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The Choice of a Performance Indicator
of Release in Transdermal Drug Delivery
Systems

Giuseppe Pontrelli and Laurent Simon

Abstract An effective time constant for first-order processes is defined to capture

the dynamics of systems represented by partial differential equations. In this chapter,

the methodology is applied to passive and electrically assisted drug controlled trans-

dermal delivery devices in two case studies. The analysis, which is carried out using

Laplace-transformed variables, results in a first-order approximation and does not

require time-domain solutions. Numerical experiments are included to illustrate the

effectiveness of the index under different conditions and to estimate the time it takes

to establish a steady-state flux across the membrane.

1 Introduction

Traditional transdermal drug delivery (TDD) systems are based on the transport of

therapeutic agents across the skin by passive diffusion. Despite being the subject

of extensive research over the years because of its potential advantages, the exact

release mechanism remains unclear in some cases and it is often difficult to pre-

dict the drug kinetics accurately [1, 2]. The solutes which can be administered by

transdermal route are limited to molecules of low molecular weight, due to the excel-

lent barrier properties of the stratum corneum, the outermost layer of the epidermis

[3]. To increase skin’s drug transport and overcome this limitation, innovative tech-

nologies have been developed, some of them based on the use of electrical current

(iontophoresis). In these electrically assisted systems, an applied potential of low

intensity (≈1V) generates an additional driving force for the drug motion in the skin

[4, 5].
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50 G. Pontrelli and L. Simon

The application of transdermal patches for accurate delivery of medicaments to

their target sites is another possible non-invasive technology: the drug is initially

stored in the vehicle, a porous polymeric reservoir having an impermeable backing at

one side and an adhesive in contact with the skin at the other side, and is subsequently

released in a controlled manner [6, 7]. Compared to conventional TDD products, the

rational design of these novel drug delivery devices poses further challenges, such

as the complex mechanisms and the unknown significance of process parameters.

Additional factors include the device polymeric microstructure characteristics and

properties of the electric field.

In the absence of experimental data, mathematical modelling of TDD allows to

predict drug release from the vehicle and its transport into the target tissue. The

framework also offers insights into the factors governing drug delivery and provide

quantitative relationships between drug concentration, or the delivery rate, and some

key design drug/vehicle properties [8]. For traditional TDD, the coupling between

the diffusion process in the reservoir and in the target tissue has been considered in

[6, 9]. In the majority of TDD models, a constant flux enters the target tissue and the

role of the reservoir finite capacity is neglected [10].

Moreover, the above models assume that the skin is homogeneous and ignore its

composite structure. In fact, it is well accepted that the skin is an inhomogeneous

medium, composed of several layers with different thickness and physico-chemical-

electrical properties (Fig. 1). This aspect has a crucial importance since the drug

transport critically relates to the local diffusive properties and, even more impor-

tantly in iontophoresis, the potential field relies on the layer-dependent electrical

conductivities. The multi-layer structure of the biological media and other related

issues have been addressed in other papers [11] and in a recent work, where a model

of iontophoretic drug release from a vehicle into a multi-layered dermal tissue is

presented [12]. However, even in situations where the transport phenomena are well

represented mathematically, the need exists to develop analytical tools or simple indi-

cators to extract meaning from the model and the data. These tools will make possible

to answer certain questions, such as how long it takes to attain a therapeutic flux, or

what processing conditions need to be adjusted and by how much, in order to reach

a desired delivery rate without solving the full differential equations. Furthermore,

when a full mathematical representation is not available, or is too complicated for

being of practical use, simple performance indicators are required to elucidate the

main transport mechanisms and identify the most critical components in TDD.

