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Automatic estimation of current dipoles from biomagnetic data is still a problematic task. This is due not only to the ill-posedness
of the inverse problem but also to two intrinsic difficulties introduced by the dipolar model: the unknown number of sources and
the nonlinear relationship between the source locations and the data. Recently, we have developed a new Bayesian approach,
particle filtering, based on dynamical tracking of the dipole constellation. Contrary to many dipole-based methods, particle
filtering does not assume stationarity of the source configuration: the number of dipoles and their positions are estimated and
updated dynamically during the course of the MEG sequence. We have now developed a Matlab-based graphical user interface,
which allows nonexpert users to do automatic dipole estimation from MEG data with particle filtering. In the present paper, we
describe the main features of the software and show the analysis of both a synthetic data set and an experimental dataset.

1. Introduction

Traditional dipole fitting of MEG evoked fields is a time-con-
suming procedure providing subjective results and requiring
expert users for reliable source estimation; however, it is still
largely used even for evaluating MEG inverse methods based
on the distributed current assumption [1, 2] and, in any case,
proved to be notably effective in the reconstruction of focal
sources [3]. Estimating current dipoles from MEG data is
in fact a hard task, as it involves solving several interacting
problems such as model order selection (for determining the
number of sources), nonlinear optimization (for estimating
the source locations), and linear least-squares fitting (for
calculating the dipole strengths). Most automatic algorithms
for dipole estimation presented so far, and in fact even
traditional dipole fitting, work under a couple of important
approximations: (1) the number of dipoles is assumed to
be fixed during the whole sequence, presence or absence of
a given source being coded in the strength of the source
itself; (2) the source locations are fixed in time. The second
assumption is justified by physiological arguments, because
a neural population hardly moves within the head. Also the
first assumption appears to be reasonable; however, methods
based on these assumptions can hardly discriminate nearby
sources, even if they are not overlapping in time, because

two dipoles placed at close distance will interact and produce
spurious activity. Furthermore, in some cases, particularly
when the number of sources is estimated from the data
covariance matrix exploiting algebraic results [4], temporal
correlation can prevent automatic algorithms from correctly
recovering the neural sources.

In [5], we have described a source estimation method
exploiting Bayesian filtering and random finite sets and based
on a completely dynamical model, rejecting the assumptions
(1) and (2) previously mentioned: the number of sources
can change during the sequence, as well as the dipole
locations. The number of active dipoles and their locations
are estimated dynamically and updated at each time sample
from the data. The method works by approximating with a
particle filter, that is, a sequential Monte Carlo algorithm, the
posterior densities involved in the Bayesian filter. In a couple
of publications, we have discussed possible advantages and
limitations of particle filtering for MEG, showing direct [6]
and indirect [5] comparisons with other available methods.

In the present paper, we describe the use of the graphical
user interface (GUI) we have developed for the particle filter,
HADES (highly automatic dipole estimation). HADES is an
open-source, freely downloadable, Matlab-based software.
The purpose of the GUI is at least twofold: on one hand, we
aim at sharing methods and results with other researchers
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Figure 1: The input-output scheme of HADES: on top, the main window where the user can load input data (blue) and set the parameters
(green); an asterisk indicates mandatory input data. The particle filter algorithm is presented as a black box giving two outputs (the model
selection function and the estimated dipoles); the clustering algorithm assigns individual dipoles to clusters and computes the average
location and the waveform of each cluster.

in the field, who may have the chance to investigate by
themselves the potential and limits of particle filtering; on the
other hand, we aim at reaching a larger audience of neuro-
scientists who may be less curious about the methodological
aspects but more interested in the possible applications.

The paper is organized as follows. In Section 1, a
nontechnical description of the methodological issues is
presented. In Section 2, we provide details on the software,
including supported data types, license details, and com-
putational aspects. In Section 3, we follow step-by step the
analysis of both a synthetic data set and an experimental
dataset, so as to introduce the reader to the practical use of

the interface. In Section 4, we briefly summarize the main
features of the presented software.

