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37134, Verona, Italy

pascarel@dima.unige.it
michele.piana@univr.it

3 CNR-INFM LAMIA, Genova, Italy
sorrentino@fisica.unige.it

Abstract

Magnetoencephalography (MEG) is a non-invasive brain imaging tecnique measuring

the weak magnetic field due to neural activity. The analysis of the temporal evolution

of the magnetic field, however, does not provide accurate spatial information about the

neural activations in the cerebral cortex. Such information can be restored only by solving

the inverse problem. We propose a probabilistic approach to solve this problem: a particle

filter is implemented to realize a Bayesian tracking of the brain sources, modeled as point-

wise currents.
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1. Introduction.

Magnetoencephalography (MEG) [1] is a brain imaging technique
recording, in a completely non-invasive way, the magnetic field due to the
neural currents lying in the cerebral cortex; from the temporal analysis
of these measurements it is possible to infer information about the brain
activity. The main advantage of MEG against other functional imaging
modalities, such as Positron Emission Tomography (PET) or functional
Magnetic Resonance Imaging (fMRI), is its temporal resolution of the or-
der of the millisecond, that allows following the temporal evolution of the
neural sources with great accuracy. The spatial resolution is not equally
outstanding, being of the order of centimeter (but this is still a matter of
debate, because several different factors affect the spatial accuracy of the
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inverse solution); other functional brain imaging procedures, such as PET
and fMRI, reach the millimeter.

In the last years MEG has been employed for studying epilepsy, the
re-organization of the somatosensory-cortex and more generally for neuro-
scientific investigations. The experimental paradigms concern the recording
of both spontaneous cortical rhythms and evoked potentials after external
stimulations.

The analysis of MEG data for obtaining information about the cere-
bral activity is a challenging task for a good number of reasons. First, the
Signal-to-Noise Ratio (SNR) of the measurements is very low; this is due
to several factors, including: (i) the brain magnetic field is very weak, only
few hundreds of femtoTesla, so that only special sensors working thanks to
superconductivity can in fact measure such low fields; (ii) while magnetic
noise coming from external sources is generally strongly attenuated by the
use of magnetically shielded rooms, the brain itself has to be considered
as a source of noise, where noise is here all the magnetic field produced
by cerebral currents not of interest in the present study. Second, the MEG
problem is genuinely ill-posed: the solution is not unique, since many differ-
ent configurations of neural sources may produce the same magnetic field;
the inverse solution is characterized by a strong numerical instability.

Following [2,3,4], we use Bayesian tracking to solve this problem in a
probabilistic framework. The computation of the forward problem, a neces-
sary step in this approach, needs two models to be defined: a model for the
geometry of the conductor, i.e the head, and one for the neural sources. In
this work, the head is approximated by a homogeneous spherical conduc-
tor; this approximation is quite reliable for the posterior part of the brain.
The neural currents can be modeled as a distributed source, in which the
source locations are fixed and only their amplitudes are estimated from the
measurements, or with a set of point-wise currents (”dipoles”), in which
the activation is modeled by a small number of dipoles, defined by position,
orientation and amplitude. In the dipole model the number of active dipoles
cannot be fixed a priori, rather it can be considered as a time-varying vari-
able varying with time. Here we employ the dipole model and show how the
introduction of the Random Finite Sets theory [5,6] can be used to handle
the varying number of sources. This work is organized in the following way:
first we present the MEG problem and a Bayesian algorithm for its solution;
then we show the results we obtain analyzing a real dataset and finally we
propose our conclusion and discuss the problems still open.
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2. The MEG inverse problem.

The Biot-Savart law links the magnetic field to the currents and is
therefore the key equation in the MEG problem:

(1) B(r) =
µ0

4π

∫
J(r′)× r− r′

|r− r′|3 dV

with B(r) representing the magnetic field in r due to the current distri-
bution J(r′). The following theorems, proved respectively in [7] and in [8],
demonstrate the ill posedness in the sense of Hadamard of the MEG prob-
lem:

Theorem 2.1. The kernel of the Biot-Savart operator is not trivial.

Theorem 2.2. The Biot-Savart operator is compact.

The dipole model for the neural sources

(2) J(r) =
∑

i

Qiδ(r− rQi)

where rQi is the position of the i-th dipole and Qi the dipole moment,
induces a non-linear relationship between the position of the dipole and the
magnetic field; in an unbounded, homogeneous conductor, the Biot-Savart
equation directly reads:

(3) B(r) =
µ0

4π

∑

i

Qi ×
r− rQi

|r− rQi |3
;

the case of a bounded conductor is more complicated, as the neural current
induces secondary (volume) currents in the conductor, whose contribution
to the magnetic field is not null; the analytic solution is known in the case
of a spherical conductor; for more realistic head geometries, Boundary or
Finite Element Methods are needed to obtain approximate solutions; in all
cases, the non-linearity holds.