Among several mathematical techniques available for control systems analysis,

Laplace transform and linearization are frequently applied to describe a process

dynamics through an effective time constant (ETC)(denoted by teff ) [13]: this rep-

resents a useful indicator of the time elapsed before reaching a steady state. The

existence of a single ETC is of great importance in the design of drug delivery sys-

tems, because it would allow product manufacturers to tune specific properties to

ensure that a constant release is reached at a specific time [7]. The problem is to

find a formal definition of teff which makes the index precise for a general dynamical
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Fig. 1 An anatomic representation of the skin, composed by three main layers: epidermis (approx-

imately 100μm thick), dermis (between 1 and 3mm thick, highly vascularized) and a subcutaneous

tissue. The epidermis is divided into sub-layers where the stratum corneum (approximately 10μm
thick) is the outermost layer and is the major barrier to the drug migration, being composed of

densely packed cells, with a typical brick and mortar structure. Each skin layer, due to its histolog-

ical composition, has a different influence on the drug transport mechanism

system, no matter how complicated it is, even in cases when the time-dependence

departs markedly from a simple exponential form. For a practical and useful defini-

tion, it must also be possible to compute teff in a simple and straightforward manner

to enable different convective-diffusive systems to be compared on a common basis.

Our goal is to relate ETC to the model parameters of a TDD device. This allows,

with the aid of a single index, to understand the role of key factors influencing the

release of active pharmaceutical ingredients and to assess the time drug reaches a

target steady-state flux and to optimize the release performance.

The chapter is organized as follows. In Sect. 2, we introduce the concept of the

ETC and its use in a general framework. In Sect. 3 the one-layer model in TDD is

presented, and in Sect. 4 the computation of ETC is carried out. The mathematical

problem in a multi-layered model is addressed in Sect. 5 followed by the correspon-

dent ETC derivation (Sect. 6). Finally in Sect. 7 some numerical estimates of ETC

and drug flux in the various cases, are presented and discussed for a realistic range

of parameters and typical drugs.
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52 G. Pontrelli and L. Simon

2 The Concept of an Effective Time Constant: Definition
and Applications

The introduction of a dynamic metric for controlled-release systems stems from the

need to link the performance of formulations to measurable physico-chemical fea-

tures of the drug and vehicle. For example, in transdermal heat-enhanced devices,

manufacturers have the opportunity to design products that address the needs of

patients suffering from breakthrough cancer pain. The idea is to dramatically tighten

the pain-relief gap by triggering a prompt onset of drug effect. Although opioids

are usually administered intravenously, there has been a growing interest in using

physical enhancers to make transdermal patches designed to meet unique treatment

protocols required by cancer patients. Preliminary studies, conducted by Ashburn et

al., have shown some of the benefits of the application of local heat to transdermal

fentanyl patches [14]. These researchers noticed that, when applying these patches

with no controlled heat, attaining a steady-state blood level of the medicament may

require a long time. One the contrary, an increase observed in the serum concentra-

tion immediately after the application of controlled heat, suggests that such technolo-

gies may prove effective in the delivery of analgesia [14]. A computational method

to estimate the onset of action based on the properties of the active and inactive phar-

maceutical ingredients, would be very useful in this case. It has also been shown that

the period elapsed to reach 98% of the steady-state flux, defined by four times the

first time constant, is related to the properties of the delivery system, although no

analytical expression is available [15].

The ability of iontophoresis to deliver medicaments through the skin and quickly

establish a therapeutic level has been studied. Song et al. [16] developed an alter-

nating current technique to increase the permeation rate of urea and decrease the lag

time in the human epidermal membrane. These researchers suggested that the design

of iontophoretic drug-delivery devices would improve, considerably, if the transport

lag time was well characterized and flux variability decreased [16]. Although the

controlled-release community has expressed special interest in controlling the factors

that delay the onset of the steady-state release rate [17], early efforts used compart-

mental models of transdermal iontophoretic transport [18]. This approach provides

limited mechanistic insight and makes it difficult to extrapolate the findings to new

iontophoretic products.

Laplace transform and linearization are commonly applied to examine the

dynamic responses of many processes. These procedures help control engineers and

process designers determine relevant characteristic parameters which affect the tran-

sient behavior of a plant [19]. For example, let us consider a storage tank with inlet

and outlet flows: the time elapsed before reaching a steady-state liquid level, after

changing the inlet flow rate, is related to the tank area and the flow resistance in the

outlet pipe. The transfer function reveals that the product of these two factors rep-

resents the process time constant. Based on the success of these techniques, there

have been significant efforts made, by researchers, toward implementing these tools

to best describe the dynamics of diffusion [13]. A similar approach is considered
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in this work to derive design equations that connect ETC to key properties. These

features can be use by manufacturers of controlled-released systems to guarantee

accurate release of active pharmaceutical ingredients to a selected site.

