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Abstract. We present a comparison of three methods for the solution of the
magnetoencephalography inverse problem. The methods are: a linearly con-
strained minimum variance beamformer, an algorithm implementing multiple
signal classification with recursively applied projection and a particle filter for
Bayesian tracking. Synthetic data with neurophysiological significance are an-
alyzed by the three methods to recover position, orientation and amplitude of
the active sources. Finally, a real data set evoked by a simple auditory stimulus
is considered.

1. Introduction

Magnetoencephalography (MEG) [1] is a functional imaging modality which al-
lows measurements of the magnetic fields associated with spontaneous or stimulus-
induced neural currents by means of Superconducting Quantum Interference De-
vices (SQUID). Due to its formidable temporal resolution (the magnetic signal can
be followed with a detail of some milliseconds) MEG is considered as an optimal
tool for investigating the dynamical interplay of brain regions during information
processing. Furthermore, modern scanners, characterized by a high number of su-
perconducting sensors distributed to homogeneously cover the whole skull, and
co-registration techniques onto high resolution structural maps, allow a centimeter-
level spatial localization of the active neural areas. However the full potentiality
of MEG has not yet been exploited, mainly owing to the complexity of MEG data
analysis. In fact the troublesome issue in MEG investigation is the solution of the
neuromagnetic inverse problem of determining the spatio-temporal evolution of the
neural currents from the dynamical measurements of the magnetic field at different

2000 Mathematics Subject Classification: Primary: 65R32; Secondary: 65C05.
Key words and phrases: Inverse problems, magnetoencephalography, Bayesian methods.

1 c©200X AIMSciences



2 Annalisa Pascarella and Alberto Sorrentino

locations outside the skull. This problem is difficult for many reasons. First, it is
numerically unstable, the integral problem describing the data being ill-posed [2].
Second, the problem has to be solved at many different time points and this makes
computational effectiveness a crucial issue in the data analysis process. Third, the
input data is characterized by a very low signal-to-noise-ratio (SNR), MEG signal
being contaminated by both neural background and sensors’ noise.

The purpose of the present paper is to compare three different reconstruction
methods for the solution of the dynamical neuromagnetic problem. The rationale
of this analysis is that several methods exist for the solution of such a difficult
inverse problem but the effectiveness of most of these approaches has not yet been
comparatively and systematically assessed against synthetic time series of notable
neuroscientific significance. The aim of our investigation is to provide the inverse
problems community with some quantitative results which can point out optimal
strategies for the analysis of real measurements.

In an effective method for the solution of the MEG inverse problem, the fol-
lowing features should in principle coexist. From a neurophysiological viewpoint
the localization properties of this method should allow the reconstruction of very
small sources (up to point sources). Furthermore, particularly in the case of com-
plex tasks, the simultaneous or quasi-simultaneous activation of different cortical
areas is a well-established issue and therefore the spatio-temporal reconstruction
should be able to handle multi-target situations even with a high time correlation
degree. Multi-target reconstructions typically require a notable computational ef-
fort, so that the method should be numerically effective and characterized by a
high level of automation, inasmuch as approaches which require subjective choices
of the computational parameters are typically time consuming. Finally the optimal
method should be robust with respect to increasing noise amounts affecting the
data and assure to some extent regularization properties which reduce the intrinsic
numerical instability of the inverse problem. In the present paper we perform a
comparative analysis of three approaches which, at least in principle, share all (or
most of) these properties: a beamforming algorithm [3, 4, 5] which spatially fil-
ters the signal to focus the source as a weighted combination of the measurements;
multiple signal classification [6, 7, 8, 9], which identifies the source positions by
scanning the brain volume to find the solution of a non-linear optimization prob-
lem; a particle filter [10, 11, 12, 13, 14, 15], which realizes a Bayesian tracking of
the sources by means of a sampling-resampling of the probability density functions
involved. Our ultimate goal is to systematically verify whether and to what ex-
tent optimal performances are actually fulfilled by each method in the processing of
synthetic data realized according to certain critical but neuroscientifically plausible
conditions. Operatively, this will be done by comparing the performances in both
localizing the original sources and reproducing their temporal course, in the frame-
work of a spatio-temporal analysis. Eventually, an application to real data will be
considered.

The plan of the paper is as follows. Section 2 will set up the MEG inverse
problem. In Section 3 the three algorithms will be formulated while Section 4
will describe the comparison in both theoretical and computational terms. Our
conclusions will be offered in Section 5.
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2. The MEG inverse problem

Within the quasi-static approximation [2], the magnetoencephalography problem
is defined by the Biot-Savart equation:

(1) b(r, t) =
µ0

4π

∫

Ω

jtot(r′, t)× r− r′

|r− r′|3 dr′

where b(r, t) is the magnetic field produced at time t by the current density jtot(r′, t)
inside the conductor volume Ω representing the brain, and µ0 is the magnetic per-
mittivity of vacuum. In a MEG scanner, the magnetic field is sampled on a finite
number M of sensors, each one measuring one component of the magnetic field; if
esm

is the unit vector orthogonal to the sensor’s surface at location rsm
,

(2) bm(t) = b(rsm
, t) · esm

m = 1, . . . , M

is the dynamical measurement on the sensor sm. Recovering the electrical current
density inside Ω from external measurements of the magnetic field is in general an
ill-posed problem, because the Biot-Savart operator has a non-trivial kernel and is
compact [16, 17]. Furthermore, the purpose of source estimation from MEG data
is that of recovering the neural currents from measurements of the magnetic field,
but the total current density jtot inside the brain is in fact the sum of two terms
[2]: the primary current flowing in the active neurons, and the passive current
flowing in the whole conductor because of the electrical potential generated by the
primary current itself. The presence of the volume currents further increases the
difficulty in recovering the neural current j(r, t): in general, numerical solutions of
integral equations are needed to account for their presence. However, one artificial
but reliable assumption can notably simplify the problem. Indeed, when cortical
regions other than the frontal lobe are involved in the analysis, it is reliable [18] to
approximate the head as a spherical homogeneous conductor. This approximation,
together with the discretization of j(r, t) realized by attaching a current dipole

