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Abstract: We present a Bayesian filtering approach for automatic estimation of dynamical source mod-
els from magnetoencephalographic data. We apply multi-target Bayesian filtering and the theory of
Random Finite Sets in an algorithm that recovers the life times, locations and strengths of a set of dipo-
lar sources. The reconstructed dipoles are clustered in time and space to associate them with sources.
We applied this new method to synthetic data sets and show here that it is able to automatically esti-
mate the source structure in most cases more accurately than either traditional multi-dipole modeling
or minimum current estimation performed by uninformed human operators. We also show that from
real somatosensory evoked fields the method reconstructs a source constellation comparable to that

obtained by multi-dipole modeling. Hum Brain Mapp 00:000-000, 2009.
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INTRODUCTION

Magnetoencephalography (MEG) non-invasively mea-
sures, with excellent time resolution, the weak magnetic
fields produced by the currents flowing in active neu-
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rons. Reconstructing the underlying neural currents
from MEG measurements allows localizing the active
brain regions with reasonable spatial accuracy and ena-
bles a variety of applications, both in clinical and basic
research.

MEG source reconstruction is a difficult task and several
methods have been applied to this ill-posed inverse prob-
lem. The existing methods can be divided into two classes
based on the mathematical model employed to describe
the neural sources: “imaging” methods assume a continu-
ous current density, discretized with a dense set of current
dipoles, and often result in regularization algorithms such
as Minimum Norm Estimation [Hadmaéldinen and Ilmo-
niemi, 1994], Minimum Current Estimate (MCE) [Uutela
et al., 1999], and various types of beamformers [Sekihara
et al., 2002; Van Veen et al., 1997]; “parametric” methods
employ a small set of current dipoles, and estimate their
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positions and magnitudes by non-linear optimization tech-
niques [Aine et al., 2000; Hamaildinen et al., 1993; Mosher
and Leahy, 1999; Uutela et al., 1998].

Both classes suffer from well-known shortcomings;
among the “imaging” methods, the L2-norm estimates
tend to be too wide-spread, and beamformers suppress
temporally correlated sources; more recently developed
algorithms, however, seem to be more effective, exploiting
e.g., the temporal continuity of the solution [Ou et al,
2009]. Although several automatic algorithms have ap-
peared for the parametric approach, manually-assisted
dipole fitting is still the most widely used method due to
its simplicity.

Recently, owing to the increase in the available compu-
tational power, Bayesian methods have become feasible.
They cast the problem in a more general setting and esti-
mate the whole posterior probability density function
(pdf) instead of searching for a single optimal solution.
Jun et al. [2005] consider the dipole parameter estimation
as a Bayesian inference problem and apply Markov Chain
Monte Carlo methods for sampling the posterior density.
Galka et al. [2004] and Long et al. [2006], for EEG and
MEG, respectively, consider the inverse problem as a dy-
namical one and apply Kalman filtering to a linear distrib-
uted source model.

In this article, we consider MEG source estimation as a
dynamical Bayesian inverse problem, and use a multi-
dipole model for the source distribution. Contrary to most
multi-dipole methods, we allow the number of sources, as
well as their positions and orientations, to vary over time.
Due to the non-linearity of the model, a particle filter
[Arulampalam et al., 2002; Doucet et al., 2000] is employed
to explore the posterior densities.

Random Finite Sets (RFSs) [Matheron, 1975; Molchanov,
2005] provide a suitable mathematical framework for
dealing with a time-varying number of sources in a
Bayesian setting. RFSs are a generalization of Random
Variables (RV), and they do not constrain the unknowns
to a dimensionality known a priori. In the present study
we exploit the theory of RFSs to construct a particle filter
which solves the MEG inverse problem in a general man-
ner, allowing a genuinely dynamical model comprising
multiple sources. The mathematical details of the RFS
theory will not be discussed in this article; see, e.g.,
Mabhler [2003], Vihola [2004] and Vo et al. [2005] for the
background.

We applied the multi-dipole particle filter to both simu-
lated and real data. The first data sets were 1,000 Monte
Carlo realizations of a three-source configuration, whereas
the next two sets reflected complex activation sequences
and they have been employed in a comparison of tradi-
tional dipole modeling and Minimum Current Estimate
[Stenbacka et al., 2002]. Thus, we can directly compare the
performance of the new algorithm with that of these two
other methods. We evaluate the performance of the parti-
cle filter also by analyzing somatosensory evoked fields
recorded in one subject.