To assess the suitability of the method, let us start with a first-order system [19]:

𝜏p
dy
dt

+ y = Kpu (t) (1)

where 𝜏p (otherwise called teff ) and Kp indicate the time constant and steady-state

gain of the process, respectively; u and y are the input and output variables. While

Kp is the ratio of the ultimate response (yss) to the size of a step change in u, 𝜏p is

a measure of the time it takes to reach yss. The gain Kp determines the sensitivity

of a system. For example, consider a process where saturated steam is supplied to

heat the liquid in a vessel. A Kp value of 7 ◦F/(lb/min) suggests that an increase of

1.0 lb/min in the steam mass flow rate is necessary to raise the liquid temperature

by 7 ◦F. It can be shown that y has achieved 63.2% of its steady-state value after one

time constant. At tres = 4𝜏p (called the response time), y is at 98% of its ultimate

value. In the previous example, the response time denotes the period elapsed before

the temperature changes by 7 ◦F. By Eq. (1), using the Laplace variable s, often used

to analyze the dynamics of linear systems, the response becomes:

Y (s) =
Kp

𝜏ps + 1
U (s) (2)

The variables Y and U represent the Laplace transforms u and y assuming that

y(0) = u(0) = 0.

This concept of a single time constant to describe a process dynamics is extended

to systems in which the variable of interest can be approximated by a series of the

form:

𝜒 (𝐱, t) =
∞∑

n=1
fn (𝐱)e−𝜆nt (3)

where 𝜆n = 1∕tn and fn is a function of the space 𝐱. The numbers tn denote the char-

acteristic time constants with tn > tm or 𝜆n < 𝜆m for n < m. In general, the system

dynamics is represented by the first 𝜆n values. To use a single time constant that

estimates how fast 𝜒 (𝐱, t) approaches the equilibrium 𝜒eq (𝐱), a first-order moment

with a normalized probability density function 𝛺 (𝐱, t) is applied:

teff (𝐱) =
∞

∫
0

t𝛺 (𝐱, t) dt (4)

where

giuseppe.pontrelli@gmail.com



54 G. Pontrelli and L. Simon

𝛺 (𝐱, t) =
𝜒eq (𝐱) − 𝜒 (𝐱, t)

∞∫
0

(
𝜒eq (𝐱) − 𝜒 (𝐱, t)

)
dt

The properties of Laplace transforms can be used to write ETC defined in Eq. (4) in

terms of s [7]:

teff (𝐱) =
lim
s→0

(
𝜒eq(𝐱)

s2
+

d�̄�
ds

(𝐱, s)
)

lim
s→0

(
𝜒eq(𝐱)

s
− �̄� (𝐱, s)

) (5)

with �̄� (𝐱, s) the Laplace transform of 𝜒 (𝐱, t). An inspection of Eq. (4) shows that

teff (𝐱) is guaranteed to have a positive value as long as the difference
𝜒eq (𝐱)

s
−

�̄� (𝐱, t) does not change sign. Although there are other performance indicators (e.g.,

lag time) that have been defined to describe process dynamics [7], ETC remains the

most effective indicator for our purposes. In the following, we apply the previous

concepts to a one and multi-layered cases. The ETC is defined and computed for

both systems.

3 A One-Layer Model for TDD

Let us consider a TDD system, where the skin is modeled as a planar membrane in

contact with an infinite reservoir (i.e., constant drug concentration) and a receiver

chamber. Because most of the mass transfer occurs along the direction normal to

the skin surface, we restrict our study to a simplified 1D model. In particular, we

consider a Cartesian coordinate and draw a line pointing inwards which crosses the

vehicle and the skin. The skin surface is located at x = 0; x = x1 is the thickness of

the SC (Fig. 2). Here, diffusion is assumed to take place only in the stratum corneum

(SC) instead of the full-thickness skin, due to the formidable barrier posed by this

layer. Permeation through the SC is the rate-limiting step [8]. We use c ≈ 0 at the

SC limit x = x1 to show rapid removal of the drug from the interface between the

SC and the viable epidermis by rapid diffusion followed by absorption by the blood

vessels [20].

