based on the method of separation of variables. They are
two mathematically equivalent expressions of the unique
solution, which are complementary in terms of computa-
tional efficiency. The short-time form requires only a few
terms for small values of the time and the long-time expres-
sion needs only a few terms for large values of the dimen-
sionless time [16]. Being the Laplace transform method
applicable only to solve problems of composite media of
semi-infinite thickness, the solution to the (2.10) and
(2.11) cannot be of the short-time form. Hence it will be
obtained by separation of variables

ciðx; tÞ ¼ X iðxÞGiðtÞ; i ¼ 1; 2: ð3:1Þ
Eqs. (2.10) and (2.11) yield the ODE’s

1

c
G01
G1

¼ �k2
1;

G02
G2

¼ �k2
2 ð3:2Þ

having as solution

G1ðtÞ ¼ e�ck2
1t; G2ðtÞ ¼ e�k2

2t; ð3:3Þ
and the Sturm–Liouville eigenvalue system:

X 001 ¼ �k2
1X 1 in ½�L; 0�; ð3:4Þ

X 01 ¼ 0 at x ¼ �L; ð3:5Þ
cX 01 ¼ X 02 at x ¼ 0; ð3:6Þ

X 002 ¼ �k2
2X 2 in ½0; 1�; ð3:7Þ

X 2 ¼ 0 at x ¼ 1; ð3:8Þ

� X 02 þ /X 2 ¼
/
r

X 1 at x ¼ 0; ð3:9Þ

obtained by setting G1 = G2 [17], that implies

k1 ¼
1ffiffiffi
c
p k2: ð3:10Þ

The general solution of the ordinary differential Eqs.
(3.4) and (3.7) is

X 1ðxÞ ¼ a1 cosðk1xÞ þ b1 sinðk1xÞ;
X 2ðxÞ ¼ a2 cosðk2xÞ þ b2 sinðk2xÞ; ð3:11Þ

where the eigenvalues ki and the unknown coefficients ai

and bi may be computed by imposing the outer and inner
boundary conditions as follows. From Eqs. (3.5) and
(3.8), we have

a1 sinðk1LÞ þ b1 cosðk1LÞ ¼ 0; ð3:12Þ
a2 cosðk2Þ þ b2 sinðk2Þ ¼ 0: ð3:13Þ

From the interface conditions (3.6) and (3.9), it follows:

cb1k1 ¼ b2k2; ð3:14Þ

� b2k2 þ /a2 ¼
/
r

a1: ð3:15Þ

Eqs. (3.12)–(3.15) form a system of four homogeneous
linear algebraic equations in the four unknowns a1, b1, a2

and b2. To get a solution different from the trivial one
(0,0,0,0), it is needed that the determinant of the coefficient
matrix associated with the above system be equal to zero,
that is:

uðk2Þ ¼ r
ffiffiffi
c
p ðk2 þ / tan k2Þ tan

Lffiffiffi
c
p k2

� �
� / ¼ 0: ð3:16Þ

If the above transcendental equation (eigencondition) in
k2 is satisfied, the coefficients may be taken as
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a1 ¼ �r tan k2 þ
k2

/

� �
b2; ð3:17Þ

b1 ¼
1ffiffiffi
c
p b2; ð3:18Þ

a2 ¼ � tan k2ð Þb2; ð3:19Þ

where the multiplicative constant b2 will be determined
through the initial condition (see below). Let us note that
u depends on the four parameters r, /, L, c, it is an odd
function and its roots (eigenvalues) are infinite, real and
distinct (see Appendix A.3). We also remark that u has
an infinite number of singularity points, say

lj ¼ p
1

2
þ j

� �
; mj ¼

p
ffiffiffi
c
p

L
1

2
þ j

� �
; j ¼ 0; 1; 2; . . .

