
International Journal of Heat and Mass Transfer 222 (2024) 125065

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Modelling functionalized drug release for a spherical capsule

Elliot J. Carr a,∗, Giuseppe Pontrelli b

a School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
b Istituto per le Applicazioni del Calcolo - CNR, Rome, Italy

A R T I C L E I N F O A B S T R A C T

Dataset link: https://
github .com /elliotcarr /Carr2023a

Keywords:

Drug release
Functional graded material
Spherical capsule
Reaction diffusion
Semi-analytical solution

Advances in material design have led to the rapid development of novel materials with increasing complexity 
and functions in bioengineering. In particular, functionally graded materials (FGMs) offer important advantages 
in various fields of application. In this work, we consider a heterogeneous reaction-diffusion model for an 
FGM spherical drug release system that generalizes the multi-layer configuration to arbitrary spatially-variable 
coefficients. Our model proposes a possible form for the drug diffusivity and reaction rate functions exhibiting 
fixed average material properties and a drug release profile that can be continuously varied between the 
limiting cases of a homogeneous system (constant coefficients) and two-layer system (stepwise coefficients). 
A semi-analytical solution is then used to solve the model, which provides closed-form expressions for the 
drug concentration and drug release profiles in terms of generalized Fourier series. Our results show how the 
release rate of the proposed FGM drug release system can be controlled and continuously varied between a fast 
(homogeneous) and slow (two-layer) release while maintaining the same averaged values for the diffusivity and 
reaction rate.
1. Introduction

Spherical drug carriers are among the most common formulations 
for a controlled release system. In particular, microcapsules are small 
spherical particles produced by coating templates constituted of dif-
ferent polymers and using various fabrication strategies [1]. Although 
they can be made of a variety of sizes and materials, capsules of interest 
for most bio-applications have diameters ranging from some nanome-
ters to a few micrometers. Specific examples include liposomes, pellets, 
nanocontainers, and others [2]. The effectiveness of polymeric delivery 
systems can be improved by designing structures with modified material 
properties that are capable of responding to specific pre-set conditions 
that prescribe the release of the loaded drug.

One of the approaches generally recognized as effective in the as-
sembly of polymer particles is the layer-by-layer technique. These drug 
carriers are considered as challenging releasing devices because of their 
unique multi-layer structural properties [3]. Another family of drug de-
livery systems is constituted by stimuli-responsive capsules that control 
the release of the therapeutic active agents in response to external trig-
gers such as temperature, pH and many others [4,5]. Among other 
concurrent effects, such as dissolution, polymer swelling and possible 
degradation, diffusion remains the most important mechanism used to 
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control the release rate from drug delivery systems [6,7]. Some ex-
periments, however, show that a fraction of the initial drug loaded is 
retained within the shell and is never released, due to the specific ca-
pacity of the polymer to permanently bind the drug molecules [8]. It is 
common to model this observed phenomenon through first order reac-
tion kinetics [4,8].

Mathematical models of drug release from spherical carriers provide 
insights of mass transport and drug kinetics involved in drug delivery 
as well as the effect of design parameters, such as the device geome-
try and drug loading distribution, on the release mechanism and can 
significantly reduce the number of experimental studies [9]. However, 
these models depend on so many variables and parameters that, if not 
appropriately simplified, can raise more questions than useful answers. 
Analysis of diffusion-controlled system are confined to homogeneous 
spheres where an exact solution is available [10], or to layered capsules 
[11,12], where various mathematical models have been proposed to de-
scribe the drug release from this system over the years [1,6,9,15,16].

While such configurations are well understood, there is still room for 
improvement in mechanistic models to control the release mechanism 
from a drug-loaded sphere. For example, the effect of non-homogeneity 
represents an important feature that can influence greatly the release 
properties. Functionally graded materials (FGMs) are a variety of com-
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Fig. 1. Schematic representation of an FGM with continuous variation of poros-
ity/density compared to an homogeneous material (no variation) and a two-
layer material (stepwise variation).

posite materials in which the material properties vary smoothly and 
continuously (Fig. 1). This is in contrast to previous approaches for 
achieving varying material properties, such as layer-by-layer assembly, 
where there is an abrupt change in properties from one layer to the 
next. FGMs, i.e composite materials that have a progressive composi-
tional gradient, are already currently used in a wide range of applica-
tions [17,18]. Using today’s micro-engineering potential, it is possible 
to manufacture and control the material properties of the substrate 
to have the desired smart release properties [2]. For example, new 
possibilities are derived from 3D printing technology to manufacture 
material micro-porosity and density in non-homogeneous PLGA sub-
strates [19–22].

A mathematical model of drug release from a thin film FGM has been 
recently presented and solved numerically [23]. In the current work, we 
propose a reaction-diffusion continuum model to describe drug trans-
port within, and release from, a drug-loaded FGM spherical capsule and 
develop a semi-analytical eigenfunction expansion solution [24–28] to 
handle the spatially-variable coefficients. Our model suggests a possible 
form for the drug diffusivity and reaction rate functions, which exhibits 
the same average material properties and can be continuously varied 
between the limiting cases of a homogeneous system (constant coeffi-
cients) and two-layer system (stepwise coefficients)

The rest of the article is organized as follows. In the next section, 
we present the model equations and boundary conditions that govern 
the drug mass release from a non-homogeneous FGM spherical system. 
In section 3, we present the semi-analytical solution methodology lead-
ing to a closed-form solution. In section 4, drug concentration and drug 
release profiles are presented for two distinct cases: pure diffusion and 
reaction-diffusion. Through extensive simulations, we explore the ef-
fect of FGM systems on the drug release mechanism by comparing the 
release profiles to those obtained from standard homogeneous and two-
layer systems. Finally, section 5 provides general conclusions and some 
perspectives for future studies.