(3) jn(r, t) =
{

Qn(t) r = rn

0 r 6= rn
n = 1, . . . , N

to each point of a grid in the volume Ω, leads to

(4) bm(t) =
N∑

n=1

g(rsm , rn) ·Qn(t) ,

where

(5) g(rsm , rn) =
µ0

4πF 2(rsm)
rn × [F (rsm)esm − (∇F (rsm) · esm) rsm ]

is named the lead-field vector and

(6) F (r) = |r− rn|(|r||r− rn|+ |r|2 − rn · r) .

From (4)-(6) and in a matrix representation, the linear MEG inverse problem can
be written as

(7) B = GJ + N ,

where B is the M × K matrix whose entry Bmk, m = 1, . . . , M ; k = 1, . . . , K
represents the magnetic field bm(tk) (see equation (2)); G is the M × 3N matrix
constructed by the N M × 3 block matrices defined by the three components of the
lead-field vector (5); J is the 3N × K matrix constructed by the N 3 × K block
matrices Jn defined by the three components of the vector jn(rn, tk); finally N is
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the M ×K matrix whose entries are the noise components affecting the measured
magnetic field. In the following we will assume that the columns of B, N and
J are realizations of stochastic processes whose statistical estimate and variance
can be empirically computed assuming that the averages over time can replace the
averages over the realizations (ergodicity assumption). Furthermore we assume that
the noise is white Gaussian and is not correlated with the signal, which implies, for
the ergodicity assumption, that NN> ' σ2I, where σ2 is the variance of a Gaussian
distribution, and GJN> = N(GJ)> ' 0. We point out that the noise in real MEG
measurements is not white Gaussian. However pre-whitening techniques allow to
reduce the actual impact of this assumption at a pre-processing level.

Due to the organization of the human brain, primary currents elicited by exter-
nal stimuli - or even due to spontaneous activity - usually concentrate in one or
more small regions (few mm2) of the cortex; therefore, it makes sense to assume
that the measurements have been produced by a very small (< 10) set of cur-
rent dipoles. Each one of these P dipoles is uniquely identified by the parameters
{sQp

(t),mQp
(t), rQp

(t)}P
p=1 so that

(8) j(r, t) =
P∑

p=1

sQp(t)mQp(t)δ(r− rQp(t)) ,

where sQp(t) is the amplitude of the dipolar signal, mQp(t) is the dipole orientation
and rQp(t) is the dipole position. Assuming that both the position and the orien-
tation of the dipoles are fixed with respect to the time course, it is straightforward
to prove that the matrix representation

(9) B = AS + N

holds, where A is the M × P matrix with entry

(10) Amp = g(rsm , rQp) ·mQp ,

while S is the P ×K matrix with entry

(11) Spk = sQp(tk) .

Also here we assume that NN> ' σ2I and N(AS)> = ASN> ' 0. The parameter
identification problem of estimating the dipole parameters rQp , mQp and sQp(tk)
for all p and k from equation (9) is clearly non-linear, since the dependence of Amp

on rQp is non-linear. However, once a method is formulated for determining A,
then S can be obtained through a linear least-squares-based approach.

3. Algorithms

Several algorithms have been applied for solving either the linear inverse problem
(7) or the non-linear parameter identification problem (9). On a physiological basis
such methods can be divided into two classes. Some approaches [19, 20], typically
inspired by the regularization theory for linear ill-posed problems, address the MEG
data analysis as an image restoration problem whereby the restored map solves a
constrained minimization. The regularized primary current is typically very stable
although its support is often too large with respect to a realistic dimension of a
typical cortical active region, even when sparsity-enhancing constraints are applied.
The second class contains methods which explicitly introduce in the reconstruc-
tion procedure the information that the neural currents are small, i.e. pointwise
if compared to the sensors’ dimension. In the present paper we will compare the
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performances of three methods belonging to this second class: a beamformer, a
MUltiple SIgnal Classification (MUSIC) algorithm and a particle filter for Bayesian
tracking. While MUSIC and particle filters work in a multi-dipole setting and
then solve the non-linear inverse problem, beamformers assume the more general
model of a continuous current distribution; however, of the many beamformer im-
plementations already available in the MEG community, we chose the ”eigenspace
projection vector beamformer” [5] which assumes that the number of active regions
is very small. This assumption, which is adopted also for MUSIC, the additive rep-
resentation of noise in (7) and (9) and the fact that noise and noise-free data are not
correlated, imply that, in principle, the spectrum of BB> contains a small number
of eigenvalues significantly larger than the noise variance σ2 and many eigenvalues
of the same order of magnitude of σ2.

In this section, we review the three methods considered in this analysis. Beam-
forming and MUSIC are well-known approaches to MEG data analysis. In the
present paper, which focuses on a comparison of algorithms, only a schematic de-
scription of these two methods will be offered, their theoretical formulation being
referred to already published papers. On the other hand, particle filter is a rela-
tively new approach to the MEG inverse problem and is therefore described in more
detail.