ð3:20Þ

Differently than in heat transfer models [18] – due to the
present interface condition (3.9) – the function u is not
monotone and the property that each root is located
exactly between any two adjacent asymptotes is not
satisfied. In correspondence of each eigenvalue k2m

(m = 1,2,. . .) solution of Eq. (3.16), an associated k1m is
found (see Eqs. (3.10)). Subsequently, the constants a1m,
b1m and a2m are obtained from (3.17), (3.18) and (3.19)
respectively, and thus the corresponding eigenfunctions
X1m and X2m defined in Eqs. (3.11) may be written as

X 1m ¼ b2m
eX 1m

¼ b2m �r tanðk2mÞ þ
k2m

/

� �
cosðk1mxÞ þ 1ffiffiffi

c
p sinðk1mxÞ

� �
;

ð3:21Þ
X 2m ¼ b2m

eX 2m

¼ b2m½� tanðk2mÞ cosðk2mxÞ þ sinðk2mxÞ�: ð3:22Þ

Furthermore, the corresponding time-variable functions
G1m and G2m defined by Eqs. (3.3) are computed, using
(3.10), as

G1m ¼ G2m ¼ e�k2
2mt: ð3:23Þ

Finally, the complete solution of the problem is given by
a linear superposition of the fundamental solutions (3.21)
and (3.22) in the form

c1ðx; tÞ ¼
X1
m¼1

Am
eX 1mðxÞe�k2

2mt;

c2ðx; tÞ ¼
X1
m¼1

Am
eX 2mðxÞe�k2

2mt; ð3:24Þ

with Am: = b2m.

3.1. Application of the initial condition

By evaluating c1 in (3.24) at t = 0 and multiplying it byeX 1n, after integration we get
Z 0

�L

X
Am
eX 1m

eX 1n dx ¼
Z 0

�L

eX 1n dx; n ¼ 1; 2; . . . ð3:25Þ

Similarly in the interval [0,1], we haveZ 1

0

X
Am
eX 2m

eX 2n dx ¼ 0; n ¼ 1; 2; . . . ð3:26Þ

By combining Eqs. (3.25) and (3.26) and by using the
orthogonality property (A.1) we have

Am

Z 0

�L

eX 2
1m dxþ r

Z 1

0

eX 2
2m dx

� �
¼
Z 0

�L

eX 1m dx; ð3:27Þ

where the term in brackets on the l.h.s. is the normeN m ¼
Nm

b2
2m

with Nm given in Eq. (A.2). Bearing in mind

Eq. (3.21) and integrating from �L to 0, we have

Am ¼
�r tan k2m þ

k2m

/

� �
sinðk1mLÞ þ 1ffiffiffi

c
p cosðk1mLÞ � 1ð Þ

eN mk1m

;

m ¼ 1; 2; . . . ð3:28Þ
3.2. Physical quantities and operational conditions

From Eq. (3.24) it is possible to compute the dimension-
less drug mass (per unit of area) in both coating and wall
layers as function of time as

M1ðtÞ ¼
Z 0

�L
c1ðx; tÞdx; M2ðtÞ ¼

Z 1

0

c2ðx; tÞdx; ð3:29Þ

obtaining

M1ðtÞ ¼
X1
m¼1

A2
m
eN me�k2

2mt; ð3:30Þ

M2ðtÞ ¼
X1
m¼1

Am
� tanðk2mÞ sinðk2mÞ � cosðk2mÞ þ 1

k2m

� �
e�k2

2mt:

ð3:31Þ

In particular M1(0) = L and M2(0) = 0.
Similarly, the dimensionless mass flux and jump of

concentration at interface are respectively

JðtÞ¼�c
oc1

ox
ð0; tÞ¼�oc2

ox
ð0; tÞ¼�

X1
m¼1

Amk2me�k2
2mt ð3:32Þ

SðtÞ¼ ðc1� c2Þð0; tÞ¼
X1
m¼1

Am ð1�rÞtanðk2mÞ�r
k2m

/

� �
e�k2

2mt:

ð3:33Þ
In particular J(0) ?1 and S(0) = 1.

All the previous variables characterize the performance

of the drug elution process and can be used for its
optimization.

4. Computational results

The following physical parameters are considered for
computational experiments:
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L1 ¼ 5� 10�4 cm; L2 ¼ 10�2 cm;

P ¼ 10�6 cm=s; D1 ¼ 10�10 cm2=s; D2 ¼ 7� 10�8 cm2=s

k1 ¼ 1; k2 ¼ 1; �1 ¼ 0:1; �2 ¼ 0:61:

These parameters have been chosen according to a physical
basis and in agreement with the typical scales in DES and
data in literature for the arterial wall and heparin drug in
the coating layer [2,3,19].