2. Using FGM in releasing spherical particles

Drug nanocontainers and releasing microcapsules are the subject of 
considerable research effort because of their structural and morphologi-
cal properties, allowing the synthesis of materials capable of responding 
to biochemical alterations of the environment [4]. Particularly, layer-
by-layer polymeric releasing particles have gained increasing interest 
for their ability to control and tune the release of one or more thera-
peutic drugs [29]. Here, the layers are constituted of different materials 
having specific physico-chemical characteristics and are customized to 
allow a selective diffusion and better control the transfer rate [1]. In 
the layer-by-layer configuration, a semi-permeable external shell (coat-
2

ing) is often designed to shield and preserve the encapsulated drug from 
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degradation and chemical aggression, and guarantee a more controlled 
and sustained release [30]. With the aim of overcoming and generaliz-
ing the layered structure, we explore the potential of a material with 
continuously changing properties.

Recently, more attention has been paid to the class of functionally 
graded materials (FGMs), in several fields of application [18]. FGMs 
are a special kind of composite materials in which the microstructural 
properties vary smoothly and continuously in space [17]. In a purely 
diffusive model, the continuously varying nature of FGMs naturally 
lends itself to different functional forms of the diffusion coefficient 𝐷(x)
in the domain Ω:

𝜕𝑐

𝜕𝑡
=∇ ⋅ (𝐷(x)∇𝑐) , x ∈Ω, 𝑡 ∈ [0, 𝑇 ], (2.1)

where 𝑐(x, 𝑡) is the mass volume-averaged concentration of drug. We 
assume the diffusivity is higher at lower polymer density (inner region) 
and lower at higher polymer density (outer region), to account for a 
material that gradually thickens outwards.

From experiments, however, it is observed that a fraction of the 
initial loaded drug is retained and never released. A possible explana-
tion of this phenomenon is a chemical reaction due to polymer-drug 
interaction. In other words, due to long polymeric chains and possible 
electrostatic interactions, a small percentage of the initial loaded drug 
is entrapped without being released [4]. We model this phenomenon 
by using reaction kinetics, where the drug molecules travelling through 
the polymer can potentially be permanently bound with a rate 𝑘(𝐱) [8]. 
This generalizes equation (2.1) to include a first-order reaction term:

𝜕𝑐

𝜕𝑡
=∇ ⋅ (𝐷(x)∇𝑐) − 𝑘(x)𝑐, x ∈Ω, 𝑡 ∈ [0, 𝑇 ], (2.2)

where 𝑘(x) [𝑠−1] is a space-dependent reaction rate.

Drug release from an FGM sphere

We consider a reservoir-type drug carrier with an active agent loaded in 
a spherical polymeric matrix, which is one of the most common formu-
lations for a controlled release system. The spherical carrier is assumed 
to have radius 𝑅 giving domain Ω = {𝐱 ∈ ℝ3 | ‖𝐱‖ < 𝑅} and boundary 
𝜕Ω = {𝐱 ∈ℝ3 | ‖𝐱‖ =𝑅}, where ‖ ⋅‖ is the Euclidean norm. The interior 
of the spherical capsule is made of a non-homogeneous FGM, reflecting 
a customized composition that allows for selective spatially-dependent 
diffusion and reaction to better control the drug transfer rate (Fig. 2). 
The case of a core-shell capsule is also included in this model, through 
stepwise diffusivity and reaction functions. As for in-vitro experiments, 
the sphere is immersed in an external ambient medium of a large extent 
(relative to size of the sphere), taken as semi-infinite.

In the case of an isotropic sphere centred on the origin with a bound-
ary condition on its outer surface, we can assume that net drug diffusion 
occurs along the radial (𝑟) direction only, and thus we restrict our study 
to a one-dimensional model, as follows:

𝜕𝑐

𝜕𝑡
= 1

𝑟2
𝜕

𝜕𝑟

(
𝑟2𝐷(𝑟)𝜕𝑐

𝜕𝑟

)
− 𝑘(𝑟)𝑐, 𝑟 ∈ [0,𝑅], 𝑡 ∈ [0, 𝑇 ], (2.3)

𝑐(𝑟,0) = 𝑐0(𝑟), 𝑟 ∈ [0,𝑅], (2.4)

𝜕𝑐

𝜕𝑟
(0, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ], (2.5)

−𝐷(𝑅)𝜕𝑐
𝜕𝑟

(𝑅, 𝑡) = 𝑃 𝑐(𝑅, 𝑡), 𝑡 ∈ [0, 𝑇 ]. (2.6)