3.1. Beamformers. This method was originally developed in the radar and sonar
signal processing community [22], but later it has been used in different fields,
varying from the geophysical [23] to the biomedical area [24] with applications to the
MEG inverse problem as well [25]. Beamformers are spatial filters discriminating
the signals on the basis of their spatial location. The beamformer output is a
weighted linear combination of the measurements, reflecting the source activity in
a specified location over time. To introduce the Linearly Constrained Minimum
Variance (LCMV) beamformer [4] we partition the M × 3N lead-field matrix G
into N M × 3 matrices

(12) Gn := [g(rs1 , rn), . . . ,g(rsM
, rn)]> ,

n = 1, . . . , N , and introduce N M ×3 weight matrices Wn = W(rn), n = 1, . . . , N .
The weight matrices are the key unknowns in beamforming and can be determined
by solving the constrained minimum problem

(13) min
Wn

varĴn subject to W>
n Gn = I3

where

(14) Ĵn = W>
n B,

is again a stochastic process with vectorial values. The motivation for (13), (14) is
as follows. Denoting with E{Ĵn} the 3×K matrix whose entry li is defined as

(15) E{Ĵn}li =
1
K

K∑

k=1

(Ĵn)lk ∀i = 1, . . . , K, ∀l = 1, 2, 3 ,

the empirical variance of Ĵn is defined by

(16) varĴn = Tr
[
{(Ĵn − E{Ĵn})(Ĵn − E{Ĵn})>}

]

and can be interpreted as a measure of the variability of the stochastic vectorial
process Ĵn. Now we partition the 3N × K matrix J into N 3 × K matrices Jn,
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n = 1, . . . , N , and assume that

(17) (Jn − E{Jn})(Jn′ − E{Jn′})> = 0

when n 6= n′ (neurophysiologically, this corresponds to assume that all neural cur-
rents in the brain are uncorrelated in time) and where E{Jn} is defined coherently
with (15). Exploiting the constraint

(18) W>
n Gn = G>

n Wn = I3 ,

one can easily show that the relation between the variances of Jn and Ĵn is
(19)

varĴn = varJn + var


W>

n




N∑

l 6=n

Gl{(Jl − E{Jl})(Jl − E{Jl})>}G>
l


Wn


 .

Therefore, finding the weight matrix Wn which minimizes (19) corresponds to find-
ing the source Ĵn with the strength closest to the strength of Jn at the point rn in
the brain. Of course, a reliable estimate of the positions of the sources is obtained
by computing the values of rn for which the function varĴn has a maximum.

Some comments:
• Using Lagrange multipliers, it is easy to show that [4]

(20) Wn = (BB>)−1Gn(G>
n (BB>)−1Gn)−1 .

• The presence of noise on the measurements can significantly affect the recon-
structions giving non-negligible contributions to the estimated source strengths.
In our algorithm these artefacts are reduced by means of two additional tech-
niques. First [5], once computed through (20), each matrix Wn is used only
after a projection onto the subspace associated to the eigenvalues of BB>

bigger than σ2. We note that this projection procedure is meaningful only
when the number of sources is small, much smaller than the number of sen-
sors. Second, the inversion of the covariance matrix BB> is regularized, i.e.
(BB>)−1 is replaced by (BB> + λI)−1 where the regularization parameter λ
is chosen on the basis of the noise level by means of heuristic procedures.

• Condition (17) is a strong assumption which is often unrealistic from a neu-
rophysiological viewpoint. A discussion of the quantitative impact of this
hypothesis on the source reconstruction and a first approach to its relaxation
are contained in [21]. Our beamforming algorithm implements this approach
to the method.

3.2. Multiple signal classification. MUSIC was first developed in the array
signal processing community [6]. Its application to the MEG inverse problem [7]
is concerned with the non-linear framework of equation (9). Here the MUSIC al-
gorithm provides an estimate of the forward operator A, containing the stationary
source parameters (dipole locations and orientations), while the source temporal
behaviour S is estimated afterwards by linear least squares. The key element of the
method is the use of the empirical data covariance matrix BB>. It follows easily
from the already mentioned assumptions that

(21) BB> = ASS>A> + σ2I ;

furthermore, the first term at the right side of (21) can be diagonalized:

(22) ASS>A> = ΦΛMΦ>,
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where ΛM contains R non-zero and M−R zero eigenvalues, with R = rank(S), and
Φ = (ΦS ,ΦN ) can be partitioned into the M × R matrix ΦS of the eigenvectors
associated with the non-zero eigenvalues and the M × (M − R) matrix ΦN of
the eigenvectors associated with the zero eigenvalues. As S contains the temporal
functions of P dipoles, its rank is R = P whenever all time courses are linearly
independent, and R < P otherwise. From equation (21) and (22) it follows that, in
principle, the number of eigenvalues of BB> bigger than σ2 equals to R, the number
of independent sources. To actually recover the parameters of the P dipoles, a
second diagonalization is useful

(23) SS> = UΛRU>,

where ΛR is the R × R diagonal matrix of the R non-zero eigenvalues of SS> and
U is the P × R matrix whose columns are the eigenvectors associated with the
non-zero eigenvalues. Starting from (21), (22) and (23) it can be shown that

(24) R(AU) = R(ΦS),

where R(·) denotes the range of a matrix. Equation (24) is the main result at
the basis of the MUSIC algorithm. For independent sources, U = I and the space
spanned by the eigenvectors ΦS equals the range of the forward operator A; for this
reason, ΦS is often referred to as the signal subspace. Therefore: (i) the number of
eigenvalues of BB> bigger than σ2 is an estimate of R; (ii) the subspace generated
by the eigenvectors associated with these eigenvalues is an estimate of the signal
subspace.