Iontophoretic transport
To promote TDD, an electric field is locally applied in the area where the therapeutic

agent has to be released (iontophoresis): for example, the anode is at x = 0 and the

cathode is at x = x1. Let 𝛹0 and 𝛹1 (𝛹0 > 𝛹1) be the correspondent applied potential

at the endpoints (Fig. 2). By mass conservation, the drug concentration1 satisfies the

following equation:

1A mass volume-averaged concentration c1(x, t) (mg∕cm3) is considered in this chapter.
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Fig. 2 A diagram of a n-layered tissue (𝓁1,𝓁2, ...,𝓁n) with a vehicle 𝓁0. In some cases, the model

is confined to SC layer only (Sect. 3), while in a more realistic situation, it includes several layers

(Sect. 5) The 1D model is defined along the line normal to the skin surface and extends with a

sequence of n contiguous layers from the vehicle interface x0 = 0 up to the skin bound xn = L, where

capillaries sweep the drug away to the systemic circulation (sink). In iontophoresis, a difference of

potential is applied to facilitate drug penetration across the skin’s layers (figure not to scale)

𝜕c1
𝜕t

+ ∇ ⋅ J1 = 0 (6)

and the mass flux is defined by the Nernst-Planck flux equation [10]:

J1 = −D1∇c1 − u1c1∇𝜙1, (7)

where𝜙1 is the electric potential and the convective (electroosmotic) term is omitted.

Equation (7) is the generalized Fick’s first law with an additional driving force which

is proportional to the electric field. The electric mobility is related to the diffusivity

coefficient through the Einstein relation:

u1 =
D1zF
RT

, (8)

(cm2 V−1 s−1), where z ion valence, F the Faraday constant, R the gas constant, T the

absolute temperature. The boundary conditions are:

c1 = c10 at x = 0 (9)

c1 = 0 at x = x1 (10)

where c10 is related to the vehicle concentration c0 by c0 = K1
0c10 with K1

0 the reser-

voir/skin partition coefficient. The Eq. (10) arises because, in deep skin, drug is

uptaken by capillary network and is lost in the systemic circulation: we refer to this

as systemically absorbed drug.
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56 G. Pontrelli and L. Simon

The initial conditions is set as:

c1(x, 0) = 0 (11)

The electric potential field

To solve Eqs. (6)–(8) in [0, x1], we first seek a solution of the Poisson equation [10]:

∇ ⋅ (𝜎1∇𝜙1) = 𝜌(x) ≃ 0
𝜙1 = 𝛹0 at x = 0 (12)

𝜙1 = 𝛹1 at x = x1

with 𝜎1( cm−1 𝛺−1) the skin electrical conductivity and 𝜌(x) is the charge density

over the permittivity [4]. It is straightforward to verify that the exact solution of the

problem (12) is

𝜙1(x) = a1x + b1 (13)

with the expressions of a1 (V∕cm) and b1(V) given in Sect. 7.

4 Computation of the ETC for a One-Layer Skin Model

For the system described by Eqs. (6)–(11), the goal is to determine the period elapsed

before reaching a steady-state flux by first estimating the ETC. Therefore, the cumu-

lative amount of drug released at x = x1 and into the systemic circulation is also an

increasing function:

M (t) =
t

∫
0

−D
𝜕c1
𝜕x

(x1, 𝜏)d𝜏 (14)

and, by definition of a monotonic function, the time derivative of M (t) (e.g., the flux

at x = x1) does not change sign. It starts at 0 and reaches a steady-state value.

After applying the definition of the Laplace transform to c1, we get

c̄1 (x, s) =
∞

∫
0

c1 (x, t) exp (−st)dt (15)

where c̄1 (x, s) is the Laplace transform of c1 (x, t). Substituting c̄1 (x, s) into Eqs. (6)–
(7) leads to the following solution:

c̄1 (x, s) = k1 exp
⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
−
𝛾1
D1