The model permits a space dependent initial concentration (2.4) and 
accounts for a flux resistance (with mass transfer coefficient 𝑃 ) at the 
external surface (2.6) due to the semi-permeable coating [12]. The dif-
fusion model is valid under the usual continuum limit assumptions i.e., 
drug molecules are small relative to the size of the capsule and move 
according to a unbiased random walk with spatial and temporal steps 

that are small relative to the capsule size and release time, respectively.
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Fig. 2. Schematic diagram of an FGM spherical capsule [20], where the diffusivity varies from a maximum value at the centre to a minimum value at the surface and 
the reaction rate follows an opposite trend (cf. section 2). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. (a) Diffusivity functions 𝐷(𝑟) (2.7) used for both the pure diffusion and reaction-diffusion cases. (b) Reaction rate functions 𝑘(𝑟) (2.11) used for the reaction-

diffusion case. For each value of 𝛼, the table gives the corresponding value of 𝜎 satisfying equation (2.10). The combination of a small value of 𝛼 with a specific large 
negative value of 𝜎 ensures that 𝐷(𝑟) is effectively constant and equal to 𝐷avg across the interval 0 < 𝑟 <𝑅.
The choice of 𝐷(𝑟) and 𝑘(𝑟)

A specific form for 𝐷(𝑟) is needed to characterize the material hetero-
geneity of the FGM. In particular, we assume that the physical medium 
properties (density or porosity) may change continuously along the ra-
dius, being softer in the core and harder towards the surface, leading to 
a decreasing function 𝐷(𝑟) (cf. Fig. 2) that varies from a maximum pos-
sible value of 𝐷max at the center (𝑟 = 0) to a minimum possible value 
of 𝐷min at the surface (𝑟 = 𝑅). Among a variety of feasible continuous 
diffusivity functions, we consider

𝐷(𝑟) =𝐷max + (𝐷min −𝐷max)
[
1
2
+ 1

𝜋
arctan

(
𝛼(𝑟− 𝜎)

𝑅

)]
. (2.7)

This choice is a standard smooth approximation to a two-layer step-
wise diffusivity 𝐷(𝑟) = 𝐷max + (𝐷min − 𝐷max)𝐻(𝑟 − 𝜎) where 𝐻(⋅) is 
the Heaviside function at 𝑟 = 𝜎, with 𝛼 > 0 [–] inversely related to the 
width of the transition layer and 𝜎 [cm] denoting the location of the 
transition centre (see Fig. 3).

Our aim is to understand the effect of varying 𝛼 and 𝜎 on the drug 
release profile. For a fair comparison, the same average diffusive prop-
erties in all cases is maintained: for a specified choice of 𝛼, we compute 
the corresponding value of 𝜎 so that the average value of 𝐷(𝑟) over the 
spherical capsule is constant:

1
𝑉 (Ω) ∭

Ω

𝐷(𝐱)d𝐱 =𝐷avg,
3

which simplifies to
3
𝑅3

𝑅

∫
0

𝑟2𝐷(𝑟)d𝑟 =𝐷avg, (2.8)

in spherical coordinates, when using radial symmetry and 𝑉 (Ω) =
4𝜋𝑅3∕3. In our results, we set

𝐷avg =
3
𝑅3

⎡⎢⎢⎢⎣
𝑅∕2

∫
0

𝑟2𝐷max d𝑟+

𝑅

∫
𝑅∕2

𝑟2𝐷min d𝑟

⎤⎥⎥⎥⎦ =
1
8
𝐷max +

7
8
𝐷min, (2.9)

which is the unique value that yields 𝜎 →𝑅∕2 in the limiting case of a 
two-layer stepwise medium (𝛼→∞). In summary, for a specified choice 
of 𝛼, we calculate 𝜎 by solving the nonlinear equation:

3
𝑅3

𝑅

∫
0

𝑟2
(
𝐷max + (𝐷min −𝐷max)

[
1
2
+ 1

𝜋
arctan

(
𝛼(𝑟− 𝜎)

𝑅

)])
d𝑟

=𝐷avg. (2.10)

This formulation includes the two limiting cases of a homogeneous sys-
tem (𝐷(𝑟) =𝐷avg) and a two-layer system (𝐷(𝑟) =𝐷max if 0 < 𝑟 < 𝑅∕2
and 𝐷min if 𝑅∕2 < 𝑟 <𝑅).

As a consequence of the decreasing diffusivity towards the exter-
nal surface (due to the thickening material) the drug reaction rate 𝑘(𝑟), 
which is typically proportional to the polymer density/porosity, under-
goes a similar radial variation as 𝐷(𝑟), but in the opposite direction 
(cf. Fig. 2), resulting in an increasing function from a minimum possi-
ble value of 𝑘min at the centre (𝑟 = 0) to a maximum possible value of 

𝑘max at the surface (𝑟 =𝑅):
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𝑘(𝑟) = 𝑘min + (𝑘max − 𝑘min)
[
1
2
+ 1

𝜋
arctan

(
𝛼(𝑟− 𝜎)

𝑅

)]
, (2.11)

where the values of 𝛼 and 𝜎 are the same as those used for 𝐷(𝑟). As 
for 𝐷(𝑟), the average value of 𝑘(𝑟) over the full spherical capsule is 
constant:

3
𝑅3

𝑅

∫
0

𝑟2𝑘(𝑟)d𝑟 = 𝑘avg =
1
8
𝑘min +

7
8
𝑘max.