METHODS
Bayesian Filtering for MEG Source Localization

In the Bayesian approach to inverse problems [Somer-
salo and Kaipio, 2004], the unknown and the measure-
ments are modeled as Random Variables and the solution
is the entire posterior probability density function of the
unknown, obtained by the Bayes theorem. For dynamical
inverse problems the sequential application of Bayes theo-
rem, which requires a prior density at each time step, is
mediated by the use of the Chapman-Kolmogorov equa-
tion, described below the result is a two-step algorithm
known as Bayesian filtering.

In the MEG application, let j; and b; be the realizations of
the Random Vectors J; and B,, the primary current distribu-
tion and the magnetic field at time f, respectively. Assuming
that the stochastic process J; is a first-order Markov process,
and that B is a first-order Markov process with respect to J;,
the posterior density n(j; | by.;) at time ¢, given the prior den-
sity n(j; | b1,+—1), is obtained by the Bayes theorem:

(belje) m(je|bre—1)

n(j|bt) = (bt |bre-1)

)

where 7(b;lj;) is the likelihood function, determined
by the forward model and the noise statistics; the
denominator is the normalization constant w(b¢|byt-1) =
frc(bt\j,)n(jt|b1:t,1)djt. The prior density n(j;11bq,) at time
t + 1, given the posterior density n(j;|by.) at time ¢, is esti-
mated by the Chapman-Kolmogorov equation:

(s lbu) = / (v )Gl @)

where 7(j;11j;) is the transition kernel of the stochastic
process underlying the data. Here, it reflects general
assumptions, such as temporal continuity, on the dynam-
ics of brain sources.

Equations (1) and (2) hold independently of the source
and forward models; indeed, these equations have been
applied to the MEG inverse problem in rather different
frameworks: Long et al. [2006] utilized a Kalman filter for
a distributed source model; Somersalo et al. [2003], Sorren-
tino et al. [2007] and Campi et al. [2008] employed particle
filters to obtain the parameters of a set of current dipoles.

Bayesian Filtering of Random Finite
Sets of Dipoles

We applied Bayesian filtering for solving the MEG
inverse problem in a truly dynamical multi-dipole frame-
work, where neural sources may appear, strengthen,
move, weaken and disappear in the course of time. This
approach is conceptually different from that of most other
source modeling methods which merely represent the data
as a collection of sources whose amplitudes vary over
time. These methods cannot readily estimate, e.g., the
number of sources at a particular time instant.
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In general, the primary current at time ¢ is a set of n;
dipoles

][:{d}7 "'7d:lt}:(Rf7Qt); (3)
where d* = (*, g*) is an abbreviated notation for a single
dipole at location r* and with dipole moment g*. Similarly,
collections of dipole locations and dipole moments are
denoted respectively as

'} and Q= {q}, g} 4)

To apply Bayesian filtering, we model the primary cur-
rent as a RFS of dipoles. Like RVs, RFSs have probability
density functions. Furthermore, the integral of a set func-
tion is well-defined; Equations (1) and (2) of Bayesian fil-
tering extend to RFSs, provided that the integrals involved
are interpreted as set integrals [Vo et al., 2005].

We denote the RFS of dipoles at time ¢ by J;, and a realiza-
tion of J; by J;. The RFS J; contains a random number N; of

Rt:{i’},

random dipoles: |, = {D}, ...,D}'},and J, = {d}, ..., d"}.
The equations of Bayesian filtering now read:
(b |]1)m(J1b1:t1)
byy) = ——F— 2 5
n(]tl 1.f) n(btlblzt—l) ( )
and
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Although these equations appear similar to Egs. (1) and
(2), there are differences: here J; are realizations of an RFS,
n(J;|-) are probability densities of an RFS and the integral
is a set integral.

One may question the rationale of using RFSs instead of
RVs; for example, Somersalo et al. [2003], Sorrentino et al.
[2007] and Campi et al. [2008] modeled the multi-dipole
problem with RVs. However, the representation of physi-
cal source constellations with RVs is not unique: for exam-
ple, the state formed by the two dipoles d' and d* has two
representative vectors (d, ) € D x D and (4% d*) € D x
D, where D is the single-dipole space. As a consequence,
the posterior density is permutation-invariant and (artifi-
cially) multi-modal: it will peak at (d', d%) and at (%, d").
This bi-modality would prevent us from using standard
estimators such as the conditional mean (which would
give erroneous estimates) or the Maximum A Posteriori
(which would not be unique). This permutation symmetry
disappears with RFSs, where each constellation has a
unique representative set (d', d?) = {d? d"}, since order of
the elements is not relevant in a set. Furthermore, as
shown later, a suitable estimator is available for RFSs.