−

√
𝛾21 + 4D1s

D1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
+ k2 exp

⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
√

𝛾21 + 4D1s

D1
−

𝛾1
D1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

(16)
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with 𝛾1 = u1a1. Equation (16) is solved for k1 and k2 after imposing the boundary

conditions (9) and (10). These integration constants are replaced in (16) to give

c̄1 (x, s). An expression for the flux at x = x1 in terms of s gives

J1 (s) =

c10
√

𝛾21 + 4D1s exp

⎡⎢⎢⎢⎢⎣
x1

(√
𝛾21 + 4D1s − 𝛾1

)
2D1

⎤⎥⎥⎥⎥⎦
s

⎡⎢⎢⎢⎣
exp

⎛⎜⎜⎜⎝
x1
√

𝛾21 + 4D1s

D1

⎞⎟⎟⎟⎠
− 1

⎤⎥⎥⎥⎦

(17)

The ETC, obtained from Eq. (4), and the steady-state flux are

teff =
𝛾21x12

[
2csch2

(
𝛾1x1
2D1

)
+ 1

]
− 2𝛾1D1x1 coth

(
𝛾1x1
2D1

)
− 4D2

1

2𝛾21

[
𝛾1x1 coth

(
𝛾1x1
2D1

)
− 2D1

] (18)

and

J1eq =
c10𝛾1

exp
(
𝛾1x1
D1

)
− 1

(19)

respectively. Note that

lim
𝛾1→0

teff =
7x12

60D1
lim
𝛾1→0

J1eq =
c10D1

x1

recover the expressions for the passive (simple) diffusion [7].

5 A Multi-layer Model for TDD

The skin has a typical composite structure, constituted by a sequence of contiguous

layers of different physical properties and extensions. To be more realistic, let us

generalize the previous model and consider the skin made of several layers of thick-

nesses l1, l1, ..., ln, each treated as a macroscopically homogeneous porous medium.

Therefore, a set of intervals [xi−1, xi], i = 1,… , n (xn = L) are defined (Fig. 2).

Iontophoretic transport

As in the case of the one-layer model, the concentration satisfies the following

equation:
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𝜕ci

𝜕t
+ ∇ ⋅ Ji = 0 (20)

and in each layer i the mass flux is defined by the Nernst-Planck flux equation [10]:

Ji = −Di∇ci − uici∇𝜙i, ui =
DizF
RT

, i = 1,… , n (21)

where 𝜙i is the electric potential in layer i. The boundary conditions are:

c1 = c10 at x = 0 (22)

cn = 0 at x = xn (sink condition due to the capillary washout) (23)

At the layer interfaces, we impose continuity of mass fluxes and ratio of equilibrium

concentrations equal to partition coefficients:

Ji = Ji+1 ci = Ki,i+1 ci+1 at x = xi, i = 1, 2,… , n − 1 (24)

The initial conditions are:

ci(x, 0) = 0 i = 1, 2,… , n (25)

The electric potential field

In this multi-layer model, the potential is the solution of the multiple Poisson

equations [10]:

∇ ⋅ (𝜎i∇𝜙i) = 𝜌(x) ≃ 0 i = 1,… , n
𝜙1 = 𝛹0 at x = 0 (26)

𝜙n = 𝛹1 at x = xn

with 𝜎i( cm−1 𝛺−1) the electrical conductivities in the layer i. At the interfaces we

assume an electrically perfect contact and we impose continuity of potential and

fluxes:

− 𝜎i∇𝜙i = −𝜎i+1∇𝜙i+1 𝜙i = 𝜙i+1 at x = xi i = 1,… , n − 1
(27)

It is straightforward to verify that the exact solution of the problem (26)–(27) is

𝜙i(x) = aix + bi i = 1,… , n (28)

with the expressions of ai (V∕cm) and bi(V) are computed as in [12] (see Sect. 7).
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6 Computation of the ETC for a Multi-layer Skin Model

For simplicity, a three-layer skin model (n = 3) is studied. The governing Eqs.

(20)–(21) read:

𝜕c1
𝜕t

= D1
𝜕2c1
𝜕x2

+ 𝜕

𝜕x

(
u1c1

𝜕𝜙1
𝜕x

)
in [0, x1] (29)

𝜕c2
𝜕t

= D2
𝜕2c2
𝜕x2

+ 𝜕

𝜕x

(
u2c2

𝜕𝜙2
𝜕x

)
in [x1, x2] (30)

𝜕c3
𝜕t

= D3
𝜕2c3
𝜕x2

+ 𝜕

𝜕x

(
u3c3

𝜕𝜙3
𝜕x

)
in [x2,L] (31)