3. Solution methodology

We solve the heterogeneous reaction-diffusion model (2.3)–(2.6) by 
introducing the following non-dimensional variables:

�̂� ∶= 𝑟

𝑅
, 𝑡 ∶=

𝐷max𝑡

𝑅2 , 𝑐(�̂�, 𝑡) ∶= 𝑐(𝑟, 𝑡)
𝐶0

, (3.1)

𝑐0(�̂�) ∶=
𝑐0(𝑟)
𝐶0

, �̂� ∶=
𝐷max𝑇

𝑅2 , 𝑃 ∶= 𝑃𝑅

𝐷max
, (3.2)

�̂�(�̂�) ∶= 𝐷(𝑟)
𝐷max

, �̂�(�̂�) ∶= 𝑅2𝑘(𝑟)
𝐷max

, �̂� ∶= 𝛼, �̂� ∶= 𝜎

𝑅
, (3.3)

where 𝐶0 = max
𝑟∈[0,𝑅]

𝑐0(𝑟). This yields a non-dimensional analogue of 
equations (2.3)–(2.6):

𝜕𝑐

𝜕𝑡
= 1

�̂�2
𝜕

𝜕�̂�

(
�̂�2�̂�(�̂�)𝜕𝑐

𝜕�̂�

)
− �̂�(�̂�)𝑐, �̂� ∈ [0,1], 𝑡 ∈ [0, �̂� ], (3.4)

𝑐(�̂�,0) = 𝑐0(�̂�), �̂� ∈ [0,1], (3.5)
𝜕𝑐

𝜕�̂�
(0, 𝑡) = 0, 𝑡 ∈ [0, �̂� ], (3.6)

− �̂�(1)𝜕𝑐
𝜕�̂�

(1, 𝑡) = 𝑃 𝑐(1, 𝑡), 𝑡 ∈ [0, �̂� ]. (3.7)

Equations (3.4)–(3.7) constitute a linear problem with spatially-variable 
coefficients and homogeneous boundary conditions. To solve this prob-
lem, we use a semi-analytical approach where 𝑐(�̂�, ̂𝑡) is expanded in 
terms of orthonormal eigenfunctions:

𝑐(�̂�, 𝑡) =
∞∑
𝑛=1

𝑇𝑛(𝑡)𝑋𝑛(�̂�), (3.8)

where, due to orthonormality:

𝑇𝑛(𝑡) =

1

∫
0

�̂�2𝑐(�̂�, 𝑡)𝑋𝑛(�̂�)d�̂�. (3.9)

In the framework of the Classical/General Integral Transform Tech-
nique (CITT/GITT), (3.8) and (3.9) are known as the inverse transform

and the integral transform, respectively [26,27]. Before proceeding fur-
ther, we note that our solution approach differs to the semi-analytical 
Laplace transform method used in our previous work [12] for diffusion-
controlled release from a multi-layer spherical capsule (without re-
action). A short comparison between the two approaches is given in 
Appendix A.

The space function 𝑋𝑛(�̂�)

In the solution expansion (3.8), we let 𝑋𝑛(�̂�) be the eigenfunctions as-
sociated with the following Sturm-Liouville problem:

1
�̂�2

d
d�̂�

(
�̂�2

d𝑋
d�̂�

)
= −𝜆2𝑋, (3.10)

− �̂�(1)d𝑋
d�̂�

(1) = 𝑃𝑋(1). (3.11)

Note that this is not the Sturm-Liouville problem obtained by applying 
separation of variables directly to the governing equations. The simpli-
fied Sturm-Liouville problem (3.10)–(3.11), on the other hand, admits 
4

simple closed-form solutions, a feature that in our view outweighs any 
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possible disadvantages such as potentially more terms being required in 
the infinite series (3.8) to achieve a desired level of convergence. We 
note that similar approaches using simplified Sturm-Liouville problems 
have previously been employed to solve a heat conduction problem 
with spatially-varying coefficients [13,31].

The general solution of equation (3.10) is

𝑋(�̂�) = 𝐴 sin(𝜆�̂�)
�̂�

+ 𝐵 cos(𝜆�̂�)
�̂�

. (3.12)

To ensure this solution remains finite as �̂� tends to zero, we require 𝐵 =
0. Substituting (3.12) into the boundary condition (3.11) then yields:

𝐴
[
(𝑃 − �̂�(1)) sin(𝜆) + �̂�(1)𝜆 cos(𝜆)

]
= 0, (3.13)

which has a non-trivial solution (𝐴 ≠ 0) if and only if 𝜆 is a solution of

(𝑃 − �̂�(1)) sin(𝜆) + �̂�(1)𝜆 cos(𝜆) = 0, (3.14)

or equivalently:

tan(𝜆) = �̂�(1)𝜆
�̂�(1) − 𝑃

. (3.15)

The eigenvalues, denoted by 𝜆𝑛 for 𝑛 ∈ ℕ+, are defined as the posi-
tive values of 𝜆 satisfying (3.15) with the corresponding eigenfunctions 
given by:

𝑋𝑛(�̂�) =
2
√
𝜆𝑛√

2𝜆𝑛 − sin(2𝜆𝑛)

sin(𝜆𝑛�̂�)
�̂�

, (3.16)

which are orthonormal on the interval [0, 1]:

1

∫
0

�̂�2𝑋𝑛(�̂�)𝑋𝑚(�̂�)d�̂� =

{
0, if 𝑚 ≠ 𝑛,

1, if 𝑚 = 𝑛.
(3.17)

The time function 𝑇𝑛(𝑡)

In the solution expansion (3.8), the time functions 𝑇𝑛(𝑡) are computed 
by imposing that (3.8) satisfy the actual governing equation (3.4) with 
space dependent �̂�(�̂�) and �̂�(�̂�). We first substitute (3.8) into (3.4) and 
differentiate to give

∞∑
𝑛=1

d𝑇𝑛
d𝑡

𝑋𝑛(�̂�) =
∞∑
𝑛=1

𝑇𝑛(𝑡)
[
�̂�′(�̂�)𝑋′

𝑛
(�̂�) + �̂�(�̂�)

�̂�2
d
d�̂�

(
�̂�2

d𝑋𝑛

d�̂�

)]
− �̂�(�̂�)

∞∑
𝑛=1

𝑇𝑛(𝑡)𝑋𝑛(�̂�).

Next, multiplying both sides of this equation by �̂�2𝑋𝑚(�̂�) and integrating 
from �̂� = 0 to �̂� = 1, we see that 𝑇𝑚(𝑡) satisfies the following differential 
equation

d𝑇𝑚
d𝑡

=
∞∑
𝑛=1

𝑇𝑛(𝑡)
⎡⎢⎢⎣

1

∫
0

�̂�2�̂�′(�̂�)𝑋′
𝑛
(�̂�)𝑋𝑚(�̂�)d�̂�

−

1

∫
0

�̂�2(𝜆2
𝑛
�̂�(�̂�) + �̂�(�̂�))𝑋𝑛(�̂�)𝑋𝑚(�̂�)d�̂�

⎤⎥⎥⎦
=

∞∑
𝑛=1

𝐴𝑚𝑛𝑇𝑛(𝑡), (3.18)

after making use of the differential equation (3.10) and orthogonality 
(3.17). Equation (3.18) identifies

𝐴𝑚𝑛 =

1

∫
0

�̂�2�̂�′(�̂�)𝑋′
𝑛
(�̂�)𝑋𝑚(�̂�)d�̂�−

1

∫
0

�̂�2
[
𝜆2
𝑛
�̂�(�̂�) + �̂�(�̂�)

]
𝑋𝑛(�̂�)𝑋𝑚(�̂�)d�̂�,
(3.19)
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Table 1

Parameters of the problem.

Parameter Description Value [dim.] Value [non dim.]

𝑅 Radius 10−4 cm 1
𝐷min Minimum diffusivity 10−13 cm2∕s 10−2
𝐷max Maximum diffusivity 10−11 cm2∕s 1
𝐷avg Average diffusivity 1.3375 ⋅ 10−12 cm2∕s 0.13375
𝑘min Minimum reaction rate 8 ⋅ 10−5 ∕s 0.08
𝑘max Maximum reaction rate 10−4 ∕s 0.1
𝑘avg Average reaction rate 9.75 ⋅ 10−5 ∕s 0.0975
𝑃 Mass transfer coefficient 5 ⋅ 10−8 cm∕s 0.5
𝑇 Maximum time 3 ⋅ 104 s 30
𝐶0 Initial concentration 0.4 mol∕cm3 1
where 𝑋′
𝑛
(�̂�), appearing in the definition of 𝐴𝑚𝑛 (3.19), is given by:

𝑋′
𝑛
(�̂�) =

2
√
𝜆𝑛√

2𝜆𝑛 − sin(2𝜆𝑛)

[
𝜆𝑛 cos(𝜆𝑛�̂�)

�̂�
−

sin(𝜆𝑛�̂�)
�̂�2

]
.

The appropriate initial condition for the differential equation (3.18) is 
identified by combining the initial condition (3.5) with the expansion 
(3.8)

∞∑
𝑛=1

𝑇𝑛(0)𝑋𝑛(�̂�) = 𝑐0(�̂�),

and then applying orthogonality (3.17):

𝑇𝑛(0) =

1

∫
0

�̂�2𝑐0(�̂�)𝑋𝑛(�̂�)d�̂�. (3.20)

Assembling the differential equations (3.18) and initial condition (3.20)
for 𝑚 ∈ ℕ+ together yields a system of coupled linear differential equa-
tions:

d𝐓
d𝑡

=𝐀𝐓, 𝐓(0) = 𝐓0, (3.21)

where the entries of 𝐀 are defined in equation (3.19) and 𝐓0 =
[𝑇1(0), 𝑇2(0), …]𝑇 . The exact solution of (3.21) is expressed in terms 
of a matrix exponential

𝐓(𝑡) = 𝑒𝑡𝐀𝐓0, (3.22)

with the 𝑛th entry of 𝐓(𝑡) defining the time function 𝑇𝑛(𝑡) in the solution 
expansion (3.8).