2. Methods

The present section describes the computational algorithm
at the basis of HADES and the way it has been implemented
in the software. It contains three subsections: the first one
describes the models adopted and the input data; the second
one describes the particle filter and the run-time parameters
necessary for the filter to run; the third one describes the
estimation procedure and the output provided by HADES.



Computational Intelligence and Neuroscience 3

−150

−100

−50

0

50

100

150

−100 −50 0 50 100 150 200 250 300

Time (ms)

M
ag

n
et

ic
fi

el
d

(f
T

/c
m

)

Figure 2: Synthetic data produced by the six sources described in
Table 1 and Figure 3; only the signals from the gradiometers are
shown.

2.1. Model Assumptions and Input Data. HADES is based
on a dynamical dipolar model of neural activations: at each
time point, each active area is represented as a single current
dipole. There is no prior assumption on the number of active
sources, and there is no limit on the total number of neural
sources; however, for computational reasons, we impose an
upper bound to the number of simultaneous active dipoles.

HADES is based on a discretized source space: dipoles
can take only a finite set of predefined possible locations.
The main advantage of this approximation is that lead fields
can thus be used to save computational time. Furthermore,
the source space can be either the whole brain volume or
else the cortical surface when available; to further increase
localization accuracy, also an orientation constraint can
be optionally used (although cortical constraints should
be managed carefully, since there are neurophysiological
situations where, using dipole fitting, they may lead to biased
or wrong results).

All the source parameters are assumed to be dynamical
parameters. The number of sources is a dynamical variable,
to be estimated from the data. Sources are also allowed to
move during time, that is, to jump between neighboring
points of the source space.

Noise is assumed to have a Gaussian distribution. An
estimate of the noise spatial covariance matrix can be either
loaded or calculated; using such estimate corresponds to a
prewhitening of the data. Alternatively, one can assume that
noise is white Gaussian and calculate an estimate of the noise
power.

The input data needed to run HADES are therefore
the source space and the corresponding lead field. The
neighboring matrix, listing all the neighbours within a user-
selected radius, is calculated by HADES. Optional inputs are
the noise covariance matrix and a signal space projection
matrix. See Figure 1 for a schematic representation.

2.2. Particle Filter and Run-Time Parameters. The core of
HADES is a random finite sets (RFS) particle filter. Random

Table 1: Parameters of the six sources used to simulate the data:
source location, peak latency, and measured signal at the peak.
Colors refer to Figure 3.

Source n x (cm) y (cm) z (cm) t (ms) f T/cm

1 (red) −1.37 −5.43 7.34 20 51

2 (blue) 3.74 4.54 5.66 40 57

3 (green) −2.04 3.73 9.56 40 130

4 (magenta) 2.96 2.11 9.42 110 100

5 (cyan) −3.43 −2.71 4.07 110 110

6 (yellow) −1.37 −5.43 7.34 220 51

finite sets are a mathematical tool for dealing with an
unknown and varying number of objects [7]. Particle
filtering [8] refers to an algorithm which tries a large number
of dipole configurations, also called particles, choosing these
configurations based on probabilistic criteria. The algorithm
is sequential: it begins by analyzing the data measured at the
first time point, t = 1, and proceeds time sample per time
sample. At each time sample t, assume that a set of Np dipole
configurations is available; then the algorithm performs the
following operations:

(1) assign a weight to each dipole configuration, based
on the difference between the measured data and the
exact field produced by the dipole configuration,

(2) use the cloud of weighted dipole configurations to
calculate estimates of the number of sources and their
parameters,

(3) discard particles with low weights and multiply
particles with high weights, in order to maintain only
the most likely dipole configurations while preserving
the total number of particles Np,

(4) let each dipole configuration evolve randomly, thus
producing the set of dipole configurations at time t+1
needed at step 1, and start again from step 1.

According to the RFS framework, the number of dipoles
in each particle may vary from zero to a maximum; dipole
configurations may undergo loss or birth of dipoles during
the temporal evolution at the fourth step.