The equilibrium partition relations at the boundaries are

c0 = K0,1c1 at x = 0 (32)

c1 = K1,2c2 at x = x1 (33)

c2 = K2,3c3 at x = x2 (34)

The flux continuity equations at the boundaries are

D1
𝜕c1
𝜕x

+ u1c1
𝜕𝜙1
𝜕x

= D2
𝜕c2
𝜕x

+ u2c2
𝜕𝜙2
𝜕x

at x = x1 (35)

D2
𝜕c2
𝜕x

+ u2c2
𝜕𝜙2
𝜕x

= D3
𝜕c3
𝜕x

+ u3c3
𝜕𝜙3
𝜕x

at x = x2 (36)

At the dermis/capillary interface, we have

c3 = 0 at x = L (37)

Following a method similar to the one described in Sect. 4, the Laplace transformed
concentrations are:

c̄1 (x, s) = k1 exp
⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
−
𝛾1
D1

−

√
𝛾21 + 4D1s

D1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
+ k2 exp

⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
√

𝛾21 + 4D1s

D1
−

𝛾1
D1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

c̄2 (x, s) = k3 exp
⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
−
𝛾2
D2

−

√
𝛾22 + 4D2s

D2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
+ k4 exp

⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
√

𝛾22 + 4D2s

D2
−

𝛾2
D2

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

and

c̄3 (x, s) = k5 exp
⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
−
𝛾3
D3

−

√
𝛾23 + 4D3s

D3

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
+ k6 exp

⎡⎢⎢⎢⎣
1
2

x

⎛⎜⎜⎜⎝
√

𝛾23 + 4D3s

D2
−

𝛾3
D3

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦
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with 𝛾1 = u1a1, 𝛾2 = u2a2 and 𝛾3 = u3a3. The integration constants ki with i = 1, ..., 6
are obtained after solving Eqs. (32)–(37) in the Laplace domain. Using these results,

expressions for ETC and the steady flux are derived at x = L. The functions are not

shown here because of page limitation, but the numerical results are given in the next

section.

7 Computational Results

To evaluate the dynamic behavior of a transdermal drug delivery, with a possible

iontophoretic enhancement, an estimate of ETC is made in the one-layer and multi-

layer model.

One-layer model

In the case where the skin is modelled by a single layer, we use the following nominal

parameters corresponding to the permeation of arginine vasopressin through hairless

rat skin [21]:

x1 = 10−3 cm D1 = 1.1 × 10−11 cm2∕s z1 = +2 (38)

With these data at hand, it results: csch2
(
𝛾1x1
2D1

)
≈ 0 and coth

(
𝛾1x1
2D1

)
≈ −1, and

Eq. (18) reduces to:

teff ≈
𝛾21x21 + 2𝛾1D1x1

−2𝛾21 (𝛾1x1 + 2D1)
≈ −1

2
x1
𝛾1

Similarly, in Eq. (19), given that exp

(
𝛾1x1
D1

)
≈ 0 , the steady flux velocity at x1

reduces to:
J1eq

c10
≈ −𝛾1

Therefore, the dependence of ETC on 𝛥𝛹 is roughly inversely linear. The steady-

state flux is quasi-linear to the DelPhi. Although the procedure yields fairly complex

expressions (Eqs. 18 and 19), in the physiological range, a simple dependence on

𝛾1 = u1a1 (see Eqs. (8) and (13)) results (Fig. 3).

Multi-layer model

Here, the skin is assumed to be composed of three main layers, the SC, the viable

epidermis, and the dermis (Fig. 4). The model parameters are given in Table 1. In

the absence of direct measurements, indirect data are inferred from previous studies

in literature [22, 23]. Diffusivities depend on the type and size of the transported

molecules and are affected of a high degree of uncertainty. Representative values of

partition coefficients are listed [21, 24]. The K2,3 value of 1.0 was selected because
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Fig. 3 The near-linear inverse dependence of ETC and the quasi-linear dependence for steady flux

J1eq∕c10 on 𝛥𝛹 (case one-layer). A similar trend is reported for varying D1, at a fixed 𝛥𝛹

Fig. 4 A schematic section

representing the three-layer

model (figure not to scale)