Fraction of drug released

To characterise the release process, we calculate the cumulative fraction 
of drug released as a function of time, �̂�(𝑡). This quantity is obtained by 
integrating the concentration flux over the outer surface of the spher-
ical capsule and normalizing by the initial mass of drug loaded in the 
capsule:

�̂�(𝑡) =

𝑡

∫
0

⎡⎢⎢⎣∬𝜕Ω (−𝐷(𝐱)∇𝑐(𝐱, 𝑠) ⋅ 𝐧) d𝐱
⎤⎥⎥⎦d𝑠

∭
Ω

𝑐0(𝐱)d𝐱
, (3.23)

where 𝐧 is the unit vector normal to 𝜕Ω directed outward from Ω. In 
spherical coordinates under radial symmetry, �̂�(𝑡) simplifies to

�̂�(𝑡) =

𝑅2

𝑡

∫
0

−𝐷(𝑅)𝜕𝑐
𝜕𝑟

(𝑅,𝑠)d𝑠

𝑅

𝑟2𝑐0(𝑟)d𝑟

.

5

∫
0

Using the boundary condition at the outer surface (2.6) and the dimen-
sionless variables (3.1)–(3.3) yields:

�̂�(𝑡) =

𝑡

∫
0

𝑃𝑐(1, 𝑠)d𝑠

1

∫
0

�̂�2𝑐0(�̂�)d�̂�

.

Finally, inserting the solution expansion (3.8) gives the final form for 
the fraction of drug released

�̂�(𝑡) =

𝑃

∞∑
𝑛=1

𝑈𝑛(𝑡)𝑋𝑛(�̂�)

1

∫
0

�̂�2𝑐0(�̂�)d�̂�

, (3.24)

where the 𝑛th entry of the vector 𝐔(𝑡) = ∫ 𝑡

0 𝐓(𝑠) d𝑠 = (𝑒𝑡𝐀 − 𝐈)𝐀−1𝐓0

defines 𝑈𝑛(𝑡) = ∫ 𝑡

0 𝑇𝑛(𝑠) d𝑠.

4. Numerical results

We now present numerical results for two distinct cases: pure diffu-

sion (𝑘(𝑟) = 0) and reaction-diffusion (𝑘(𝑟) > 0). All results are calculated 
using a uniform initial concentration 𝑐0(𝑟) = 𝐶0 and the parameter val-
ues given in Table 1. We have implemented the analytical solution in 
MATLAB using a simple bisection method to solve the eigenvalue equa-
tion (3.14) and truncating all infinite series at 𝑁 = 150 terms (chosen 
by repeatedly incrementing 𝑁 by 10 until no changes in the reported 
concentration (3.8) and mass (3.24) profiles were visibly perceptible). 
Discussion on the convergence behaviour of the semi-analytical solu-
tion is given in Appendix B. The in-built MATLAB functions integral,
expm and fzero are used, respectively, to (i) evaluate the integrals 
in equations (3.19) and (3.20) (ii) compute the matrix exponential 𝑒𝑡𝐀
and (iii) solve the nonlinear equation (2.10) for 𝜎. Further implemen-
tation details are available in our code, which can be downloaded from 
https://github.com/elliotcarr/Carr2023a.

We limit our investigation to the diffusivity and reaction rate func-
tions, 𝐷(𝑟) and 𝑘(𝑟), in equations (2.7) and (2.11) and explore the effect 
of the parameter 𝛼. The value of 𝜎 depends on the value of 𝛼 while 
the role of the surface mass transfer parameter 𝑃 is fixed and not in-
vestigated here. Four different values of 𝛼 are chosen giving a variety 
of different drug release profiles that are compatible with these kind 
of drug release systems. Fig. 3 displays the diffusivity function 𝐷(𝑟)
and reaction rate function 𝑘(𝑟) for the parameter values in Table 1 and 
the different choices of 𝛼. Observe that the smallest value of 𝛼 accu-
rately captures the case of a homogeneous medium (e.g. 𝐷(𝑟) =𝐷avg), 
while the largest value of 𝛼 accurately captures the case of a two-
layer medium (e.g. 𝐷(𝑟) = 𝐷max if 0 < 𝑟 < 𝑅∕2 and 𝐷(𝑟) = 𝐷min if 

𝑅∕2 < 𝑟 <𝑅).

https://github.com/elliotcarr/Carr2023a
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Fig. 4. Drug concentration as a function of radius (3.8) for the pure diffusion case. Profiles are shown at four distinct times, 𝑡 = 10−2, 10−1, 100, 101, with the black 
arrow indicating the direction of increasing time.

Fig. 5. Cumulative fraction of drug released as a function of time (3.24) for the pure diffusion case. Vertical dashed lines indicate approximate release times, 𝑡𝑅 , 
corresponding to when 99% of the total released mass has been released, i.e. �̂� (𝑡𝑅) = 0.99 lim

𝑡→∞
�̂�(𝑡). The release time for 𝛼 = 10000 exceeds 30 and is not shown.
For the case of pure diffusion, drug is retained and released differ-
ently depending on the parameter 𝛼 (Figs. 4, 8 and 9) and these results 
demonstrate the wide variety of concentration profiles using FGMs. 
Drug molecules, when travelling from the center to the outer surface, 
pass through regions where 𝐷 is progressively reducing. This causes the 
transport of drug molecules to be hindered by the drug’s reduced abil-
ity to diffuse and the drug release is slowed down. For 𝛼 →∞, steeper 
concentration gradients are observed at the outer surface (�̂� = 1).