The physical problem apparently depends on a large
number of parameters, each of them may vary in a finite
range, and there is a variety of different limiting cases. As
a matter of fact, they cannot be chosen independently from
each other, but they are related by some compatibility con-
dition to give rise a well-posed model. However the problem
depends only on the four nondimensional operational
Table 1
First eigenvalues k2m of Eq. (3.16), and corresponding damping factors d(t) at

m k2m dm (0.01) dm (0.1)

1 1.153 0.986 0.875
2 1.580 0.975 0.778
3 3.490 0.885 0.295
4 4.712 0.800 0.108
5 5.823 0.712 0.033
6 7.841 0.540 2.134 � 10�3

7 8.164 0.513 1.272 � 10�3

8 10.474 0.333 1.717 � 10�5

9 11.003 0.297 5.511 � 10�6

10 12.813 0.193 7.406 � 10�8

20 26.687 8.071 � 10�4 <10�20

40 52.717 8.518 � 10�13 <10�20
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Fig. 4. Drug concentration profiles in the coating (above) and in th
parameters defined by Eq. (2.8). In the present case, their
values are

/ ¼ 0:234; r ¼ 0:164; L ¼ 0:05; c ¼ 0:0014: ð4:1Þ

The four ratios /, r, L, c are the only intrinsic parameters
of the problem and they are used as mean values for a set of
numerical simulations.

First of all, Eq. (3.16) is solved numerically with a bisec-
tion-like method by using intervals limited by the points lj

and mj, j = 0,1,2, . . . (see Eq. (3.20)) and midpoints between
them, as starting guess (routine fzero of MATLAB,with accu-
racy of 10�8). In particular, the first roots of Eq. (3.16) are
given in Table 1. The damping factor, defined as dmðtÞ ¼
expð�ck2

1mtÞ, measures the attenuation of the various terms
in summations (3.24) and is listed in the same table. Its val-
ues indicate a fast (exponential) convergence of the solu-
three different times

dm (1) maxxjAm eX 1mj maxxjAm eX 2mj
0.264 1.2485 0.1064
0.082 0.0232 0.0755
5.098 � 10�6 0.4206 0.0168
2.262 � 10�10 0.0001 0.0007
1.864 � 10�15 0.2503 0.0104
<10�20 0.0071 0.0180
<10�20 0.1702 0.0206
<10�20 0.1338 0.0097
<10�20 0.0022 0.0091
<10�20 0.1092 0.0040
<10�20 0.0042 0.0066
<10�20 0.0165 0.0004

.025 –0.02 –0.015 –0.01 –0.005 0

x

.5 0.6 0.7 0.8 0.9 1
x

t = 0.01
t = 0.1
t = 1

e wall (below) for three times (note the different space scales).
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tion. Because of that, the series (3.24) will be truncated at a
finite number of terms. Such a number can be found in
accordance with the accuracy desired at the time of inter-
est. Being maxxjAm

eX imj < 1 for any i = 1,2, m > 1 (see
Table 1), to reach an accuracy of 10�r, it is sufficient to
consider a finite series summation up to the index Mt > 1
such that

k2Mt >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r ln 10

t

r
;

and the series is truncated at the first Mt terms. Mt is adap-
tively changed during computations: its values drop from
Mt = 40 at the shorter times, down to Mt = 5 at higher
times.

The concentration profiles for three values of time are
displayed in Fig. 4: drug is eluting from coating to the wall,
with concentration decaying in time. Because of the differ-
ent material properties of the substrates, at first instants c1

and c2 exhibit a steep boundary layer near x = 0, which dis-
appears at later times.

Fig. 5 shows that drug mass in the coating layer M1 is
monotonically decreasing, while mass in the wall M2, first
increasing to a maximum M�

2 at time t*, decreases to zero
with the same rate of M1. Since drug is absorbed at
x = 1, the total mass is not preserved and tends to zero
at time large enough.

The mass flux J(t) and the concentration jump S(t) at
the interface are depicted in Fig. 6. Both quantities evi-
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M
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2
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s

Fig. 5. Dimensionless drug mass in the coating ( � - � ), in the wall (- - -), and
monotonically decreasing, while in the wall there is a characteristic time t* at w
wall, drug is not preserved and vanishes at a time large enough.
dence a sudden change at first instants and then an asymp-
totic vanishing. There is a finite instant where S reaches
a minimum, namely the same time where M2 reaches its
maximum M�

2.