The number Np of particles is the first parameter to set:
using a large Np guarantees in principle better results; the
computational time is linearly increasing with this number,
hence a good balance between stability and computational
time has to be sought.

In the weighting procedure at step 1, the prior assump-
tions on the noise statistics play an important role, because
the expected difference between the measured data and the
exact field should be of the order of the noise. However,
for several reasons the noise estimate can be unsatisfactory
in many situations. In this case, one may want to have
a weaker/stronger fit with the data, with respect to that
provided by straightforward noise estimate. Therefore, we
introduced the discrepancy parameter as a multiplicative
factor for the noise estimate. Setting a small value (<1) for
the discrepancy means that a stronger fit is required; the
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Figure 3: Location and dynamics of the 6 sources: the waveform of the cyan source is not visible as it is overridden by the time-correlated
magenta source; the location of the yellow source is not visible as it is the same as the red source.

algorithm will then try to reproduce finer details in the
data, possibly using a larger number of sources and possibly
exhibiting a lower degree of stability and reliability. On the
contrary, setting a large value means that a weaker fit is
required, with the opposite consequence of ending up with
a lower number of stable sources.

2.3. Source Estimates and Output. The estimation procedure
in HADES goes through three main steps. The first two
steps are performed at every sampled time point of an
MEG sequence (step 2 in the previous subsection), and
produce time-varying estimates of the dipole parameters:
first, the algorithm obtains an estimate ̂Nt of the number of
dipoles and, then, calculates estimates of the actual param-
eters (location and dipole moment) for ̂Nt dipoles. These
dynamical estimates, however, do not identify individual
neural sources in time, because there is no straightforward
relationship between dipoles estimated and different time
points. Given the collection of all dipoles estimated at all
time points, a third step is then applied, which binds together
dipoles estimated at different time points but possibly
representing the same neural source. This clustering can be
performed in two different configurations: either dipoles
are grouped based only on their location, or else dipoles
are grouped based both on location and orientation. The
final number of clusters is estimated automatically with
a recursive procedure, which starts from the user-defined
maximum number of clusters and decreases this number
until all the estimated clusters are significantly different.
Once dipoles have been assigned to different clusters, likely
corresponding to different neural sources, it makes sense to
compute the average location of all dipoles belonging to each
cluster; this average location can be considered as an estimate

of the neural source location, and the corresponding source
waveform can also be calculated.

The output of HADES consists in the dynamical esti-
mates of the number of sources and of the source parameters,
plus a global picture obtained from the clustering. Referring
to Figure 4 as a typical result of a data analysis performed
with HADES, the user can view the following.

(1) The dynamical model order estimate (Figure 4(a)),
that is, the posterior probability that the data have
been produced by 1, 2, 3, . . . dipoles as a function of
time; the cumulative distribution for the number of
sources is visualized as an area, with different colors
representing the probabilities of different models.

(2) The dynamical estimates of the source locations
(Figure 4(b)); while in this figure all the dipoles
estimated in the whole sequence are superimposed,
the user can in fact choose to visualize only the
dipoles estimated in a selected time window.

(3) The clustered dipole location estimates, with the
corresponding amplitude waveforms (Figure 4(c));
since these waveforms are calculated for dynamical
source locations, they exhibit a certain level of
discontinuity in correspondence of jumps of the
source location.

(4) The average source location of each cluster (Figure
4(d)), with the corresponding amplitude waveform
which is now continuous.

While the localization panels show the three standard
views of the brain, figures contain in fact 3-dimensional
information and the user can rotate the view.
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Figure 4: Results obtained with 10,000 particles and discrepancy 1. (a) Dynamical model selection function. (b) Superposition of all
estimated dipoles at all time points. (c) Clustered dipoles and corresponding waveforms. (d) Average dipoles of the clusters in (c). Estimated
dipoles show an expected spread around the true sources (cf Figure 3). From (b), it is evident that Sources 1 and 6, that is, the ones producing
the weakest field, are not recovered. The model selection function indicates neural activity beginning at 10 ms (when the maximum
probability switches from the zero-dipole model to the one-dipole model) and lasting until about 145 ms; in two time windows (30–55 ms
and 105–130 ms), a two-dipole model is selected.