In Fig. 5, we see that the fraction of drug released increases more 
rapidly when decreasing the value of 𝛼, giving rise to a quicker over-
all drug delivery for small values of 𝛼 and a more-sustained release for 
large values of 𝛼. The initial burst of dose at small 𝛼 may be benefi-
cial when a rapid delivery, rather than a delayed sustained release, is 
desired. Actually, in some circumstances, maintaining local drug con-
centrations within some defined therapeutic range is desirable, while in 
other cases a burst of drug is required. If the release is not controlled ap-
propriately, this can lead to periods where toxic and/or sub-therapeutic 
concentrations are achieved. The inclusion of the spatially-varying dif-
fusivity (2.7) provides greater control over the drug release profile 
(through the single tuning parameter 𝛼) while maintaining the same 
average material properties (2.8).

Let us now consider the reaction-diffusion case. When reaction is 
included in the model through the function 𝑘(𝑟) in eqn. (2.11), the cap-
sule retains a fraction of mass that remains bound to the polymer and 
6

is never released. This yields concentration curves (Figs. 6 and 10) that 
are lower than the corresponding curves for pure diffusion (Figs. 4 and 
9): this is due to the added binding to the polymer region, that becomes 
stronger towards the surface. When the binding effect is included, more 
drug is retained within the polymer, yielding a reduced release rate 
(Figs. 4-7). Since the total released mass is less than the initial mass of 
drug loaded in the capsule (cf. equation (3.23)), the cumulative fraction 
of drug released asymptotes to a value less than one (Fig. 7). Comparing 
the drug release profiles for reaction-diffusion with the corresponding 
profiles for pure diffusion (Figs. 5 and 7), it is clear that (i) the presence 
of reaction results in decreased release times and (ii) the total released 
mass decreases for increasing values of 𝛼 (Fig. 7). Hence, the inclusion 
of a functionally-graded reaction in the model provides further control 
of the drug release profile through the tuning parameter 𝛼 and reveals 
novel kinetics with respect to the homogeneous materials.

In summary, our model demonstrates that FGMs are able to provide 
a variety of drug release characteristics different from those provided by 
the limiting cases of a homogeneous system (constant coefficients) and 
two-layer system (stepwise coefficients) while maintaining the same 
average material properties (same averaged diffusivity and reaction 
rate). An important question is whether similar release profiles can be 
achieved using a homogeneous or two-layer capsule. An example of this 
is presented in Fig. 11, which shows the difference between the release 
profile for an FGM capsule (pure diffusion case with 𝛼 = 80, i.e., green 
profile from Fig. 5) and release profiles for best-fit homogeneous and 

two-layer capsules (see our MATLAB code for full details). This figure 
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Fig. 6. Drug concentration as a function of radius (3.8) for the reaction-diffusion case. Profiles are shown at four distinct times, 𝑡 = 10−2, 10−1, 100, 101, with the black 
arrow indicating the direction of increasing time.

Fig. 7. Cumulative fraction of drug released as a function of time (3.24) for the reaction-diffusion case. Vertical dashed lines indicate approximate release times, 𝑡𝑅 , 
corresponding to when 99% of the total released mass has been released, i.e. �̂� (𝑡𝑅) = 0.99 lim �̂�(𝑡).
reveals small differences between the release profiles of approximately 
1% and 2% for the two-layer and homogeneous capsules, respectively. 
While these results demonstrate that precisely the same release profile 
cannot be achieved using a homogeneous or two-layer capsule, differ-
ences of between 1% and 2% probably don’t justify using an FGM over 
traditional homogeneous and two-layer structures. However, it is im-
portant to note that this study has focused on the particular diffusivity 
and reaction rate functions, 𝐷(𝑟) and 𝑘(𝑟), given in equations (2.7) and 
(2.11) only. Different choices for 𝐷(𝑟) and 𝑘(𝑟) may provide release pro-
files that cannot be well approximated by homogeneous and two-layer 
capsules. Such analysis requires more extensive investigations, and is 
left for future work. In practice, the specific form for the FGM material 
functions should also be tailored according to therapeutic needs, but 
again this is beyond the scope of the current work.

5. Conclusions

Polymeric engineered materials have been exploited in a range of 
different application in biomedicine, aerospace and material science 
and can be useful in the pharmaceutical industry in the field of drug 
delivery. With recent advances in bioengineering, novel functionally 
graded materials (FGMs) have been introduced for the development of 
drug releasing devices and systems. They contribute to the tailoring of 
material for optimal drug administration including targeted release and 
7

customizability.
𝑡→∞

The goal of the present study was to elucidate the potential trans-
port mechanism and the drug kinetics behaviour due to the diffusion 
and reaction shape-material functions, providing insight for design-
ing the micro-structure of polymer platforms and capsules. A family 
of space-dependent sigmoid functions for the diffusivity and reaction 
rate have been proposed and implemented. Through a sensitivity anal-
ysis, the role of the parameter 𝛼 appearing in the diffusion and reaction 
rate functions has been demonstrated. The semi-analytical solution im-
proves the understanding of the mass transfer from an FGM capsule, 
including the presence of a binding reaction. The proposed method-
ology offers a cheap and useful tool that can be used to quantitatively 
characterize the drug kinetics, the release time, improve the technologi-
cal performance and optimize the release rate for the target application.