Belief Measures and Models

The actual application of Bayesian filtering requires
knowledge of three probability density functions: the very
first prior density to initialize the algorithm, the likelihood

function, and the transition kernel of Egs. (5) and (6). In
the case of RFSs, the explicit form of the multi-target prob-
ability density function is often complicated; instead, it is
preferable to use belief measures [Molchanov, 2005]. The
belief measure of a RFS is often defined as the RFS-ana-
logue of the cumulative distribution of RV [Vihola, 2004,
p- 42]; it is fully determined by a finite set of probability
densities, one defined on the single-dipole space D,
another on the double-dipole space D x D, and so on.
Since we assume that no more than #,,x dipoles can be
active simultaneously, #m.x probability measures are
enough to define the belief measure. Therefore, in our
approach, the belief measures for the prior density, the
likelihood function, and the transition kernel are computed
starting from the more familiar densities over vector
spaces.

Now we introduce the three pdfs used in the algorithm.

Initial prior density

Although the previous density at ¢t > 1 is automatically
computed by the algorithm, the first prior density needs to
be defined. Since we have no a priori knowledge of the
number of sources, we give a uniform distribution to the
marginal probability P(IJ;1= k) = 1/(nmax + 1), k = 0,
1,..., Nmax, where |];| is the number of dipoles in the set
J1 and 71,4 is the maximum allowed number of simultane-
ous sources. Since we assume that simultaneous dipoles
are independent, it is sufficient to define the prior density
for a single dipole. For the locations r1, we use a uniform
distribution in the brain volume, and for the dipole
moments 4, we use a zero-mean Gaussian distribution
N(0, v,), where the standard deviation v, is of the order of
magnitude of the expected sources.

Likelihood function

Since the dimension of the measurement vector is fixed,
the data sequence can be modeled with Random Vectors
B;. The forward operator, denoted as F(-), depends on the
properties of the volume conductor. Additive noise M; is
included in the model:

B; = F(),) + M;. (7)

Assuming a zero-mean Gaussian noise, the likelihood
function is m(b;1];) = N(b; — F(J;), Onoise) Where Gppise is the
standard deviation of the noise and is determined from
the pre-stimulus period. Such a noise model is an approxi-
mation; the statistical distribution of MEG noise is gener-
ally not known.

Transition kernel

The transition kernel in Eq. (6) is also a priori informa-
tion inserted in the model: using a non-specific model can
be interpreted as inserting less-informative priors. We
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adopt a simple model for the dynamics of the sources; at
each time point (i) a new dipolar source may appear with
probability phe. and density mhew, (ii) an existing dipole
may disappear with probability pgs, or (iii) the existing
dipole may survive, with probability 1 — pg;s, and evolve
according to a single-dipole evolution model n(d;.q!d;).
All these events are assumed to be independent. In terms
of RFSs, the model equation is:

i1 = S(Jt) Uj?ﬂv (8)
where )i} is the RFS of the new sources, containing at
most one new dipole, and S(J;) is the RFS of the survived
and evolved dipoles.

Assuming that dipoles evolve independently, it can be
shown that the probabilities ppew and pgis together with
the single-dipole evolution model n(d;;;!d;) and the den-
Sity Mnew(dr+1) fully determine the belief measure and
therefore the transition kernel in Eq. (6). The densities we
use in the applications are:

* the density mpeyw (dr+1) of the new dipoles dyiq1 = (1141,
gi+1) which is uniform for the location and Gaussian
for the dipole moment, i.e., the same as the initial
prior density; the value of ppew is set to 0.5;

* the probability for a dipole to disappear at time t + 1
which is pgis = 1/(2n;), where n; = 1];|. This implies
that each particle loses, on average, half a dipole at
each time point, which counterbalances the average
number of newborn dipoles in each particle.
the single-dipole evolution model which is a random
walk constrained within the brain volume; the transi-
tion kernel 7(d;1!d;) for a single dipole is character-
ized by Gaussian densities 7(ry117;) = N(re1 — 11 )
and m(qi1119:) = N(Gr1 — qu ) where the standard
deviations v, = 1 cm and 7, = 2 nAm.