In the MUSIC framework, the number of independent sources is first estimated
from the data covariance matrix; then the whole brain is scanned in order to find the
locations and orientations which most likely produce the estimated signal subspace.
If less than R single dipoles are found, the algorithm searches for linearly dependent
sources in vector spaces which are cartesian products of the single dipole space. The
RAP-MUSIC algorithm is a recursive application of MUSIC where, after each source
is found, its lead field is projected out of the measurements. Two comments:

• in principle, the number of eigenvalues bigger than σ2 could be determined
automatically; however, in real applications this might be a rather difficult
task, since the singular spectrum often does not present any clearly visible
plateau; this also implies that, in order to keep track of any possible active
source, it is often preferable to overestimate the value of R;

• in our implementation of RAP-MUSIC, the set of points and orientations
satisfying (24) is determined by using the concept of correlation between sub-
spaces described in [26] and computed by using a technique based on singular
value decomposition. In actual applications this technique solves equation
(24) only approximately, i.e. the subspace correlation is determined within a
given threshold.

3.3. Particle Filter. Particle filters [10, 11] are a class of recently developed al-
gorithms for the numerical implementation of Bayesian filtering [27]: the unknown
and the measurements are modeled as stochastic processes and the aim is to sequen-
tially compute the conditional probability density function (pdf) of the unknown,
conditioned on the measurements and usually referred to as the posterior pdf. Par-
ticle filters have been mainly developed for tracking applications, and have been
later applied for solving the MEG inverse problem [13, 14, 28] in a multi-dipole set-
ting characterized by a minimal set of assumptions (for example, here the dipoles’
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position and orientation are not kept fixed, as for RAP-MUSIC). Due to its sequen-
tial nature, in principle a computational effective particle filter should allow on-line
tracking of neural currents from biomagnetic measurements.

In order to describe the formulation, in the following π(x) is the probability
density function of the random vector X, π(x|y) is the probability density function
of x conditioned on the realization y of the random vector Y, and {Bt}t=1,...,K and
{Jt}t=1,...,K are the measurements and primary current (current dipoles) processes,
respectively. The main assumptions for applying Bayesian filtering are concerned
with the Markovian nature of the two processes and can be synthesized in the
following equations:

π(jt+1|jt, jt−1, ..., j1) = π(jt+1|jt)(25)
π(bt|jt, jt−1, ..., j1) = π(bt|jt)(26)

π(jt+1|jt,bt,bt−1, ...,b1) = π(jt+1|jt)(27)

where, for sake of simplicity, notations like jt mean j(t), which is here a collection of
dipoles with corresponding strengths q(t) and positions r(t). Bayesian filtering is a
sequential process which utilizes some initialization to provide the posterior density

(28) πpost(jt|b1:t) := π(jt|b1:t)

for each time sample t = 1, . . . ,K. The initializations consist of choosing three
density functions: the prior pdf

(29) πpr(j1) := π(j1) = πpr(r1)πpr(q1) ;

the transition kernel

(30) p(jt+1|jt) := π(jt+1|jt) ;

and the likelihood function

(31) f(bt|jt) := π(bt|jt) .

In our implementation we will assume

(32) πpr(r1) =
1

m(V )

and

(33) πpr(q1) =
1√

2πσq

e
−|q1|2

σ2
q ,

where m(V ) is the measure of the volume V in which the dipoles lie and σq is an
estimate of the dipole amplitude. Then, the transition kernel

(34) p(jt+1|jt) =
1√

2π detΣ
e−(jt+1−jt)

T Σ−1(jt+1−jt) ,

where Σ is a diagonal covariance matrix: in the case of a single dipole, the values
that define the evolution of the dipole position are stored in Σ11 = Σ22 = Σ33 and
the values for the evolution of the dipole moment are in Σ44 = Σ55 = Σ66. Finally,
the likelihood function

(35) f(bt|jt) =
1√

2πσn

e
−|bt−b(jt)|2

σ2
n ,

where σn is estimated from the pre-stimulus.
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The Bayesian filtering algorithm applied to the biomagnetic problem is the se-
quential application of [13, 14]

πpost(jt|b1:t) =
f(bt|jt)πpr(jt|b1:t−1)

π(bt|b1:t−1)
,(36)

πpr(jt+1|b1:t) =
∫

p(jt+1|jt)πpost(jt|b1:t)djt ,(37)

where all the involved pdfs can be determined starting from the previous initial-
izations. In particular, Bayes’ theorem (36) determines the posterior pdf, i.e. the
solution of the problem in the Bayesian framework, by combining the prior pdf
with the likelihood function. The Chapman-Kolmogorov formula (37) is the tool
for computing the next prior from the actual posterior.

However, in practice, these two equations cannot be solved analytically and par-
ticle filtering provides a computational scheme for their numerical solution. The
simplest particle filter is the one known as Sampling Importance Resampling (SIR)
particle filter [11]. It is a sequential Monte Carlo method where equation (36)
is computed by means of an importance sampling strategy with the prior density
πpr(jt|b1:t−1) playing the role of proposal density at each time point.

Our SIR particle filter can be synthesized in the following steps:
1. Draw a set of N particles {ji1}N

i=1 from the prior pdf at a first time point,
πpr(j1); we may write

(38) πpr(j1) '
N∑

i=1

1
N

δ(j1 − ji1) .

2. for t ≥ 0, let {j̃it}N
i=1 be a sample distributed according to πpost(jt|b1:t); then

exploiting the Chapman-Kolmogorov equation (37) we may approximate the
next prior pdf as follows:

πpr(jt+1|b1:t) ' 1
N

N∑

i=1

p(jt+1 |̃jit) .