Table 1 The parameters used in the simulations for the three-layer model

— Stratum corneum (SC) (1) Viable epidermis (2) Dermis (3)

li = xi − xi−1 (cm) 1.75 × 10−3 3.5 × 10−3 0.11
Di (cm2∕s) 10−10 10−7 10−7

𝜎i (S∕cm) 10−7 10−4 10−4

Ki−1,i 0.01 2.2 1.0
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Table 2 The ETC and steady flux as a function of different currents with D1 = 10−11 cm2∕s,D2 =
10−7 cm2∕s,D3 = 10−7 cm2∕s
𝛥𝛹 (V) a1∕a2∕a3 (V∕cm) ETC(s) J1eq∕c10 (cm∕s)
0 0∕0∕0 5.41 × 104 5.71 × 10−7

1.0 −538.1∕ − 0.54∕ − 0.54 3.89 × 104 2.08 × 10−5

1.5 −807.2∕ − 0.81∕ − 0.81 1.22 × 104 3.12 × 10−5

1.7 −914.8∕ − 0.91∕ − 0.91 8.00 × 103 3.54 × 10−5

2.0 −1076.3∕ − 1.08∕ − 1.08 4.10 × 103 4.16 × 10−5

Table 3 The ETC and steady flux as a function of different diffusivities with 𝛥𝛹 = 1.0V
D1 (cm2s−1) D2 (cm2s−1) D3 (cm2s−1) ETC(s) J1eq∕c10 (cm∕s)
10−11 10−7 10−7 3.89 × 104 2.08 × 10−5

2.0 × 10−11 2.0 × 10−7 2.0 × 10−7 1.94 × 104 4.16 × 10−5

3.0 × 10−11 3.0 × 10−7 3.0 × 10−7 1.30 × 104 6.25 × 10−5

4.0 × 10−11 4.0 × 10−7 4.0 × 10−7 9.73 × 103 8.33 × 10−5

the viable epidermis is usually treated as an aqueous tissue nearly equivalent to the

dermis [25]. The coefficients ai of the potential 𝜙i in Eq. (28) have the following

expressions:

a1 = −
𝛥𝛹𝜎2𝜎3

G
a2 = −

𝛥𝛹𝜎1𝜎3
G

a3 = −
𝛥𝛹𝜎1𝜎2

G

where G = l3𝜎1𝜎2 + l1𝜎3(𝜎2 − 𝜎1) + l2𝜎1(𝜎3 − 𝜎2) and 𝛥𝛹 = 𝛹0 − 𝛹1.

The results are shown in Tables 2 and 3. As in the one-layer case, an electrical

current—as well as increasing layer diffusivities—promotes a more effective release

and enhances the drug flux in a nearly linear way, leading a reduced ETC. Never-

theless, since the thicknesses and compositions of the tissues are different in the

one- and three-layer cases, the numerical values of ETC and flux are not directly

comparable.

Although the model parameters are subject to some degree of uncertainty, esti-

mation of the ETC is an important tool that can be applied for the successful release

of new molecules and the improved delivery of conventional drugs.

8 Conclusions

The dynamic behavior of a finite physical system can often be described by a

single relaxation time constant. In this chapter we have defined such an effective

time constant as a design tool for transdermal drug release, possibly enhanced

by iontophoresis. As a single index of release performance, the ETC has the advan-
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tage that it can be evaluated from Laplace transforms without the need of explicit

inversions, and can be used to describe the different effective speeds of relaxation of

an extended system. Although closed-form expressions of ETC are not always easy

to obtain and analyze, ETC has been derived and computed for two case studies:

the transdermal drug delivery in one-layer and multi-layer models, with convection

terms present in the case of electrically-assisted release.