Multi-Dipole Particle Filter

Since the MEG forward problem is non-linear with
respect to dipole position, Eqgs. (5) and (6) can be solved
only numerically. Here we applied a sequential Monte
Carlo technique known as particle filtering [Arulampalam
et al., 2002; Doucet et al., 2000], where a sample set (“par-
ticles”) distributed according to the posterior density is
obtained at each time step by discretizing Eqs. (5) and (6),
and introducing a resampling step which reduces the
number of unlikely sample points. The general scheme of
the particle filter we apply is as follows:

e Initialization: Draw a sample {]’i}izl,___, p distributed
according to the density n(J;). Each sample point J}, or
“particle”, is a set of dipoles. Particles are sampled
from a RFS distribution, and therefore different par-
ticles may contain a different number of dipoles.

* Observation: Apply the Bayes theorem, i.e., compute
the forward solution for each particle J; and its nor-

malized weight (likelihood) w! = (1/k)r(b;1J)) with
k=>""" wl. The set of weighted particles {J\, w!} is an
approximation of the posterior density at time ¢;
Resampling: Randomly select p particles from the set
A= ,p in such a way that the probability of extract-
ing ]} is equal to its likelihood w). The set of uniformly
weighted particles {Ji} is a new approximation of
the posterior density at time t and in this set the
particles which had larger weights appear more
frequently.

Evolution: Let each particle {Ji} evolve according to
the transition kernel by drawing a new particle i,
from each n(Ji11|J}). Each surviving dipole of each par-
ticle evolves according to the single-dipole transition
kernel described earlier. New dipoles may appear. The
set of uniformly weighted particles {Ji,,} is an approx-
imation of the prior density at time t + 1.

Source Estimates

The posterior density of the current dipole set contains
all the available information on the source constellation,
but it is difficult to visualize as a whole; instead, different
estimates can be computed in order to extract the relevant
information.

The posterior density carries information on the number
of sources: the marginal distribution

P =k) = / Uilbr)3:, )

Y
D(k)

where D(k) is the set of finite subsets with k dipoles, pro-
vides a time-varying estimate of the number of active
sources

iy = argmax P(|J;| = k). (10)

For estimating the source parameters we used the RFS-
analogue of the first moment of a RV: the Probability Hy-
pothesis Density (PHD). Here, PHD is a function in the
single-dipole space D, its integral over region R provides
an estimate of the number of dipoles in R, and the peaks
of PHD can be used as estimates of the active dipoles. In a
particle filter

PHD(d,) :zpng (Z 3(d — dg). (11)

1 deJ!

The problem of estimating the source parameters is thus
transformed to the problem of finding the local maxima of
the PHD, which, in our case, is relatively easy since the
number of peaks to be found is already given by the
model selection [Eq. (10)].

To further reduce the computational complexity, we
compute PHD(r;) instead of PHD(d;). Therefore, the esti-
mate of the dipole positions is

¢4 0
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R = {17}7 e ,?f‘} = arg peaks(PHD(r;)) (12)

and the corresponding dipole moments are computed by
the standard least-squares technique.

Implementation
The number of sources and particles

The number of sources which can be simultaneously
recovered at any given time point is limited here to #,,,, for
computational reasons; however, the global number of sour-
ces in an MEG data set is practically unlimited as the 7,
sources can, in principle, be different for every time point.
We observed that using a bigger #y,a also required a larger
number p of particles to properly approximate the posterior
density in spaces with many dipoles; the convergence to the
true posterior density is guaranteed only for p tending to in-
finity. Overestimating #,,,,« does not change the reconstruc-
tion accuracy; on the other hand, if 7y, is fixed smaller
than the actual number of active sources, the algorithm
would most likely recover .« sources, missing (most
likely) the source(s) producing the weaker SNR. To check
that the particle filter had reached a reliable approximation
of the true posterior density, we always ran the algorithm
10 times and verified the low variance of the reconstructions.
The parameters #,,x = 5 and P = 100,000 provided stable
results in all the cases considered in this study.

Source-point grid

The computational cost of the algorithm is largely deter-
mined by the observation step which involves computing
the MEG forward solution for each dipole of each particle
at each time step. The large number of particles may
render the algorithm impractical even when resorting to
the spherical conductor and its analytic forward solution.
In order to reduce the computational cost, we constrained
particles to a grid enclosing the brain volume, and pre-
computed the forward solution for each grid point. The
grid is a 20-cm cube with 125,000 points in a 4-mm uni-
form lattice, requiring 375,000 forward solutions (the three
orthogonal directions for each point). Employing 100,000
particles without the grid, assuming two simultaneous
dipoles on average, and a typical 500-sample analysis win-
dow results in 100,000,000 forward solutions to compute;
the cost thus reduces by a factor of 300, which makes the
algorithm usable. On a standard PC (2 GHz CPU, 2 GB
RAM), the time for analyzing a single time point with
100,000 constrained particles is about 1 s.