However, it is important to recognize some limitations of the present 
one-dimensional model. Drug dynamics in the release medium outside 
the capsule are ignored, so that the interactions between the capsule 
and the medium are represented entirely by the boundary condition 
at the external surface. Diffusion coefficients are also assumed to be 
independent of concentration. For most practical applications such as-
sumptions are reasonable, and therefore, the model results may be 
helpful in the evaluation of drug kinetics and may provide new path-
ways for smarter delivery systems. The strategy proposed here, once 
calibrated, can be utilized in a predictive way to limit the number of 
experiments. Thus, by showing the correlation between properties of 

the drug kinetics and material function variables, our model can be 
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Fig. 8. Drug concentration distribution (3.8) over time for the pure diffusion case (𝛼 = 0.0001).

Fig. 9. Drug concentration distribution (3.8) over time for the pure diffusion case (𝛼 = 80).

ove
Fig. 10. Drug concentration distribution (3.8)

Fig. 11. Difference between the cumulative fraction of drug released as a func-
tion of time (3.24) for an FGM capsule (pure diffusion case with 𝛼 = 80, i.e., 
green profile from Fig. 5) and (i) a homogeneous capsule using a best-fit diffu-
sivity of 𝐷 = 2.1875 ⋅ 10−13 (blue curve) (ii) a two-layer capsule using a best-fit 
diffusivity of 𝐷 = 2.0938 ⋅ 10−13 if 0 < 𝑟 < 𝜎 and 𝐷 = 6.5781 ⋅ 10−12 if 𝜎 < 𝑟 < 𝑅

with 𝜎 = 5.593 ⋅10−5 (red curve). See our MATLAB code for full details. The dif-
ference represents the best-fit release profile subtracted from the FGM release 
profile.

used to determine and optimize the processing parameters to ensure a 
8

controlled drug delivery within a certain time.
r time for the reaction diffusion case (𝛼 = 80).

Finally, by virtue of the one-to-one analogy between mass diffusion 
and heat conduction problems, the presented FGM approach can be suc-
cessfully applied to the equivalent model of heat transfer from spheres.
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Fig. 12. Error of the semi-analytical solution (section 3) when truncating all 
infinite series at 𝑁 terms. The error is calculated as the maximum absolute 
difference between the semi-analytical solution (3.8) with 𝑁 terms and a refer-
ence solution (semi-analytical solution with 150 terms). Results are given for an 
FGM capsule (pure diffusion case with 𝛼 = 80, see concentration profiles from 
Fig. 4(c)) with the maximum absolute difference of the concentration taken 
over both space �̂� ∈ (0, 1) and time 𝑡 = 10−2, 10−1, 100, 101.
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Appendix A. Comparison to Laplace transform approach

In previous work [12], we presented a semi-analytical solution 
based on the Laplace transform for diffusion-controlled release from 
a multi-layer spherical capsule (without reaction). A similar approach 
could also be applied to solve the heterogeneous reaction-diffusion 
model (2.3)–(2.6) considered in the present work. In this case, taking 
Laplace transforms of the non-dimensional model (3.4)–(3.7) yields a 
time-independent boundary value problem for the transformed solution 
𝑐(𝑟, 𝑠) = ∫ ∞

0 𝑒−𝑠𝑡𝑐(𝑟, 𝑡) d𝑡. The solution of this boundary value problem 
in the Laplace domain could then be expanded in terms of the same or-
thonormal eigenfunctions (3.16), namely 𝑐(𝑟, 𝑠) =

∑∞
𝑛=1 𝛼𝑛(𝑠)𝑋𝑛(�̂�). In 

this approach, the coefficients 𝛼𝑛(𝑠) (𝑛 = 1, 2, …) will be identified by 
solving a system of coupled linear algebraic equations instead of the 
system of coupled linear differential equations (3.21) required in the 
current paper. However, after solving this system for the coefficients, 
the Laplace transform still needs to be inverted to transform 𝑐(𝑟, 𝑠) back 
to the time domain. Since such an inversion is too difficult to carry out 
analytically in closed-form (the coefficients will be highly complicated) 
and numerical inversion can yield unreliable results [14], we have not 
considered this approach further in the current paper.

Appendix B. Convergence of semi-analytical solution

The semi-analytical solution (section 3) truncates all infinite series 
at 𝑁 terms. In this appendix, we briefly explore the convergence be-
haviour when increasing 𝑁 for a chosen test problem (pure diffusion 
case with 𝛼 = 80, see concentration profiles from Fig. 4(c)). For this 
problem a reference solution was calculated using 150 terms (chosen 
by repeatedly incrementing 𝑁 by 10 until the maximum absolute differ-
ence, taken over both space �̂� ∈ (0, 1) and time 𝑡 = 10−2, 10−1, 100, 101, 
between consecutive concentration profiles was less than 10−6). Fig. 12
shows that the error for this problem reduces according to a power law: 
Error ∝ 10−𝑚𝑁 for 10 <𝑁 < 50, where 𝑚 is the slope of the line shown. 
For the chosen problem, these results also demonstrate that solutions 
of acceptable accuracy (Error ∼ 10−3 or 10−4, visibly indiscernible from 
reference solution) can be obtained using around 40 or 50 terms.
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