3. Software Details
HADES is a Matlab-based graphical user interface, which ne-
eds Matlab to run. It has been written and tested under Mat-
lab version 7.9.0, hence full compatibility is not guaranteed
under earlier versions.

Input data can be provided in standard Matlab .mat
format and in plain ASCII format; the Neuromag .fif
format is supported through the set of functions contained
in the MNE [9] Matlab toolbox http://www.nmr.mgh.har-
vard.edu/martinos/userInfo/data/sofMNE. More details on
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Figure 5: Results obtained with 10,000 particles and discrepancy 0.7. The model selection indicates now a one-dipole model in a short time
window around 220 ms, corresponding to Source 6. In fact, both Sources 1 and 6 are now recovered correctly; the clustering procedure binds
them in a single source, because they are exactly in the same location. The model selection also indicates that the two-dipole model is now
selected for larger time windows with respect to the previous case with unit discrepancy; moreover, around 30 ms, the three-dipole model
appears to have a nonnegligible probability, even though it does not exceed the 50%.

the format of input data can be found in the HADES manual,
available at http://hades.dima.unige.it/.

Results can be exported in different formats, for visual-
ization in other toolboxes. At the moment, HADES features
the following export options:

(i) a .stc file which contains the sequence of estimated
dipoles in time, and can be visualized as a movie
in MNE; furthermore, the very first time sample of
the exported file contains the superposition of all the

estimated dipoles, to get the overall picture of the
estimated neural activity;

(ii) a .mat file which contains the sequence of estimated
dipoles in time and can be visualized as a movie in
BrainStorm (http://neuroimage.usc.edu/brainstorm)
again, the very first time sample of the exported
file contains the superposition of all the estimated
dipoles, to get the overall picture of the estimated
neural activity;
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Figure 6: Results obtained with 10,000 particles and discrepancy 2. With this large value for the discrepancy parameter, the model selection
in (b) exhibits lower probability for larger models, and the two-dipole model has nonnegligible posterior probability but is never the mode
of the distribution. The set of estimated dipoles is now smaller and contains only two activations, corresponding to Source 3 and 4, that is,
the two dipoles producing the strongest field.

(iii) a .w file which contains the location of all dipoles
estimated at all time points and can be visualized
in FreeSurfer (http://surfer.nmr.mgh.harvard.edu/)
[10, 11].

HADES is not bound to a specific hardware for MEG: all
the hardware-dependent components are in fact contained in
the input data (lead field, source space, and measurements).
In principle, HADES may be applied to EEG data as

well; experimental validation with electroencephalographic
measurements is in progress.

The computational cost of the algorithm increases lin-
early with (i) the number of analyzed time samples and (ii)
the number of particles. For running with 10,000 particles on
a standard PC (CPU Intel Core2 Quad 2.83 GHz, RAM 4 GB)
the algorithm takes on average 0.8 seconds per time sample.

HADES (http://hades.dima.unige.it/) is a free but copy-
righted software, distributed under the terms of the GNU



8 Computational Intelligence and Neuroscience

−150

−100

−50

0

50

100

150

−50 0 50 100 150 200 250

Time (ms)

M
ag

n
et

ic
fi

el
d

(f
T

/c
m

)

Figure 7: Averaged magnetic field for the stimulation of the left
thumb.

General Public Licence as published by the Free Software
Foundation (either version 2 or at your option any later
version).

4. Results

In this section we present two examples of source modeling
performed using HADES. First, we use synthetic data so that
the ground truth is known; the sample data analyzed here
are contained in the HADES package for further analysis
and testing. Then, we analyze an experimental data set
corresponding to stimulation of left and right thumb.