Such a reduction in computational cost could not be
obtained by Rao-Blackwellization, which exploits the linear
dependence of the measurements and the dipole moment
[Campi et al., 2008; Casella and Robert, 1996]. In Rao-
Blackwellization, the optimal solution is computed for the
linear dipole moment parameters through a set of Kalman
filters, while the non-linear source locations are sampled

with a particle filter; this reduces the number of particles
needed to obtain a given accuracy, however, a covariance
matrix has to be computed by inversion at each time step
for each particle. Although statistical efficiency increases,
the cost of the matrix inversions is still higher than that of
the particle filter we use in this study.

Clustering

The multi-dipole particle filter provides dynamical esti-
mates of the active dipoles. The locations of the estimated
sources at time t, {d},...,d}'} may be slightly different
from those at time t — 1, {d} |, ...,d}]}, and even the
number of sources i; may change. Thus, no particular
dipole is continuously bound to a given neural source and
it is not possible to readily provide the amplitude wave-
form for each source.

To overcome this problem, we search for clusters within
the set of all estimated dipoles {di,....d{",....d}, ...,
dy'}, each cluster representing a neural source. The cluster-
ing is performed in a 6-dimensional space: three dimen-
sions for the location, two for the orientation, and one for
time t when the source dipole was present. This temporal
parameter ensures continuity of the source waveforms. We
applied k-means [Spath, 1980] clustering algorithm, how-
ever, it requires the number of clusters specified a priori.
Since the total number of neural sources active during the
analysis epoch is unknown, we applied the following iter-
ative procedure:

1. overestimate the number of possible sources s;

2. cluster the dipoles in s clusters with k-means;

3. test each pair of clusters by the Wilcoxon test [Weera-
handi, 1995] for statistical difference; if two or more
clusters are not significantly different, decrement s
and go to step 2; otherwise, stop.

RESULTS

We applied the multi-dipole particle filter to synthetic
and real MEG recordings.

In Simulation 1, we tested the particle filter with 1,000 dif-
ferent data sets; each case comprises three sources at random
locations, two of them being perfectly correlated in time.

Simulations 2 and 3 present more challenging situations
with multiple sources mimicking the activations evoked by
a complex visual stimulus. First we show the estimates
obtained by a single run of the particle filter. We also used
these two data sets to investigate the robustness and statisti-
cal reliability of the algorithm by performing multiple runs.

We also applied the particle filter to somatosensory
evoked fields recorded in one subject.

In all tests, 1y, Was set to 5, and the number of par-
ticles p to 100,000. According to our tests, these numbers
guarantee a good compromise between stability and com-
putational cost.
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Figure I.

Simulation |. The marginal probability of dipole models with dif-
ferent number of dipoles, averaged across 1,000 runs, plotted as
a function of time (top); each color represents a specific model
with a different number of sources. The original (red solid) and
average reconstructed (blue dashed) source waveforms (other
panels), plus/minus the standard deviation (dotted).

Simulation |

One thousand data sets were produced according to the
following criteria. (1) Three dipolar sources were randomly
located in the brain volume, with uniform distribution;
source locations are not constrained to the grid points; the
distance between any two sources could not be smaller
than 2 cm. (2) Source orientations were randomly distrib-
uted on the plane orthogonal to the radius of the spherical
head model. (3) The temporal waveforms of the three sour-
ces (see Fig. 1) are the same in all the 1,000 simulations: two
sources (Sources 1 and 2) are totally correlated and have
the peak at the 20th time point; the third source, Source 3,
has the peak at the 50th time point. A spherical conductor
model was used for the forward calculations, and Gaussian
noise was added; the Signal-toNoise Ratio (SNR) is com-
puted as 10logyy (IBI/IN1), where || is the Frobenius
norm, B is the measurements matrix and N is the noise ma-
trix; the SNR of the entire sequence ranged from 0.5 to 9.3
dB, the average being 3.8 dB; the SNR at the peak ranged
between 1.1 and 23.9 dB, the average being 9.6 dB.