In conclusion, solving the MEG inverse problem in the dipolar approx-
imation involves solving a non-linear inverse problem, further complicated
by the fact that the source parameters change in time (it’s a dynamic prob-
lem) and the SNR of the data is rather low.
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3. Bayesian tracking for the MEG problem.

For the reasons exposed in the previous section, the research of an exact
solution may appear meaningless. So we decided to work in a Bayesian
framework, in which all the data are modeled as random variables. The
magnetic field B = {Bk}T

k=1 and the unknown currents J = {Jk}T
k=1 are

considered as Markovian processes in which Bk and Jk are the random
vectors representing, respectively, the measurement and the neural current
at the time k. As we said before, the number of simultaneous sources, i.e.
of dipoles, cannot be fixed a priori; moreover it can vary over the time.
This implies that the random vector Jk could have different dimension at
different time points. A more appropriate representation of such a problem
can be given within the theory of Random Finite Sets (RFS) [6]. A RFS is a
set with a variable number of elements, that are random vectors themselves.
It can be viewed as a generalization of a random variable. We have to re-
write the currents in terms of RFS: let Jk be the random finite set of
currents and Jk = (j1

k , ...jmk
k ) its realization, with Mk the random variable

representing the number of neural sources, and mk its realization (in the
implementation, this number is bounded for computational reasons). Using
this theory, the number of neural currents at each time point is a random
variable itself and needs not to be fixed a priori

The model equation can be written as:

(4) Bk = BS(Jk) + Nk

where BS is the Biot-Savart operator and Nk represents the noise. The
distribution of noise in the MEG problem is not known and we assume the
general hypothesis it is zero-mean white Gaussian noise.

The choice of the probabilistic approach implies that all the information,
and hence the solution, can be coded in probability density functions (pdf).
In particular the posterior pdf πpost(Jk|b1:k) is the solution of the inverse
problem in the Bayesian setting: it is the probability density for a dipoles
set at time k, Jk, conditioned on the measurements up to time k, b1:k. The
posterior pdf is computed at each time point from the prior density, with
the Bayes theorem:

(5) πpost(Jk|b1:k) =
f(bk|Jk)πprior(Jk|b1:k−1)

π(bk|b1:k−1)

and the prior pdf at the next time is given by the Kolmogorov-Chapman
equation:

(6) πprior(Jk+1|b1:k) =
∫

p(Jk+1|Jk)πpost(Jk|b1:k)δJk
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where the integral is the set integral [5], [6].
To apply the two previous equations, the following densities have to be

defined:

• the prior pdf for k = 1, πprior(J1) which is clearly needed for the
initialization; we assume it is uniform in the position and Gaussian
in the dipole moment with zero mean and standard deviation of the
order of the expected sources magnitude;

• the likelihood function f(bk|Jk) that is the probability to measure
the magnetic field bk when the current is Jk. Explicitly we choose
f(bk|Jk) = N(bk − BS(Jk), σnoise) where σnoise is the standard de-
viation of the noise, computable from the data;

• the transition kernel p(Jk+1|Jk) describing the dynamical evolution
of our system. We have no knowledge of a model for the evolution
and for sake of generality we assume it is a random walk. Moreover,
with equal probabilities, a particle can preserve its dipoles number,
or a dipole can die or born according to πprior(J1).

The iterative application of the observation (5) and evolution (6) equations
furnishes the solution of the MEG problem for each time k: in fact, using
the prior at time k = 1 as an inizialization, we can compute the posterior
pdf at time 1 and with the Kolmogorov-Chapman equation we can obtain
the prior pdf at time 2 and so on.

The implementation of this procedure is perfomed by a particle filter [9]:
the non linearity of the magnetic field with respect to the dipole position
does not allow the use of a Kalman filter, generally and conveniently em-
ployed in presence of a linear model with Gaussian noise [10], [11]. In the
particle filtering a set of N particles is considered as an approximation of
the posterior pdf and it is recursively obtained by the discretization of Bayes
theorem (5) and the evolution equation (6). At each time point, a weight,
based on the likelihood function, is assigned to each particle, and then a
resampling step is applied. The transit to the next time point is made be
letting the particles evolve according to the transition kernel.

