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Abstract. We present a comparison of three methods for the solution of the magnetoen-
cephalography inverse problem. The methods are: an eigenspace projected beamformer, an
algorithm implementing multiple signal classification with recursively applied projection and
a particle filter for Bayesian tracking. Synthetic data with neurophysiological significance are
analyzed by the three methods to recover position and amplitude time course of the active
sources.

1. Introduction
Magnetoencephalography (MEG) records the magnetic fields due to the brain activity in a non-
invasive way and with a high temporal resolution (about 1 ms) [1]. Due to this outstanding
temporal resolution, MEG is particularly suited for investigating how different brain functions
interact when complex tasks are performed. Although the simple analysis of the temporal
evolution of the magnetic field distribution (measured by a helmet-shaped array of sensors) can
give approximate information on the active brain regions, the full exploitation of the information
content of the data requires the solution of an inverse problem which consists in recovering
the spatio-temporal evolution of the neural currents from the dynamical measurements of the
magnetic field at different locations outside the skull. However solving the MEG inverse problem
is a complicated task for a couple of reasons: as most inverse problems, the MEG problem is
ill-posed in the sense of Hadamard [2]; it is a dynamical problem due to the high sampling
frequency of the data; finally, data are usually highly corrupted by noise, of both environmental
and neural origin.
In the last twenty years, a considerable amount of papers have been published, which apply
several methods to the solution of the MEG inverse problem; suggested methods range
from the Levenberg-Marquardt algorithm [5] to the L2 and L1 regularization [6, 7], from
genetic algorithms [4] to nonlinear optimization techniques borrowed from the signal processing
community, such as RAP-MUSIC [8], to spatial filters (beamformers) [9]; even more recently a
Bayesian tracking approach has been suggested in [13] and applied in [14] and [15].
We perform a comparative analysis of three approaches which seem to share most of the
properties an ”ideal” algorithm should have: automaticity, numerical effectiveness, robustness
with respect to high levels of noise and generality with respect to the temporal evolution of active



sources. In particular, RAP-MUSIC discriminates the signal from the noise by a singular value
decomposition analysis of the correlation matrix of the data and accounts for time correlation
by investigating spaces of increasing dimension; the beamforming algorithm spatially filters the
signal to focus the source as a weighted combination of the measurements; particle filters realize
a Bayesian tracking of the sources by means of a sequential Monte-Carlo sampling-resampling of
the probability density functions involved. From the analysis of the assumptions and principles
behind each method, we select a set of neurophysiologically plausible synthetic experimental
conditions which could highlight the limits of the analyzed methods. For estimating the accuracy
of the reconstructions we compute the localization error and we compare the reconstructed source
strengths with the original ones.

2. The MEG inverse problem
Within the quasi-static approximation, a neural current j(r′, t) inside the brain volume Ω
produces a magnetic field given by the Biot-Savart equation with the addition of an ohmic
current term:

b(r, t) =
µ0

4π

∫

Ω
[j(r′, t) + johm(r′, t)] × r− r′

|r − r′|3 dr′ (1)

where b(r, t) is the magnetic field at r at time t, johm(r′, t) is the ohmic or volume current
inside the brain (generated by the electric potential of the neural current itself) and µ0 is the
magnetic permittivity of vacuum. The forward problem is then twofold: first, it is necessary to
find the ohmic current distribution elicited by a certain neural current distribution; then, the
Biot-Savart equation has to be computed to obtain the measurable field. In the applications, the
neural current distribution is either discretized on a dense set of points inside the brain volume,
or modelled as a small set of point-wise currents; therefore in both cases solving the forward
problem for a single point-wise current (or current dipole) of the form

j(r) = q · δ(r − rq) , (2)

where q is the dipole moment and rq the dipole position, is enough. In general, the computation
of the forward problem is influenced by the geometry and the conductivity of the conductor (of
the head): for a piecewise homogeneous spherically symmetric conductor analytic results are
available [10], while for more general models Boundary Element Methods or Finite Element
Methods are used.

3. Algorithms
The number of methods proposed and applied for solving the MEG inverse problem is too
high to allow for a comprehensive summary here. However, the number of methods which can
automatically and reliably recover point sources without a large number of false positives, and
is therefore suitable for practical use, is not that high. Among the practically usable algorithms,
we briefly review two of the most used ones, an eigenspace projected (EP) beamformer [12] and
RAP-MUSIC [8], and one more recently proposed, particle filters [13].