A source was considered to be correctly reconstructed if
(i) the average localization error was less than 2 cm and
(ii) the peak amplitude was within 10 ms from the true
peak. The particle filter recovered 2,244 sources from the

total of 3,000 (74.8%) sources; from 354 simulations
(35.4%), three sources were reconstructed, from 536 simu-
lations (53.6%) two sources were reconstructed and from
110 simulations (11.0%) only one source was recovered.
The average localization error across the 1,000 simulations
and 2,244 sources was 6.0 - 2 mm; this localization error
seemed not to depend on the SNR of the single source:
sources producing an SNR between 0 and 2 were localized
with an average error of 6.2 mm, for SNR between 2 and 4
the average error is 5.9 mm, for SNR higher than 4 the av-
erage error was still 5.9 mm. Source 1 was missed in 256
simulations, Source 2 in 251 simulations and Source 3 in
249 simulations; considering only the subset of simulations
where 2 sources were recovered, the pair Sourcel-Source2
was found in 30% of cases, the pair Sourcel-Source3 in
34% and the pair Source2-Source3 in 36%; this suggests
that the temporal correlation affects the detectability of
sources only very slightly.

In Figure 1, we plot the average (across 1,000 simula-
tions) model selection function and the average source
waveforms, with confidence bands given by the standard
deviation. On average, the algorithm was able to recon-
struct the three source waveforms except for the very low-
SNR tails, where the signal power was lower than the
noise level.

Simulations 2 and 3

We utilized synthetic data from a previous study [Sten-
backa et al., 2002] designed to evaluate and compare tradi-
tional multi-dipole modeling to MCE when performed by
human operators unaware of the source structure of the
data. Re-using the data enabled a direct comparison of the
particle filter to these other methods.

Stenbacka et al. employed four simulations of increasing
complexity. Here we present the results from the two
most complex data sets (Simulation 3 and Simulation 4 in
Stenbacka et al. [2002], hereafter referred to as Simulation
2 and 3, respectively) with a variable number of tempo-
rally overlapping sources within a volume comparable to
a lobe of the brain. Both data sets are crafted to approxi-
mate hypothetical neural responses to a complex visual
stimulus. Table I summarizes the locations, orientations
and peak latencies of the 10 sources; six of them appeared
in both Simulation 2 and 3, and the remaining four only in
Simulation 3. The temporal waveforms of the sources are
shown in Figures 2 and 3.

Realistically-shaped boundary element model of the
brain was applied in the MEG forward calculation and sig-
nals corresponding to those from Vectorview ™ neuromag-
netometer (Elekta Neuromag Oy, Helsinki, Finland),
comprising 102 magnetometers and 204 planar gradiome-
ters, were computed. Brain noise from a MEG experiment
where the subject was silently resting was added to the
simulated responses for a final SNR, computed as previ-
ously explained, of about 4 dB. For more details, see Sten-
backa et al. [2002].
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TABLE I. Sources in simulations 2 and 3

Area Location (mm) (x, y, z) Orientation (x, y, z) Sim 2 tpeqi (ms) Sim 3 tpear (ms)
\%1 (11.1,-53.4, 49.8) (% ,0, %) 70 60
V2 (13.6,—60.2, 55.9) (1,0,0) 90 80
V3 (17.3,-59.4, 59.8) 0,0, 1) 110 100
V3, (22.3,—54.8, 64.6) (- % .0, — %) 130 120
V4 (23.1,—47.3, 35.8) (=550, %) 150 220
V5r (43.6,—36.8, 44.4) (— % - % ,0) 170 160
V5, (—33.7, —48.5, 48.1) (%, %,0) - 190
POS (3.0,—40.0, 83.0) ( ,%,%) - 200
STS, (52.0, 0, 48.0) 0,0, 1) - 280
STSk (—52.0, —4.0, 48.0) (0,0, -1) _ 220

V1-V5 refer to the visual cortices, POS to parieto-occipital sulcus, and STS to superior temporal sulcus; Locations and orientations in “head
coordinates” (x from left to right preauricular point; y towards nasion and perpendiculat to x; z upwards and normal to the xy-plane).

We evaluated the reconstructed sources using the same
criteria as Stenbacka et al: for Simulation 2, a source was
considered as correctly estimated if its location was within
2 cm from the true source and its peak latency within half
the duration of the true source; for Simulation 3, a source
was considered as correctly estimated if its location was
again within 2 cm from the true source and the peak la-
tency was either within 10 ms from the peak of the true
source or the peak latency was within half of the time
interval determined by the half maxima of the true source.

The particle filter was able to reconstruct all of the six
sources in Simulation 2. The average localization error was
9.1 mm. The estimated time courses (see Fig. 2) never
overlapped, i.e., at each time point the algorithm recov-
ered just a single dipole since the true overlapping sources

were within few millimeters from each other and thus a
single dipole explained the measured field sufficiently
well. The differing orientations of the sources enabled the
algorithm to cluster them in six groups.