The algorithm can be summarized in the following steps:

• initialization: draw a sample {Ji
1}N

i=1 distributed according to the
density πprior(J1);

• observation: compute the forward solution for each particle Ji
k and

assign to it a weight based on the likelihood function wi
k = f(bk|Jk)∑N

h=1 wh
k

;

• resampling: resample N particles from the set {Ji
k}N

i=1 in order
that the probability of extracting Ji

k is equal to its likelihood wi
k; the

set of uniformly weighted particles {J̃i
k} is a new approximation of
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the posterior density at time k; this step is implemented for avoiding
degeneracy of the algorithm;

• evolution: let each particle {J̃i
k} evolve according to the transition

kernel, by drawing a new particle Ji
k+1 from p(Jk+1|J̃i

k)

. The particle filter gives, at each time point, an approximation of the
posterior density function, that is the solution of our problem, but it is still
necessary to extract from it the estimate of the solution. The estimation
procedure involves two steps. First, the number of sources is dynamically
estimated from the posterior density, by looking at the marginal distribution
of Mk; in practice, this means that at each time point we assign to each
source space (zero dipole, one dipole and so on) a weight computed by
summing the weights of all the particles belonging to that space. The source
space with the highest weight is considered as the space of the solution and
its dimension determines the number of reconstructed dipoles. As for the
source parameters, the weighted particles are used to compute a marginal
quantity, named Probability Hypothesis Density (PHD) in the RFS theory,
whose peaks represent the estimates of the source locations; the dipole
moments are computed with linear least squares.

The algorithm is extremely time-consuming: at each time point we have
to compute the forward solution for each particle. This operation is hence
performed milions of time: in fact, we employ usually 100000 particles and
the data last about 400 time point. A strong reduction of the computa-
tional cost can be obtained by constraining the dipoles to jump only be-
tween points of a pre-defined grid, enclosing the brain volume; the pre-
computation of the forward solution for the points of the grid reduces the
computational cost of a factor about 1,000.

4. Results.

The particle filter has been previuosly applied in [2], [3], both to syn-
thethic and to real MEG datasets. Here we present the results we obtained
with a real dataset, recorded with a 306-channel whole-head neuromag-
netometer (Elekta Neuromag Oy, Helsinki, Finland), which employs 102
sensor elements, each comprising one magnetometer and two planar gra-
diometers. The measurements were filtered in the range 0.1-170 Hz and
sampled at 600 Hz.

An auditory stimulus, consisting in a perceptible but not annoying
sound was presented to the subject for about 100 times. These repetitions
are due to the necessity to have many recordings of the brain response to
the stimulus: the data are averaged for obtaining a better SNR.
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The employed grid is a 3D cubic grid formed by about 40000 points
with distance of 4 mm.

The typical brain response to this kind of simple auditory stimuli is well
known and consists in a bilateral activation; the contralateral hemisphere
(left hemisphere if the stimulus was presented to the right ear) is usually
activated some milliseconds before the ipsilateral hemisphere

In figure 1 we show the model selection for the auditory experiment
and in the figures 2 and 3 the reconstructions at different time points. The
results are in agreement with the expected response and are obtained in
an automatic and quite fast way. Moreover our results are comparable with
the ones given by the dipole fitting modality [1], the technique most used
in the MEG community.

Fig. 1. Model selection: the probability to stay in the zero dipole space (blue dashed
line), in the one dipole space (red line) and in the two dipole space (black dotted line)

5. Conclusions.

In this work we presented a Bayesian algorithm for the analysis of MEG
data and suggested that the mathematical framework of Random Finite
Sets is appropriate for dealing with the time-varying number of sources. For
computational reasons we introduced a grid containing the brain volume.
The grid used so far is a cubic grid, but it is possible to create a grid
lying on the cortical surface for obtaining more accurate reconstructions:
the neural currents are generated mainly on the brain cortex and not in the
sub-cortical tissues.
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Fig. 2. Reconstructed dipole at the 64 ms: the panel shows in the first row the coronal
and saggital views and in the second row the axial view and the sources inside the sensors’
helmet. In according to the model selection at 64 ms, we have one reconstructed source

Fig. 3. Reconstructed dipole at the 106 ms: the panel shows in the first row the coronal
and saggital views and in the second row the axial view and the sources inside the sensors’
helmet. In according to the model selection at 106 ms, we show the two reconstructed
sources

Future work will be concerned with applications both on data obtained
during more complex stimulations and on the spontaneuos cortical activity,
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with the aim of investigating brain rhythms.
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