3. Sample the prior density by drawing a single particle from the transition kernel
p(jt+1 |̃jit) for each i; we get

(39) πpr(jt+1|b1:t) ' 1
N

δ(jt+1 − jit+1) .

4. Apply the Bayes theorem, i.e. compute the relative weights of the particles:

(40) wi
t+1 = f(bt+1|jit+1)

and then normalize the weights so that
∑N

i=1 wi
t+1 = 1; an approximation to

the posterior pdf is given by

(41) πpost(jt+1|b1:t+1) '
N∑

i=1

wi
t+1δ(jt+1 − jit+1) .

5. Resample the sample set representing the posterior density: extract a new set
of particles {j̃it+1}N

i=1 from the old set {jit+1}N
i=1, such that the probability of

drawing the i-th particle is wi
k+1; we get

(42) πpost(jt+1|b1:t+1) '
N∑

i=1

1
N

δ(jt+1 − j̃it+1) .

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Then go back to step 2.
The output of the particle filter is a sequence of approximated pdfs. The final

step of the method is to compute an estimate of the solution from these pdfs. Here
we utilize the conditional mean, defined as

(43) jCM
t =

∫
jtπpost(jt|b1:t)djt '

N∑

i=1

wi
tj

i
t .

In order to account for the simultaneous activation of several dipoles, we allow
particles to belong to different spaces (single dipole space, double dipole space and
so on). The birth or death of a dipole correspond to the transition of particles from
a dipole space of dimension 6n to a dipole space of dimension 6(n + 1) or 6(n− 1).

Now some comments on the implementation:
• In our particle filter, the most time consuming step is the computation of

the likelihood. In our implementation, we have notably reduced this cost by
letting the particles move only between points of a predefined computational
grid (with resolution comparable with the physical resolution of a typical MEG
scanner). In this way the forward problem (which is addressed for determining
the likelihood function) is computed only once, in correspondence with the
points of this grid.

• In our implementation, σn is the standard deviation of the pre-stimulus; σq

is an estimate of the dipole strength and is fixed according to neuroscientific
considerations (see the conclusions); Σ11 = Σ22 = Σ33 = 2, which corresponds
to let each particle move of two grid points at each time step; Σ44 = Σ55 =
Σ66 = σq/5, which corresponds to let each dipole amplitude change of a
neurophysiologically reasonable amount.

• At least in principle, an increase of the statistical effectiveness can be ob-
tained by applying Rao-Blackwellization [29] to the filtering, i.e. by designing
a hybrid process where a particle filter tracks the positions and a Kalman
filter reconstructs the amplitudes (indeed a Kalman filter is what Bayesian
filtering becomes when the problem is linear and Gaussian). We found that
this Rao-Blackwellization procedure provides the same reconstruction accu-
racy with a smaller number of particles [28]. However, for each particle, the
Kalman filter requires the inversion of several matrices, which may be rather
time consuming. In this paper we employed a code which does not use Rao-
Blackwellization.

• The Markovian properties (25)-(27) are not satisfied by a realistic cortical dy-
namics. However Bayesian filtering provides optimal solutions to the tracking
problem even in the case of generalized Markovian processes of order higher
than one, while in the case of more realistic models, it provides reliable ap-
proximations of the solution.

4. The comparison

4.1. Experimental conditions. The following experimental situations have been
selected for the comparison. We first briefly discuss the neurophysiological moti-
vation of each condition, together with the expected behavior of each algorithm,
based on theoretical arguments.

Short-lasting sources. For somatosensory stimuli, activity in the primary so-
matosensory cortex usually happens about 25 milliseconds after the stimulus and
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usually lasts for a few milliseconds [30]. Therefore short-lasting sources are a fre-
quently met (and interesting) neurophysiological situation. We set up the following
experimental situation: a single current dipole is placed in the left half of the helmet,
its strength being non-zero for only 3, 9 and 15 samples. Gaussian noise is added to
obtain a final SNR of around 6 dB at the peak. Both RAP-MUSIC and the beam-
former diagonalize BB> to estimate the eigenvalues associated to the true signal.
However, in order that this is a reliable estimate, one needs a notable number K of
time samples: using K ≈ 3M has been shown to give proper results [4] for indepen-
dent Gaussianly distributed observations. Particle filters process the measurements
in sequence, and indirectly exploit all the past behavior as prior information. All
the methods are then expected to give better results as the duration of the source
increases.

Low signal-to-noise ratio. MEG measurements are characterized by an ex-
tremely low SNR [1]; since the dominant noise source is the brain itself (the neural
activity not of interest), it can be difficult or even impossible to get rid of noise.
Indeed, while working with stimulus-induced activity one can average across differ-
ent realizations of the stimulus; however, when this procedure is applied, the exact
timing of single responses is lost. Therefore algorithms working with low SNRs are
welcome. We set up the following experimental condition: a single current dipole
with a given triangular waveform was placed in the right half of the helmet, and dif-
ferent Gaussian noise levels were added to obtain different SNRs in the range from
0.08 dB to 5.37 dB. The estimate of the signal subspace through BB> deteriorates
in the case of low SNR, which in principle leads to a worsening in the estimate
of the source parameters from RAP-MUSIC. For the beamformer, which recovers
distributed sources and not only single dipoles, the appearance of false positives is
expected, although the use of the subspace projection surely reduces this drawback.
Particle filters are expected to give worse results as well, although the use of the
conditional mean for estimating the current dipole should reduce the variability of
the estimate.