From Simulation 3, the particle filter was able to recon-
struct six of the 10 sources (see Fig. 3) with average local-
ization error of 7.6 mm. The estimated source classified as
V2 accounted for the activity of V1 and V3, whereas sour-
ces V4, and V5; were missed. The other five sources were
correctly recovered. The apparently worse performance of
the algorithm with respect to Simulation 2 was due to two
different reasons. First, the SNR produced by V3 in this
case was weaker than in Simulation 2, as the source
strength was lower. Second, the duration of V1 in Simula-
tion 3 was shorter than in Simulation 2 and therefore there
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Figure 2.

Simulation 2. Time courses of the true (red solid) and estimated (blue dashed) sources.
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Simulation 3. Time courses of the original (red solid) and estimated (blue dashed) sources.

were not enough sources to allow the clustering procedure
to create two different groups.

Robustness and Reliability

The particle filter requires a priori information: the ini-
tial prior density, the transition kernel and the likelihood
function. However, the initial prior density is usually
uninformed, coding the lack of information on the initial
configuration of the sources, and it does not affect the
results substantially. We investigated the sensitivity of the
reconstruction to the transition kernel parameters y, and vy,
in the ranges 1-2 cm and 1-5 nAm, respectively, and it
proved to be negligible. The most relevant parameter is
Gnoise 1N the likelihood function; it tunes the sensitivity of
the algorithm. To investigate the statistical reliability of a
single run and the robustness of the algorithm with
respect to the parameter G,gise, We performed 10 runs for
each of five different values of G, using the data of
Simulations 2 and 3. Figure 4 shows the results; with both
simulations the average number of recovered sources had
a peak at Gnoise = 4; with higher values of Gyise, the algo-
rithm considered only stronger sources; at lower Gppise,
also weak sources were recovered but the algorithm was
less stable and the localization error increased. Tuning
Gnoise iMpacted also the variability across runs, which
reached a minimum around the same value G,4se = 4 and
remained small above this value: the standard deviation of
the source locations across 10 runs for chuce > 4 was 1.8
mm, the standard deviation of the peak amplitude was
about 5%. Finally, the number of false positives decreased
quickly for increasing values of Gpeise: for too low values
the algorithm tries to model also noise.

Since Gppise should reflect the noise level, it can be
estimated from, e.g., the pre-stimulus baselines. Interest-
ingly, the standard deviation of the baseline period was
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Figure 4.

Simulations 2 and 3. The average number of correctly estimated
sources and of false positives. The pre-stimulus baseline variance
was 4.3.
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Figure 5.
Source reconstruction of somatosensory evoked fields. Axial
(left) and coronal (right) views of the source models obtained
by the particle filter (blue squares) and dipole modeling (red
circles).

4.3 in Simulations 2 and 3, i.e., very close to the optimal
GOnoise = 4.

Somatosensory Responses

We applied the particle filter to somatosensory evoked
fields (SEF) measured in one healthy human. The record-
ings were performed after informed consent and had a
prior approval by the local ethics committee.

The SEFs were acquired with a 306-channel MEG device
(Elekta Neuromag Oy, Helsinki, Finland) comprising 204
planar gradiometers and 102 magnetometers in a helmet-
shaped array. The left median nerve at wrist was electri-
cally stimulated at the motor threshold with an interstimu-
lus interval randomly varying between 7.0 and 9.0 s. The
MEG signals were filtered to 0.1-200 Hz and sampled at
600 Hz. Trials with EOG or MEG exceeding 150 puV or
3 pT/cm, respectively, were excluded and 84 clean trials
were averaged. To reduce external interference, signal-
space separation method [Taulu et al., 2004] was applied
to the average.

A 3D digitizer and four head position indicator coils
were employed to determine the position of the subject’s
head within the MEG helmet with respect to anatomical
MRIs obtained with a 3-Tesla MRI device (General Electric,
Milwaukee, USA).

The SEFs (see e.g., Hari and Forss, 1999) were modeled
with multiple dipoles whose anatomical locations were
verified to be plausible: the N20m and P35m responses at
21 and 38 ms, respectively, localized in the assumed hand
area of the S1 cortex contralateral to the stimulation, bilat-
eral responses peaking around 90 ms in the S2 cortices,
and a response at around 125 ms in the contralateral pos-
terior parietal cortex (PPC). The N20m and P35m sources
were only about 6 mm apart and had antiparallel orienta-
tions. To avoid spurious interaction, the N20m dipole was
omitted from the multi-dipole model. The goodness-of-fit
of the four-dipole model with respect to the data from all

306 channels ranged from 77 to 97% at the response peaks.
This model served as the reference for evaluating the mod-
els obtained by the particle filter.