3.1. Eigenspace projected beamformer
Model and assumptions. The neural current is modelled as a continuous current

distribution and discretized on a dense set of points {rn}n=1,...,N , in the following also referred
to as grid. The Biot-Savart equation becomes a linear matrix equation:

B = G · J (3)



where the matrix B contains the spatio-temporal pattern of the measured magnetic field, G
is the forward matrix, i.e. the ordered collection of forward sub-matrices G(rn) each one con-
taining the forward solution for three orthogonal unit dipoles at a given point rn of the grid,
and J contains the temporal evolution of the components of the current distribution on the
grid points J(rn). For applying the EP beamformer, the following facts are assumed: (i) the
number of brain sources is small, so that a principal component analysis of the measurements
is feasible, (ii) the spatial configuration of neural sources is stationary and (iii) sources are not
time-correlated (their time courses are linearly independent).

Algorithm. Beamformers are spatial filters discriminating the signals on the basis of their
spatial location. The output of an EP beamformer at point rn of the computational grid
discretizing the brain volume is

Ĵ(rn) = W(rn)>Π B (4)

where W(rn)> is the beamformer matrix and Π is a projector onto the eigenspace (also referred
to as signal subspace) generated by the biggest principal components of the data matrix. The
weight matrices W(rn) are the key unknowns in beamforming and can be determined by solving
the constrained minimum problem

min
W(rn)

varĴ(rn) subject to W(rn)>G(rn) = I3 (5)

which, with a regularized inversion for the data covariance matrix, leads to

W(rn) = (BB> + λI)−1G(rn)
[
G>(rn)(BB> + λI)−1G(rn)

]−1
(6)

Under the previously stated assumptions it can be shown that finding the weight matrix W(rn)
which minimizes (5) corresponds to finding the source Ĵ(rn) with the strength closest to the
strength of J(rn).

Parameters. Using an EP beamformer, the free parameters the user needs to define are:

• the dimension of the signal subspace, i.e. the number of eigenvectors of BB> to be used in
the projector Π;

• the regularization parameter λ in the inversion of the data covariance matrix.

3.2. RAP-MUSIC
Model and assumptions. The neural current is modelled as a small set of current dipoles;

dipoles positions and orientations are assumed to be fixed during the measurements sequence,
and only the dipole strengths (the norm of q) are allowed to vary; therefore, the following
factorization for the magnetic field makes sense:

B = A · S (7)

where A contains the forward solution for the small set of current dipoles, while S contains
the dipole strengths as functions of time. We remark that, although equations (3) and (7) look
rather similar, the matrix G is known once a discretization for the neural current is chosen,
while matrix A is unknown as the positions and orientations of the dipolar sources are the key
unknowns of the problem. Furthermore, while the matrix G contains, for each grid point, three
forward vectors corresponding to the three orthogonal directions, in matrix A also the orienta-
tion is given, then only one forward vector is contained for each current dipole. The assumptions
behind RAP-MUSIC (small number of spatially stationary sources) resemble those for the EP



beamformer.

Algorithm. RAP-MUSIC is a recursive extension of the MUSIC algorithm which estimates
the parameters of operator A from an estimate of its range, and then obtains through a standard
least-squares approach the time behaviour of the sources coded in S. The key idea is to exploit
the covariance matrix of the measurements:

BB> = ASS>A> . (8)

It can be shown that (i) the number of eigenvalues of BB> greater than zero (or greater than
the noise variance σ2, when a noisy framework is considered) is an estimate of the number of
sources (where by ”source” we mean a single dipole or a couple of correlated dipoles); (ii) the
subspace generated by the eigenvectors associated with these eigenvalues (signal subspace) is
an estimate of the range of A. Then the MUSIC algorithm is realized in three steps: (i) BB>

is diagonalized, an estimate of the number of sources is made from the plot of the eigenvalues
and the signal subspace is computed; (ii) all the points in the brain and, for each point, all
the orientations, are spanned to find those which give the highest subspace correlation [3] with
the signal subspace; if the subspace correlation exceeds a given threshold (often set to 0.95) the
dipole is accepted and a search for a new dipole begins, otherwise a new search begins for a
couple of correlated sources (by spanning all the couples of points and orientations).

Parameters. Using RAP-MUSIC, the free parameters the user needs to define are:

• the dimension of the signal subspace, i.e. the number of sources;
• the threshold of the subspace correlation, roughly corresponding to the desired goodness of

fit.

3.3. Particle filters
Model and assumptions. The neural current is modelled as a small set of point sources;

the number of sources, as well as their positions and moments, may vary with time:

j(r, t) =
M(t)∑

i=1

qi(t) · δ(r − ri
q(t)) (9)

so that the neural currents form a stochastic process, which is assumed to be a Markov process
[11]. It is also assumed that the sequence of magnetic measurements form a Markov process
with respect to the history of j(r, t).