Quasi-dependent sources. From the neurophysiological viewpoint, the pos-
sibility of correctly recovering linearly dependent time courses is crucial since de-
pendent sources show up in many, even simple experimental conditions (e.g. simple
auditory stimuli [31]). We set up the following experimental situation: two current
dipoles are used to produce the input data; one dipole is placed about 5 cm on the
left with respect to the center of the helmet; the other dipole is placed symmetri-
cally, about 5 cm on the right; the two amplitude waveforms are identical, but the
left dipole appears 5, 10 and 15 samples before the right one, i.e., the two sources
are not perfectly time-dependent. Noise is then added to the synthetic measure-
ments, up to a final SNR of 12 dB at the peak. RAP-MUSIC and the particle filters
are well suited for recovering time-dependent sources. Beamformers require as a
technical assumption that the sources are not time correlated.

Orthogonal dipoles. When a current dipole is used to model the activity of
a small brain region, its direction is determined by the underlying structure of the
brain, and is usually perpendicular to the cortex (the direction of most axons);
however, due to the presence of many sulci and gyri, this direction may change
abruptly in a very short distance. We set up the following experimental situation:
two current dipoles are placed at 1 mm distance in the right half of the MEG
helmet; their dipole moments are orthogonal to each other; however, their amplitude
waveforms are completely separated, in such a way that there is at most one active
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dipole at each time sample. Gaussian noise is added to obtain a final SNR of 6 dB
at the peak. Both the beamformer and especially RAP-MUSIC rely on an estimate
of the signal subspace from BB>. Since two orthogonal sources produce opposite
spatial correlation between the same pairs of sensors, in BB> some contributions
are canceled and the estimate of the signal subspace is wrong.

Multi-target case. External stimulations often evokes several activities in the
same time range but in different cortical regions [31]. We have realized an ex-
periment where four triangular waveforms are placed in four rather distant brain
regions. Each waveform becomes active two time samples after the activation of the
previous waveform. Gaussian noise is added to the computed biomagnetic field up
to a SNR of 11 dB. As already discussed, beamformers are not effective in the case
of correlated or quasi-correlated sources. In RAP-MUSIC the overestimate of the
dimension of the signal subspace allows the reconstruction of several sources in the
same time range. Finally, particle filters are specifically designed in a multi-target
framework. In particular, the fact that the sources become active sequentially in
time, assures the effectiveness of the conditional mean as an estimate of the solution.

Moving dipole. When nearby brain regions are active in sequence the resulting
field can be interpreted as that of a single moving dipole. We set up the following
experimental condition: a single dipole moves along a linear path with a speed
of 1 millimeter per time sample; Gaussian noise is added to the measurements
to a final SNR of 18 dB at the peak. RAP-MUSIC relies on the assumption of
fixed dipole positions, and is expected to fail in recovering the moving source. The
general beamformer algorithm is expected to correctly recover the activity of moving
sources, although the use of the subspace projection (which may help in the low
SNR case) may create problems here. Particle filters have been mainly developed for
tracking moving objects, therefore they are expected to correctly track the moving
source.

Real Data Set. We finally consider a real data set: we chose to work with
auditory stimuli as they usually elicit activations in both hemispheres with a high
temporal correlation. We recorded MEG measurements at the Low Temperature
Laboratory, Helsinki University of Technology, Finland. Auditory responses were
measured in a single healthy subject (male, 44 years old), who signed an informed
consent before the MEG recording. The recording had a prior approval by the
Helsinki-Uusimaa ethics committee. Auditory stimuli were 1-kHz tone pips within
a 100-ms Hanning window, and they were randomly presented either to the left or
right ear at a clearly audible yet comfortable level. The MEG data were acquired
with a 306-channel whole-head neuromagnetometer (Elekta Neuromag Oy, Helsinki,
Finland), which employs 102 sensor elements, each comprising one magnetometer
and two planar gradiometers. Measurements were filtered to 0.1–170 Hz and sam-
pled at 600 Hz. Prior to the actual recording, four small indicator coils attached
to the scalp at locations known with respect to anatomical landmarks were ener-
gized and the elicited magnetic fields recorded to localize the head with respect to
the MEG sensors and thus to allow subsequent co-registration of the MEG with
anatomical MR images. Epochs with exceedingly large (b > 3 pT/cm) MEG sig-
nal excursions were rejected, and about 100 artifact-free trials for each stimulus
category were collected and averaged on-line in the window [−100, 500] ms with
respect to the stimulus onset. Residual environmental magnetic interference was
subsequently removed from the averages using the signal-space separation method.
Prior to the analysis, the evoked responses were low-pass filtered at 40 Hz. An
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3 time samples
position (cm) orientation (rad) amplitude (%)

beamformer 0.0 0.02 7.6
RAP-MUSIC 0.0 0.0 0.0
particle filter 0.4 0.05 18.6

9 time samples
position (cm) orientation (rad) amplitude (%)

beamformer 0.0 0.00 6.2
RAP-MUSIC 0.0 0.00 0.0
particle filter 0.5 0.04 14.9

15 time samples
position (cm) orientation (rad) amplitude (%)

beamformer 0.0 0.00 4.4
RAP-MUSIC 0.0 0.00 0.0
particle filter 0.2 0.03 6.2

Table 1. Reconstruction error of position, orientation and ampli-
tude of the three algorithms in the case of a source lasting 3,9 and
15 time samples.

anatomical T1-weighted MR-image of the subject was obtained with a 1.5-Tesla
Siemens Sonata MRI system using a standard 3D anatomical sequence with 1-mm
cubical voxels.