The particle filter was able to recover three of the four
sources found by dipole modeling (see Fig. 5) and missed
the source in the contralateral S2 cortex (S2c) probably due
to its relatively weak field pattern compared with the
other sources. The three reconstructed sources satisfied the
spatial criterion of Simulation 3 (the average location was
within 2 cm from the reference location). Figure 6 presents
the source amplitude waveforms estimated by both meth-
ods. The particle filter clearly separates the activations of
the different sources whereas the time courses given by
the multi-dipole model suffer from leakage of residual ac-
tivity and noise thus showing a non-zero dipole moment
throughout the analysis period. Interestingly, the particle
filter reconstructs two sources at 1.5 cm distance, sepa-
rated in time and by orientation, for the ipsilateral S2 cor-
tex. The two peaks of opposite polarity in the dipole
waveform (S2i in Fig. 6) likely reflect these two sources at
1.5 cm distance.

DISCUSSION

The particle filter described in this study represents a
notable improvement with respect to the previous imple-
mentations [Somersalo et al., 2003; Sorrentino et al., 2007].

= = = Particle Filtering
= Dipocle modeling

amplitudes [nAm]

0 50 100 150 200 250 300 350
time [ms)]

Figure 6.
Somatosensory evoked fields: Time courses estimated by the
particle filter (blue dashed) and multi-dipole model (red solid).
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The more sophisticated mathematical framework allowed
a coherent description of the problem in terms of time-
varying sets of dipoles, and provided a suitable estimator
for multi-dipole states. The algorithm was able to localize
a time-varying number of dipoles with no prior knowl-
edge on their number. The use of a source-point grid
made the algorithm fast enough to be practically usable.

The localization accuracy in time and space was investi-
gated by testing the particle filter first against 1,000 Monte
Carlo realizations of a 3-source configuration in a wide
SNR range, and then against two challenging data sets
which were previously analyzed by Stenbacka et al. [2002]
with dipole modeling and MCE. In the 1,000 Monte Carlo
simulations, the particle filter localized about 75% of the
sources, with average localization error of 6.0 mm; the
SNR does not seem to affect the localization error, rather,
the SNR variation seems to produce an on/off effect on
the detectability of dipolar sources; temporal correlation
seems to affect the detectability of the sources only mar-
ginally. From the second data set (Simulation 2 in this
study) the particle filter correctly localized 6 of 6 sources,
with an average localization error of 9.1 mm, thus outper-
forming the other reconstruction methods applied by unin-
formed users, who recovered on average 2.4 sources with
dipole modeling and 3.2 with MCE. In the third data set
(Simulation 3), the particle filter correctly localized six of
10 sources, with an average localization error of 7.6 mm.
Uninformed users obtained similar results, recovering on
average 5.4 sources with dipole modeling and 6.0 sources
with MCE, with an average localization error of 7.2 mm in
both cases. Since the particle filter allows the sources to
move and turn during the analysis epoch, the clustering
step, which exploits both position and orientation, is able
to distinguish sources that dipole modeling unavoidably
lumps together. This difference likely explains why the
particle filter outperformed the other methods in Simula-
tion 2. In Simulation 3, the results by the particle filter are
comparable to those obtained by uninformed users with
either dipole modeling or MCE; however, the particle filter
algorithm operated automatically while the other two
methods required subjective decisions on what to consider
a true source. From somatosensory evoked fields, previ-
ously analyzed by an informed human using multi-dipole
modeling, the particle filter was able to reconstruct three
of the four sources found by the human operator, only
missing the weak contralateral S2 response. The particle
filter properly localized the sources also in time, avoiding
cross-talk between the dipoles.

In this study, we tested the particle filter under very gen-
eral conditions, with as little a priori information as possible.
However, such information is available and can be readily
exploited. For example, the source space could be con-
strained to the cortical surface as the bulk of MEG responses
are assumed to originate in the cortex. In addition, the noise
covariance matrix could be estimated from the pre-stimulus
intervals to further reduce the effect of non-white noise. The
evolution model could also be replaced with a more realistic

one. Optimal usage of the available prior information
should be addressed in future work.

In conclusion, the algorithm presented here is a step
towards an automatic MEG source modeling method
which not only estimates source current distributions but
provides a discrete set of significantly active sources for
each time instant. Traditional multi-dipole modeling and
minimum norm approaches require substantial post-proc-
essing to reach qualitatively comparable results. The
multi-dipole particle filter we described directly provides
instantaneous, time-varying estimates of the number of
sources and of the dipole parameters.
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