Algorithm. Particle filters are a class of sequential Monte Carlo methods which can be
used for dynamically tracking the posterior probability density function π(j(t)|b(t)) for the
neural currents; they exploit sequential importance sampling techniques for computing the two
equations of Bayesian filtering, i.e. Bayes theorem and the Chapman-Kolmogorov equation:

π(j(t)|b(t)) =
f(b(t)|j(t))π(j(t))

π(b(t))
(10)

π(j(t + 1)) =
∫

p(j(t + 1)|j(t))π(j(t)|b(t))dj(t) (11)

where f(b(t)|j(t)) is the likelihood function and p(j(t + 1)|j(t)) is the transition kernel of the
neural current process, which are assumed to be known. At each time point t, a random sample
is drawn, exploiting the transition kernel, from the prior density π(j(t + 1)) and each sampled



point is assigned a weight through Bayes theorem, so that the weighted sample can be used
to compute integral quantities according to the posterior density. Point estimates can thus be
computed, like the conditional mean.

Parameters. Although particle filters are general enough to deal with non-Gaussian
distributions, it is still reasonable to use Gaussian functions for the likelihood function and
the transition kernel; the parameters the user has to choose are therefore

• the noise variance, or covariance matrix, within the likelihood function;
• the covariance matrix of the transition kernel.

However, we remark that the noise variance can be estimated from the data, while the covariance
of the transition kernel can be determined on a physiological basis.

4. Comparison
We tested the three methods under several synthetic conditions; here we report three cases
which highlight some of the limits and potentiality of the algorithms. For each condition, we
show the original and the reconstructed time courses in Figures 1-5; here, BF stands for the EP
beamformer, RAP for RAP-MUSIC and PF for particle filter. In Table 1 we give the localization
errors provided by the three methods: while beamformers and RAP-MUSIC assume a station-
ary source configuration, and therefore the localization error is fixed across time, particle filters
provide dynamical estimates of the source parameters: we computed both the average error (in
the time window where the sources are active) and the localization error in correspondence of
the maximum activity. Finally, let us remark that the three algorithms have been implemented
using the same grid, and that the original source positions fall out of the grid points.

Table 1. The localization error (in mm) for the three algorithms under the different conditions;
for particle filters we give the average error in the time window where sources are active, and,
in parenthesis, the error in correspondence of the peak activity.

Localization error EP beamformer RAP-MUSIC Particle filter

Condition I 3.5 3.5 6.0(1.3)
Condition II 2.0 2.0 3.0(1.0)
Condition III 2.8 2.8 7.9(2.8)

Condition I: orthogonal nearby sources. Two current dipoles with approximately the
same position but different orientation are active in separate time windows. Under this very
simple condition, particle filters and beamformers correctly recover the two sources, while RAP-
MUSIC fails in estimating the orientations of the sources, and therefore their time courses as well.

Condition II: highly correlated sources. Two current dipoles located far from each other
have approximately the same time courses. Particle filters and RAP-MUSIC correctly recover
the original sources, while beamformers, if a 2-dimensional signal subspace is selected, fail in
reconstructing the correct time courses.

Condition III: highly noisy data. MEG measurements produced by a single current dipole
are corrupted by a strong amount of noise (Signal-to-Noise ratio ' 2 dB). The time course of
the dipolar source is correctly recovered by all the three algorithms. The localization properties
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Figure 1. Condition I: amplitude time courses for the two source dipoles (top row of each
panel) and the reconstructions provided by the three methods.

of beamformers and RAP-MUSIC do not seem to suffer much the high level of noise; particle
filters, on the other hand, correctly estimate the source position around the peak of activity but
the increased average error suggests that the variance of the estimate is higher.

5. Conclusions
The results of our analysis show that the three methods can be considered equivalent as far as
the automaticity and the robustness with respect to noise are concerned. As expected, RAP-
MUSIC and beamformers present some weaknesses in reconstructing sources with non-trivial
spatial or temporal superpositions, while the general applicability conditions of particle filters
allow reliable reconstructions even in such complicated situations. On the other hand, the results
of particle filters are often slightly less accurate than the results obtained with the other two
algorithms, provided that they work, which is at the moment the counterbalance of the more
general assumptions.

References
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Figure 2. Condition II: amplitude time courses for the two source dipoles (top row of each
panel) and the reconstructions provided by the three methods.
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Figure 3. Condition III: amplitude time courses for the two source dipoles (top row) and the
reconstructions provided by the three methods.
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[6] Hämäläinen M, Ilmoniemi R J 1999Interpreting magnetic fields of the brain: Minimun-norm estimates,

Med. Biol. Eng. Comp., 32, 35-42
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