4.2. Numerical results. For each experimental situation, we now quantitatively
describe the performances of each algorithm by means of figures or tables. From
a technical viewpoint, we notice that the beamformer and RAP-MUSIC do not
depend on any initialization. In order to assess the robustness of the particle filter
with respect to initialization of the particles’ set, for each experiment ten runs of
the algorithm are performed. Each particle filter reconstruction corresponds to
the average over these ten realizations of position, orientation and strength of the
conditional mean. Since we found that the conditional mean is very stable with
respect to this initialization (the standard deviation is systematically smaller than
1% of the mean value), the error related to these realizations is not considered.

Short-lasting sources (Table 1). Despite the use of a small number of samples
for estimating the signal subspace, the reconstructions of the beamformer and of
RAP-MUSIC are good. The particle filter gives acceptable results as well, although
less accurate. For all three methods the reconstruction accuracy increases if the
sources are active for a larger time range. However this experiment utilizes a rather
high SNR; the deterioration of the restoration accuracy with decreasing SNR speeds
up for short-lasting sources, even for RAP-MUSIC and beamforming.

Low signal-to-noise ratio (Figure 1). We present here the reconstruction
errors on position, orientation and amplitude for different amount of noise affecting
the data. Once again, RAP-MUSIC and beamforming recover the source position
and orientation highly accurately while the particle filter’s reconstruction shows a
certain spread around the true position. For all algorithms the source strength is
highly corrupted by noise. In particular the beamformer notably underestimates
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5 samples 10 samples 15 samples
beamformer 0 samples 0 samples 0 samples

RAP-MUSIC 5 samples 9 samples 14 samples
particle filter 11 samples 7 samples 19 samples

Table 2. Distance between the peaks of the reconstructed sources
for the three algorithms in the case where the theoretical distance
is 5,10 and 15 samples.

the source peak. At high noise levels, the amplitude provided by the particle filter
is certainly more accurate with respect to the other two methods.

Quasi-dependent sources (Table 2). In Table 2 the distances between the
peaks of the two restored waveforms are measured when the distances between
these peaks in the theoretical amplitudes are of 5, 10 and 15 samples. Beamforming
appears to be highly ineffective in recovering time correlation while RAP-MUSIC
results to be the most ’time-resolving’ method. However, in order to obtain such
accurate reconstructions the rank of the signal subspace in RAP-MUSIC must be
systematically overestimated by means of some heuristic procedure. The particle
filter, on the contrary, can reliably estimate the degree of time dependence in a
more automatic fashion.

Orthogonal dipoles (Figure 2). As expected, RAP-MUSIC fails in estimating
the source orientations. As a consequence of the wrong orientation, RAP-MUSIC
also recovers wrong time-courses: instead of two sources active in sequence it re-
covers two contemporarily active dipoles (see Figure 2(g) and (h)). However this
incorrect estimate of the signal subspace is not so dramatic to deteriorate the accu-
racy of the reconstructions provided by the beamformer. As expected, the particle
filter is very reliable in this case.

Multi-target case (Table 3). Table 3 contains the reconstruction errors for the
four sources, which show that RAP-MUSIC and the particle filter are particularly
effective in this setting. In particular, the beamformer completely fails to detect one
of the four dipoles and is not accurate in the case of two other dipoles. RAP-MUSIC
and the particle filter detect all sources with a higher accuracy.

Moving dipole (Figure 3). Beamformers and RAP-MUSIC explain the field
of a moving source as the superposition of the fields of two and three sources, respec-
tively; on the contrary, the tracking nature of the particle filter algorithm allows to
follow the movements of the source. However we observe that this experiment may
be misleading, since the sources reconstructed by the beamformer and the MUSIC
algorithm are able to reproduce the data with the same accuracy as the sources
tracked by the particle filter. In fact, the result in this figure may be considered
as an on-action demonstration of the inherent non-uniqueness of the MEG inverse
problem.

Real Data Set (Figure 4 and Table 4). The two highly correlated sources
activated by the auditory stimuli are correctly recovered by the particle filter and
RAP-MUSIC; around the peak of activity (at a latency of about 100 ms after stim-
ulus onset), the two algorithms provide approximately the same localization, which
is also in accordance with the known brain topography; also the time courses of
the reconstructed sources are similar; indeed, the reconstructions from the parti-
cle filter are allowed to move during the measurements’ sequence, which explains
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dipole 1
position (cm) orientation (rad) amplitude (%)

beamformer 1.0 0.27 39.4
RAP-MUSIC 0.5 0.22 12.9
particle filter 0.5 0.23 26.9

dipole 2
position (cm) orientation (rad) amplitude (%)

beamformer not detected not detected not detected
RAP-MUSIC 0.8 0.39 49.2
particle filter 1.8 0.93 37.9

dipole 3
position (cm) orientation (rad) amplitude (%)

beamformer 0.0 0.54 30.8
RAP-MUSIC 0.63 0.16 19.9
particle filter 0.5 0.23 20.5

dipole 4
position (cm) orientation (rad) amplitude (%)

beamformer 2.0 0.54 29.5
RAP-MUSIC 0.45 0.83 38.3
particle filter 0.54 0.59 31.4

Table 3. Reconstruction error of position, orientation and am-
plitudes of the three algorithms in the case of four sources. The
beamformer fails to reconstruct one of the dipoles.

the difference in the time courses for longer latencies. Differently, the source lo-
calization provided by the beamformer is slightly far from the expected position
(about 1 cm); even more important, the amplitude of one of the two sources is
notably underestimated probably due to the high correlation level between the two
sources. To give a quantitative assessment of the reconstruction accuracy provided
by the three methods, in Table 4 we compare the parameters provided by the beam-
former, RAP-MUSIC and the particle filter with the ones provided by a standard
dipole fitting procedure [1]. These reconstruction errors confirm the difficulty of the
beamformer to restore an overall correct shape of one of the two dipoles and the
fact that RAP-MUSIC and the particle filter work reasonably well, particularly in
reconstructing the correct position and orientation.