References

1. M. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotech. 26, 1261–1268 (2008)

2. O. Perumal, S. Murthy, Y. Kalia, Tuning theory in practice: the development of modern trans-

dermal drug delivery systems and future trends. Skin Pharm. Physiol. 26, 331–342 (2013)

3. H. Trommer, R. Neubert, Overcoming the stratum corneum: the modulation of skin penetra-

tion. Skin Pharmacol. Physiol. 19, 106–121 (2006)

4. S. Becker, B. Zorec, D. Miklavc̆ic̆, N. Pavs̆elj: Transdermal transport pathway creation: elec-

troporation pulse order. Math. Biosci. 257, 60–68 (2014)

5. Y.N. Kalia, A. Naik, J. Garrison, R.H. Guy, Iontophoretic drug delivery. Adv. Drug Deliv. Rev.

56, 619–658 (2004)

6. G. Pontrelli, F. de Monte, A two-phase two-layer model for transdermal drug delivery and

percutaneous absorption. Math. Biosci. 257, 96–103 (2014)

7. L. Simon, Timely drug delivery from controlled-release devices: Dynamic analysis and novel

design concepts. Math. Biosci. 217, 151–158 (2009)

8. Y.N. Kalia, R.H. Guy, Modeling transdermal drug release. Adv. Drug Del. Rev. 48, 159–172

(2001)

9. L. Simon, A.N. Weltner, Y. Wang, B. Michniak, A parametric study of iontophoretic transder-

mal drug-delivery systems. J. Membr. Sci. 278, 124–132 (2006)

10. T. Gratieri, Y. Kalia, Mathematical models to describe iontophoretic transport in vitro and in

vivo and the effect of current application on the skin barrier. Adv. Drug Deliv. Rev. 65, 315–329

(2013)

11. G. Pontrelli, F. de Monte, A multi-layer porous wall model for coronary drug-eluting stents.

Int. J. Heat Mass Trans. 53, 3629–3637 (2010)

12. G. Pontrelli, M. Lauricella, J.A. Ferreira, G. Pena, Iontophoretic transdermal drug delivery: a

multi-layered approach. Math. Med. Biol. online (2016)

13. R. Collins, The choice of an effective time constant for diffusive processes in finite systems. J.

Phys. D Appl. Phys. 13, 1937–1947 (1980)

14. M.A. Ashburn, L.L. Ogden, J. Zhang, G. Love, S.V. Basta, The pharmacokinetics of transder-

mal fentanyl delivered with and without controlled heat. J. Pain 4, 291–297 (2003)

15. L. Simon, Analysis of heat-aided membrane-controlled drug release from a process control

perspective. Int. J. Heat Mass Trans. 50, 2425–2433 (2007)

16. Y. Song, S.K. Li, K.D. Peck, H. Zhu, A. Ghanem, W.I. Higuchi, Human epidermal membrane

constant conductance iontophoresis: alternating current to obtain reproducible enhanced per-

meation and reduced lag times of a nonionic polar permeant. Int. J. Pharm. 232, 45–57 (2002)

17. A. Luzardo-Alvarez, M.B. Delgado-Charro, J. Blanco-Mendez, Iontophoretic delivery of

ropinirole hydrochloride: effect of current density and vehicle formulation. Pharm. Res. 18,

1714–1720 (2001)

18. A.K. Nugroho, O. Della Pasqua, M. Danhof, J.A. Bouwstra, Compartmental modeling of trans-

dermal iontophoretic transport II: in vivo model derivation and application. Pharm. Res. 22,

335–346 (2005)

19. L. Simon, Control of Biological and Drug-Delivery Systems for Chemical, Biomedical, and
Pharmaceutical Engineering (Wiley, Hoboken, NJ, 2013)

giuseppe.pontrelli@gmail.com



64 G. Pontrelli and L. Simon

20. Y.G. Anissimova, Mathematical models for skin toxicology. Expert Opin. Drug Metab. Toxi-

col. 10, 551–560 (2014)

21. K. Tojo, Mathematical models of transdermal and topical drug delivery (Biocom Systems Inc.,

Fukuoka, Japan, 2005)

22. P.F. Millington, R. Wilkinson, Skin Cambridge University Press, 2009

23. S. Becker, Transport modeling of skin electroporation and the thermal behavior of the stratum

corneum. Int. J. Thermal Sci. 54, 48–61 (2012)

24. M. Fernandes, L. Simon, N.W. Loney, Mathematical modeling of transdermal drug deliv-

erysystems: analysis and applications. J. Membr. Sci. 256, 184–192 (2005)

25. J.M. Nitsche, G.B. Kasting, A microscopic multiphase diffusion model of viable epidermis

permeability. Biophys. J. 104, 2307–2320 (2013)

giuseppe.pontrelli@gmail.com