4.1. Validation of the results

Comparison with numerical results of other models in
3D complex geometries has shown a good agreement. In
particular, a certain discrepancy in the values of concentra-
tions occurs at small times (t 6 0.05), since the boundary
layer at the interface is not sufficiently resolved. For exam-
ple, at x = 0 and t = 0.01 the maximum absolute error is
0.06 for c1 and 0.0018 for c2 [5].

We also compare the fraction of drug mass lost partly at
the lumen (hlum) and partly external to the adventitia (hadv)
[9]. They are defined respectively as:

hlumðtÞ ¼
½M1ð0Þ � ðM1ðtÞ þM2ðtÞÞ�lum

M totð0Þ
;

hadvðtÞ ¼
½M1ð0Þ � ½ðM1ðtÞ þM2ðtÞÞ�adv

M totð0Þ
;

where Mtot(0) is the total (lumenal + adventitial side) ini-
tial mass. It is shown how the mass lost in the lumen is
strongly influenced by the penetration depth (Llum

2 ) of the
stent, when all the other parameters are kept constant
(Table 2). Note that hadv is absent in model [9], since a zero
mass flux is imposed as external boundary condition.
1.5 2 2.5 3

M1+M2

time

total mass (—) as function of time. In the coating, drug mass M1 is
hich the drug reaches a maximum peak M�

2. Due to the absorption at the
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S(t) at x = 0 

time

Fig. 6. Mass flux (continuous line) and concentration jump (dashed line) at the interface x = 0 as function of time.

Table 2
Percentage of drug mass lost at lumenal (hlum) and advential (hadv) sides at
nominal (Llum

2 ¼ 10 lm) and at two off-nominal configurations. Mass are
computed in dimensional form and compared with those in the model of
Zunino [9], showing a strong influence of the penetration depth (Llum

2 ) on
the drug elution and dispersion

Time Present work Ref. [9]

Llum
2

ðlmÞ
hlum (%) hadv (%) hlum (%) hadv (%)

3000 s (50 min) 10 34.9 8.3 53 0
5 91.7 4.3
2.5 94 2.2

10,000 s (�2 h 45 min) 10 64 9.1 66 0
5 95.2 4.7
2.5 97.5 2.4

20,000 s (�5 h 30 min) 10 81.5 9.1 72 0
5 95.2 4.8
2.5 97.6 2.4
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4.2. Sensitivity analysis

Design parameters governing the drug release can be
screened by analyzing the solution dependence and the
sensitivity on the groups L, c, / and r when they are varied
in a limited realistic range one at a time around the mean
values in Eq. (4.1), with the others fixed. Results from
numerical simulations are shortly reported below.

	 Dependence on L: Increasing L, higher values for the
concentrations c1 and c2 at the interface are obtained
at larger times. A slower drug release is exhibited in both
layers at larger L. The solution is shown very sensitive to
L.
	 Dependence on c: The drug is released faster with c in

both layers. The mass M1 is decaying with c, while M2

shows an increased value of the peak, followed by a
faster decay. The solution is quite sensitive to c.
	 Dependence on r: Increasing r we have a raising of

c1 and a reduction of c2 at the interface for initial
times. The mass M1 is slightly increased at larger times,
while the peak for M2 is reduced and occurs at later
instants.
	 Dependence on /: Associated with a high /, a reduction

of c1 and an increase of c2 at the interface are reported
only at first times. When / is decreased, the peak of
M2 lowers and is attained at a larger time. Conse-
quently, the drug release is slower at lower /. For values
of / > 1 the solution does not change significantly.
4.3. Drug-delivery indicators

For novel coating design and comparative purposes, it
is desirable to search for simple quantitative indicators of
the drug dynamics. Several scalar indexes can be defined,
for example:

1. Emptying time tE, namely the time at which the drug
mass drops below a given amount in the coating layer
(1) with respect to the initial mass (in the simulations
M1(tE) = 0.001M1(0) = 0.001L, where the expression
for M1(t) is given by Eq. (3.30)).

2. Mass M2 at a given time.
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3. Magnitude (m2) and uniformity (s2) of the wall concen-
tration c2.

4. Location and value of the peak in the wall layer (2).
Time t* and maximum value M�

2 are possible pointers
of drug release kinetics.