5. Discussion

The effectiveness of beamforming, RAP-MUSIC and particle filtering in the anal-
ysis of both synthetic and real MEG time series can be assessed according to the
following issues:

• Reconstruction accuracy. RAP-MUSIC is perhaps the most effective method
as far as this aspect is considered. It is mostly accurate in the case of short-
lasting sources, high noise levels (in the reconstruction of the source local-
ization and orientation) and high time correlation degree. The particle filter
is intrinsically a tracking algorithm for multi-target conditions and indeed,
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dipole 1
position (cm) orientation (rad) amplitude (%)

beamformer 1.3 0.28 79.4
RAP-MUSIC 1.3 0.75 61.2
particle filter 1.1 0.21 46.2

dipole 2
position (cm) orientation (rad) amplitude (%)

beamformer 1.4 0.28 42.4
RAP-MUSIC 1.3 0.23 51.6
particle filter 1.1 0.28 45.1

Table 4. Reconstruction error of position, orientation and ampli-
tudes of the three algorithms in the case of a real data (auditory
stimuli). The errors are computed with respect to sources provided
by a standard dipole fitting procedure.

together with RAP-MUSIC works fine in reconstructing four simultaneously
active dipoles and outperforms the other two methods in reconstructing the
two auditory real sources. In general, the beamformer’s performance is critical
in the case of multi-target time correlated constellations.

• Computational effectiveness. The computational cost of the three meth-
ods cannot be compared in a direct fashion. In fact the beamformer and
RAP-MUSIC perform the analysis within a computational time which is in-
dependent of the length of the time series (while it depends on the number
of sensors and on the number of grid points) while in the particle filter the
computational cost depends on the number of particles utilized and on the
number of time samples. For the helmet used at the Brain Research Unit,
Low Temperature Laboratory, Helsinki University of Technology (which con-
tains 306 channels) an analysis to detect a single source is performed by the
beamformer within 26 s and by RAP-MUSIC within 22 s, with a 3 GHz CPU
and for a computational grid of 36×36×36 points. The particle filter employs
around 2 s for the analysis of one time sample using 100000 particles, which
means that a typical experimental time series of 400 time samples is processed
in a computational time almost 40 times larger than for the other two methods
(however, we notice that 100000 particles are certainly redundant and reliable
reconstructions can be obtained even with 50000 particles). We point out that
the computational cost for RAP-MUSIC increases when the method searches
for time-correlated sources. In conclusion, it is clear that the beamformer and
RAP-MUSIC are the most rapid methods. Despite this, the sequential nature
of the particle filter makes it the best candidate for on-line tracking of neural
sources. This is why investigation of effective implementations of the filter is
worthwhile.

• Automation degree. All three methods need optimal a priori selection of
some input parameters. The beamformer has two input parameters, i.e. the
regularization parameter in the inversion of Rb and the dimension of the sig-
nal subspace. Heuristic analysis shows that reliable values for this parameter
change with the noise level, but, to our knowledge, no automatic selection rule
can be formulated for fixing it. An analogous situation holds for RAP-MUSIC:
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again here there are two input parameters, the dimension of the signal sub-
space and the threshold for the subspace correlation. For the first parameter,
applications show that heuristic recipes for the overestimation of this dimen-
sion must be looked for in the case of correlated or quasi-correlated signals.
As for the threshold, in principle it should be one but this value must be tuned
to a smaller number (down to 0.9) to obtain reasonable reconstructions. In
the case of the particle filter, the input parameters are essentially two: the
standard deviation in the likelihood and the standard deviation in the prior.
For σn a reliable estimate is the standard deviation of the pre-stimulus. For
σq, we observe that the strength of the dipole moment is proportional to the
strength of the measured magnetic field and can be easily determined from it
using an average position for neurophysiologically plausible source positions.

• Generality degree. The particle filter is probably the most general method.
It can be applied with no a priori assumption on the number of sources, their
time-correlatedness or position.

All three methods can be improved from the viewpoint of both the formulation
and the implementation. In particular, the beamformer is not effective for recon-
structing correlated sources, while, in the particle filter, some investigation is still
necessary for estimating the solution from particles, since the conditional mean is
less effective when the number of source dipoles increases.
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Figure 1. Low signal-to-noise ratio: reconstruction error for the
position (a), orientation (b) and amplitude (c) of the three algo-
rithms in the case of the data with different signal-to-noise ratio.
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Figure 2. Orthogonal dipoles: amplitudes (a),(b) and projection
on the sagittal plane (c) of the original dipoles; reconstructed am-
plitudes (d),(e) and projections (f), obtained with the beamformer,
with RAP-MUSIC (shown in (g),(h) and (i)) and with the particle
filter (shown in (j),(k) and (l)).
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Figure 3. Moving dipole: amplitude (a) and projections on the
axial (b) and sagittal planes (c) of the original dipoles; recon-
structed amplitude (d) and reconstructed projections on the axial
(e) and sagittal (f) planes, obtained with the beamformer, with
RAP-MUSIC (shown in (g),(h) and (i)) and with the particle filter
(shown in (j),(k) and (l)).
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Figure 4. Real data: reconstructed amplitudes with beamformers
(a), RAP-MUSIC (d) and particle filters (g); coregistation on a
Magnetic Resonance high resolution axial view (b) and coronal
view (c) of the sources obtained with the beamformer; (e),(f) and
(h),(i) show the same objects for, respectively, RAP-MUSIC and
the particle filter.
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