4.1. Synthetic Data. Data (see Figure 2) are produced by six
sources: Table 1 summarizes locations and peak latencies of
the sources, while Figure 3 shows both source locations and
dynamics. Sources 2 and 3 have the same latency, but a
different duration; Sources 4 and 5 have exactly the same
waveform, that is, they are time correlated; Sources 1 and 6
are in the same location. The source points do not belong to
the source space which is used by the inverse algorithm. MEG
sensors correspond to the Neuromag Vectorview system
which features 102 locations and 3 channels per location, one
magnetometer and 2 planar gradiometers, for 306 channels.
Here, we employ only the 204 planar gradiometers. White
Gaussian noise is added: the noise standard deviation is
3 f T/cm; the SNR at the peak of the strongest source,
calculated as 10 log10|D|2/|N|2, where D is the data matrix,
N is the noise matrix, and |·| is the Frobenius norm, is about
10 dB. The superposition of all signals is shown in Figure 2.

We first load the source space and the lead field from
the popup window. Then, we load the measurements: we set
the starting time point (−100 ms), the sampling frequency
(1,000 Hz), and the length of the prestimulus interval (from
−100 to 0 ms) for estimation of the noise variance. The
source space is formed by 13026 points with a regular
spacing of 0.5 cm in the brain volume, and no cortical
constraints are used.

4.1.1. Single Run. We set the number of particles to 10,000
and the discrepancy parameter to 1 and run the particle filter.

The results are shown in Figure 4. Two of the 6 sources
producing the data are missing: in fact, they are the two
Sources 1 and 6 in the same location, which are also the ones
producing the smallest signal at the sensor level. The initial
number of clusters was set to 4, due to both visual inspection
of reconstructed dipoles (Figure 4(b)) and evidence from the
model selection (Figure 4(a)), which indicates a two-dipole
model in two separate temporal windows.

Considering all the reconstructed dipoles at all time
points, the average distance between the dipoles and the
corresponding sources is 1.1 cm, with a standard deviation of
0.8 cm, the maximum distance is 3.3 cm, and the minimum
distance is 0.24 cm. Despite this large maximum error, the
mean dipoles of the clusters (Figure 4(d)) appear to be good
approximations of the true sources (cf Figure 3), featuring
distances of 0.3 cm, 0.4 cm, 0.9 cm, and 1.35 cm from the true
sources. This is explained as the estimated dipoles being quite
symmetrically distributed around the true sources.

4.1.2. Tuning the Parameters. As described in the previous
section, tuning the discrepancy parameter corresponds to
requiring higher/lower fit with the data. We run again
the particle filter with 10,000 particles, first setting the
discrepancy to 0.7 (higher fit required) and then to 2 (lower
fit). The results are shown in Figures 5 and 6, respectively.
With the lower discrepancy, the algorithm recovers also the
two weaker sources, Source 1 and 6. The figure has been
obtained by clustering the dipoles in 5 groups. With the
higher discrepancy, the algorithm looses track of Sources 1,
2, 5, and 6.

Average distances between reconstructed dipoles and
true sources are in the same range as for the unitary
discrepancy.

4.2. Experimental Data. MEG data were provided courtesy of
Dr. Sabine Meunier (La Salpetriere Hospital, Paris), as made
available for download on BrainStorm’s website. The data
were recorded on a CTF machine (151 axial gradiometers)
at La Salpetriere Hospital, Paris. The protocol comprised
shuffled electrical stimulation of the fingers from both hands;
the analyzed data are averaged responses (400 trials) for the
stimulation of the right thumb (R) and of the left thumb (L)
(see Figure 7). The lead field matrix was exported using the
BrainStorm software, as well as the source space; the source
space consists of 15,010 source points distributed along the
cortical surface. A distance of 1 centimeter was selected for
calculation of the neighboring matrix. Both data sets were
analyzed using 10,000 particles and the discrepancy parame-
ter set to 1; the orientation constraint was not used, although
available. Results for the left and right thumb stimulation
experiment are described in Figures 8 and 9 respectively.
With the left data, reasonable source localization is obtained
with the first run, with the standard discrepancy value. With
the right data, on the contrary, the standard parameter value
provided reasonable localization in correspondence with the
peak of activation, plus some other dipoles at later time
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Figure 8: Left thumb stimulation; results obtained with 10,000 particles and discrepancy 1. The model selection in (a) indicates activity in
a first time window beginning around 40 milliseconds after the stimulus and lasting until 100 ms and in a second time window between 115
and 140 ms. All estimated dipoles are in the right hemisphere, located around the somatosensory cortex. Clustering does not seem to add
significant information to the estimated sources: the blue cluster is smaller and lasts few milliseconds.