Depending on the specific optimizing purposes and tech-
nological limitations, one or a combination of some of
them may provide significant and useful hints.

The indicators (3) are computed by first averaging
c2 (and its derivative) over the wall length and then
considering their maximum values in time. The variation
of both indexes with each of the four parameters is mono-
tone, and has the same trend. In particular, a reduction of
one order of magnitude on / (resp. c) implies a reduction
of 25% (resp. 55%) on s2 and of 23% (resp. 67%) on m2.

The indicator (1) seems to be more promising and its
sensitivity is fully investigated. The dependence of the emp-
tying time on c, L, / and r is shown in Fig. 7 with one
parameter varied in a convenient interval and the other
three fixed as in Eq. (4.1): in all cases the variation is mono-
tone and the maximum value is reached at one end of the
interval. The computed data are fitted with appropriate
functions. In particular, tE shows a linear rising with r
and a quadratic behaviour with L. On the other hand, tE

decreases as /�1 and as c�
5
4. As a consequence, large values

of L and r and small values of c and /, compatible with
technological requirements and implantation limits, guar-
antee the best drug release performance.

5. Conclusions

The release of a substance in a living tissue for therapeu-
tic purposes is becoming quite common in medicine nowa-
days, through drug delivery devices. Drug-eluting stents
are revealed a promising technique for healing the vascular
wall and for the treatment of atherosclerosis and restenosis.
However, the mechanism of release is quite complex and
depends on many concurrent biochemical, physical and
individual factors. The model presented here, although
some simplifying assumptions, is able to simulate and pre-
dict the dynamics of a drug through a two-layered medium
and to estimate the dose absorption rate and is solved in a
closed form. An advantage of the methodology is that the
procedure is analytical and the only computational cost
consists in searching the roots of the eigenvalue equation.
The model can be easily extended to a multi-layered struc-
ture, including both a more realistic wall configuration and
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a novel design for multi-coating DES. In addition, the
mathematical formulation is able to incorporate the drug
consumption effect due to the tissue cell binding. The appli-
cation of the dimensional analysis to the governing equa-
tions has indicated that the dynamics of a drug through
an eluting stent is fully controlled by only four dimension-
less operational parameters. Numerical experiments have
been extensively carried out over several typical configura-
tions. Results have shown the influence of the solution on
each single parameter, in particular the ratios between
thickness and drug diffusivities of the two layers. Also,
some biomechanical indicators, such as the emptying time
of the coating, are suggested to obtain an optimal drug-
elution and a desired tissue concentration.
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Appendix A

A.1. Orthogonality

We shall prove that the eigenfunction system (X1,X2)
satisfies the following orthogonality property:Z 0

�L
X 1nX 1m dxþ r

Z 1

0

X 2nX 2m dx ¼
0 for m 6¼ n;

Nm for m ¼ n;

	
ðA:1Þ

with the expression for the norm Nm given by

Nm ¼ b2
2m

1

2

a1m

b2m

� �2

þ b1m

b2m

� �2
 !

L� a1mb1m

b2
2mk1m

" #(

þ r
2

a2m

b2m

� �2

þ 1

 !
þ a2m

b2mk2m

" #)
ðA:2Þ

(see subsection A.2 for the proof). Note that the all ratios
in the square brackets are expressible in terms of eigen-
values through Eqs. (3.17), (3.18) and (3.19).

Let us consider two different eigenvalues k1m and k1n and
the corresponding eigenfunctions X1m, X1n. Multiplying
Eq. (3.4) by X1n and integrating:

k2
1m

Z 0

�L
X 1mX 1n dx ¼ �

Z 0

�L
X 001mX 1n dx

¼ �½X 01mX 1n�0�L þ
Z 0

�L
X 01mX 01n dx: ðA:3Þ

Similarly, for the eigenvalue k1n

k2
1n

Z 0

�L
X 1nX 1m dx ¼ �

Z 0

�L
X 001nX 1m dx

¼ �½X 01nX 1m�0�L þ
Z 0

�L
X 01nX 01m dx: ðA:4Þ
Subtracting Eq. (A.4) from Eq. (A.3) we have

ðk2
1m � k2

1nÞ
Z 0

�L
X 1nX 1m dx ¼ �½X 01mX 1n�0�L þ ½X 01nX 1m�0�L:

ðA:5Þ
By replacing the expression of the first of Eqs. (3.11) of

the eigenfunctions and by using Eq. (3.12) we obtain

ðk2
1m � k2

1nÞ
Z 0

�L
X 1nX 1m dx ¼ a1mb1nk1n � a1nb1mk1m: ðA:6Þ

Repeating a similar procedure for the eigenvalues k2m,
k2n and for the eigenfunctions X2m, X2n, we get

ðk2
2m � k2

2nÞ
Z 1

0

X 2nX 2m dx ¼ �½X 02mX 2n�10 þ ½X 02nX 2m�10 ðA:7Þ

and by using the second of Eqs. (3.11) and Eq. (3.13) we
have

ðk2
2m � k2

2nÞ
Z 1

0

X 2nX 2m dx ¼ a2nb2mk2m � a2mb2nk2n: ðA:8Þ

By summing up Eq. (A.6) multiplied by c and Eq. (A.8)
multiplied by r, and by using Eqs. (3.10), (3.18) and (3.15)
we have

ðk2
2m � k2

2nÞ
Z 0

�L
X 1nX 1m dxþ r

Z 1

0

X 2nX 2m dx
� �

¼ 0; ðA:9Þ

which immediately proves Eq. (A.1).

A.2. Normalization integral

We shall now prove that the norm Nm has the expression
given by Eq. (A.2).

Multiplying Eq. (3.4) by X1m and integrating we have

k2
1m

Z 0

�L
X 2

1m dx¼�
Z 0

�L
X 001mX 1m dx¼�½X 01mX 1m�0�Lþ

Z 0

�L
ðX 01mÞ

2 dx:

ðA:10Þ

Multiplying the first of Eqs. (3.11) by k1m and summing
its square with the square of

X 01m ¼ �a1mk1m sinðk1mxÞ þ b1mk1m cosðk1mxÞ;

we get

ðk1mX 1mÞ2 þ ðX 01mÞ
2 ¼ k2

1mða2
1m þ b2

1mÞ: ðA:11Þ

Integration of both side of the above equation leads to

k2
1m

Z 0

�L
X 2

1m dxþ
Z 0

�L
ðX 01mÞ

2 dx ¼ k2
1mða2

1m þ b2
1mÞL: ðA:12Þ

Summation of Eqs. (A.10) and (A.12) gives

2k2
1m

Z 0

�L
X 2

1m dx ¼ k2
1mða2

1m þ b2
1mÞL� ½X 01mX 1m�0�L: ðA:13Þ

By using the first of Eqs. (3.11) and Eq. (3.12), the r.h.s
can be easily manipulated to getZ 0

�L
X 2

1m dx ¼ L
2
ða2

1m þ b2
1mÞ �

a1mb1m

2k1m
: ðA:14Þ
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Repeating the same procedure for an eigenfunction X2mZ 1

0

X 2
2m dx ¼ 1

2
ða2

2m þ b2
2mÞ þ

a2mb2m

2k2m
: ðA:15Þ

Substitution of Eqs. (A.14) and (A.15) into Eq. (A.1) for
m = n gives the result.

A.3. Reality of the eigenvalues

We first prove that the Eq. (3.16) cannot have a complex
root of the form k2 = p ± jq, where p and q are positive real
numbers, and j is the imaginary unit. In fact, if this were
possible, we would have two conjugate roots k2m = p + jq

and k2n = p � jq. Substituting these two complex roots in
Eq. (3.11), after some algebraic manipulations, the eigen-
functions may be separated into their real and imaginary
parts and rewritten as

X 1rðxÞ ¼ R1ðxÞ 
 jS1ðxÞ; X 2rðxÞ ¼ R2ðxÞ 
 jS2ðxÞ;
r ¼ m; n

Applying the orthogonality property (A.1) with m 6¼ n,
we would haveZ 0

�L
ðR2

1 þ S2
1Þdxþ r

Z 1

0

ðR2
2 þ S2

2Þdx ¼ 0; ðA:16Þ

which is impossible as both terms on the l.h.s. of Eq. (A.16)
are positive. With a similar argument, we demonstrate that
Eq. (3.16) cannot admit purely imaginary roots of the form
k2 = ±jq. In such a case Eq. (A.16) would hold with
R1 = R2 = 0.
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