points scattered in apparently less likely locations. Cleaner
reconstructions can be obtained increasing the discrepancy
parameter (see Figures 9(c) and 9(d)).

5. Discussion and Conclusions

HADES is a Matlab-based, freely downloadable software for
dynamical estimation of current dipoles from MEG data.
It is distributed under the GPL and has a simple graphical
user interface, which allows nonexpert users to do dipole
modeling automatically.

The particle filter HADES is based on [5] and tracks
in time the posterior density for the dipole constellation;
statistical estimators are used to provide dynamical estimates
of the number of sources and of the source parameters.
The main innovative feature of HADES, with respect to
the available dipole estimation methods, is related to the
underlying dynamical model: dipoles are not constrained to
have a fixed position nor to be active for the whole time
sequence. Instead, the number of sources and all source
parameters are estimated at each sampled time point; in
particular, HADES provides a dynamical model selection
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Figure 9: Right thumb stimulation. First row: results obtained with 10,000 particles and discrepancy 1. (a) shows the clustered
reconstructions: most dipoles are located in the left hemisphere in proximity of the somatosensory cortex; however some reconstructions
fall in the right hemisphere and are rather unstable. Arguing from such instability that the noise estimate was slightly too tight, we increased
the discrepancy parameter to 1.5 to get the cleaner results of the second row.

function, which indicates at each time point the probability
that the data have been produced by 1, 2, . . . ,N dipoles.
To obtain stable source estimates and continuous source
waveforms, clustering procedures are implemented which
bind dipoles representing the same source at different time
points. Due to the generality of the underlying model,
HADES can recover correlated sources and discriminate
nearby dipoles with different orientations. On the other
hand, the particle filter is more computationally demanding
with respect to other estimation methods, and semianalytic
solutions [12] to Bayesian filtering feature better statistical
properties but higher computational requirements.

The performances of HADES were illustrated with a
set of synthetic data produced by a complicated source

configuration, as well as with a set of experimental data.
Synthetic data were particularly useful to illustrate how the
discrepancy parameter plays an important role in selecting
larger/smaller number of sources. The same conclusion can
be drawn also from the experimental data set, with the
further consideration that in real situations the peculiar
structure of neural noise is more likely to produce spurious
activity.

The visualization of the results is limited to a very simple
3d plot of the source space with the estimated sources
superimposed. However, the results can be exported for
visualization in other toolboxes where superimposition onto
high resolution MRI slices or inflated surfaces are possible.
Export options to MNE, Freesurfer, and BrainStorm are
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supported at the moment. Forthcoming releases of the
toolbox may feature better built-in visualization tools.

HADES has been thought as a highly specialized toolbox
for dipole estimation. As such, it does not mean to replace
other toolboxes but possibly to integrate with them to
provide a different perspective on a data set. For this reason,
no tools for multisubject analysis are under development
at the moment, although HADES-reconstructed dipoles are
saved in the.mat file of the results and can be utilized for
statistical analysis by means of external toolboxes.

More in general, the toolbox is at its very first stage, and
the development of the method will likely add more features
to the toolbox. Possible future methodological developments
include

(i) investigating strategies to remove spurious activa-
tions produced by neural noise,

(ii) providing an estimate of the localization accuracy for
each source, based on the spread of the underlying
posterior density,

(iii) modeling the neural sources as nondipolar currents,
such as multipolar sources or cortical patches.

All future developments will head towards automation and
reliability of source estimation from MEG/EEG data.
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