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Abstract. We consider the problem of dynamically estimating the parameters of point-like
neural sources from magnetoencephalography data. Since the problem is non-linear, we apply
the sequential Monte Carlo algorithms known as particle filters for solving the Bayesian filtering
problem. We suggest that the linear dependence of the data on a subset of the parameters
allows the analytic computation of the posterior density for these parameters, i.e. Rao-
Blackwellization; this considerably improves the accuracy of the method and its statistical
efficiency.

1. Introduction
In the magnetoencephalography (MEG) inverse problem the aim is to recover the time-varying
neural currents from high-frequency (1000 Hz) measurements of the magnetic field distribution
around the subject’s head [4]. The mathematical model is accounted for by the Biot-Savart
equation, which linearly relates the magnetic field ditribution outside the head to the electrical
current distribution inside the brain volume. Standard regularization techniques, both with L2

[5] and L1 [10] constraints, have been applied for solving this linear inverse problem, however, the
reconstructed current densities often appear to be unrealistically widespread (with respect to the
known neurophysiological contraints) in the case of L2 solutions, and the number of false positives
provided by L1 regularization is too high. To overcome these limits, it is common practice in
the MEG community to use low-dimensional parametric models for the neural currents: it is
possible to assume that the neural current is a superposition of a small (∼10) set of point-wise
currents, named current dipoles, whose positions and moments have to be estimated. In this
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case the inverse problem becomes non-linear: a considerable amount of non-linear optimization
methods have been applied, but the non-uniqueness of the solution leads to a number of local
minima which become difficult to handle when the Signal-to-Noise Ratio (SNR) is not very high.
In 2003 Somersalo et al. proposed to recast the MEG inverse problem as a Bayesian filtering (or
Bayesian tracking) problem, and proposed the use of particle filters for the non-linear problem
[8]. The advantage of using a Bayesian method is clear: instead of a difficult search of local-
global minima of some potential, one can study the whole probability density on the solution
space, conditioned on the measurements. This approach has been validated in [9] where the
authors show that the approach is actually feasible and apply the method to a real data set and
in [6], where the approach is compared to a state-of-the-art MEG inversion algorithm.
Here we briefly review the basic concepts of particle filtering and suggest that, due to the linear
substructure which still remains in the non-linear problem, a semi-analytic approach, known
as Rao-Blackwellization in the statistical literature, is feasible and can increase the statistical
efficiency of the algorithm. We present numerical results in a 2-dimensional, single-source
simplified setting, borrowed from Somersalo et al.; the results show that Rao-Blackwellization
actually improves the performances of the algorithm.

2. Particle filters and Rao-Blackwellization
We first present the basic ideas of bayesian filtering and particle filtering, then consider the
special case of a linear substructure in the model equation.

2.1. Bayesian filtering and particle filters
Bayesian filtering is a suitable framework for dynamic inverse problems: let {Xt}t=1,... and
{Yt}t=1,... be two stochastic processes, we will call state process and measurements process
respectively, related by

Xt+1 = g(Xt) + W x
t (1)

Yt = f(Xt) + W y
t (2)

where f(·) and g(·) are possibly non-linear functions, and W x
t and W y

t represent the process
noise and the measurements noise, respectively. In Bayesian filtering, one aims at recovering
information about the state process from observations of the measurements process. We denote
by π(x) the probability density function (pdf) of the random vector (RV) X and by π(x|y) the
pdf of the RV X conditioned on the realization y of the RV Y . With this notation, the Bayesian
filtering problem can be defined as the problem of computing the so-called posterior pdf

π(xt|y1:t) with y1:t = {y1, y2, ..., yt} (3)

sequentially in time. Under the assumption of Markovian processes [7], and provided that the
transition kernel of the state process π(xt+1|xt), the likelihood function π(yt|xt) and the first
prior density π(x1|y0) = π(x1) are available, the Bayesian filtering problem can be solved by
sequentially applying:

π(xt|y1:t) =
π(yt|xt)π(xt|y1:t−1)

π(yt|y1:t−1)
(4)

π(xt+1|y1:t) =
∫

π(xt+1|xt)π(xt|y1:t)dxt . (5)

It is well known that in a linear Gaussian environment the Kalman filter, which sequentially
updates the first and second moment of the densities, provides the exact solution of the Bayesian
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filtering problem. However this is also the only case where the exact solution is easy to compute.
For the general case, numerical approximations are needed: in the last decade, the class of
sequential Monte Carlo methods known as particle filters have received great attention, as they
allow computation of (4),(5) in a general non-linear non-Gaussian setting [1, 3].
In the Monte Carlo approach, one wants to compute integrals of some target density π(x) and
therefore tries to obtain samples {xi}i=1,...,N distributed according to π(x), because the Law of
Large Numbers guarantees

1
N

N∑

i=1

f(xi) N→∞−→
∫

f(x)π(x)dx . (6)

In Importance Sampling, the impossibility of drawing samples directly from the target density
π(x) is overcome by a weighting procedure: one draws samples xi

q from a so-called proposal
density q(x) and uses

N∑

i=1

f(xi
q)w(xi

q)
N→∞−→

∫
f(x)π(x)dx with wi =

π(xi
q)

q(xi
q)

. (7)

The simplest particle filter, known as Sampling Importance Resampling (SIR) particle filter, is
indeed the sequential application of an importance sampling strategy; in fact, the two following
operations are iterated:

• apply an importance sampling strategy for the posterior density, using the prior density as
proposal: draw a sample {xi

t}i=1,...,N from the prior density and exploit the Bayes formula
for computing the weights wi

t = π(yt|xi
t);

• resample the posterior density: sample N particles x̃i
t from the set {xi

t}i=1,...,N , with
replacement, in such a way that the probability of drawing xi

t is equal to wi
t. The new

sample set {x̃i
t} is a random sample from the posterior density.

A few remarks. (i) Drawing points from the prior density is straightforward at the
beginning, when the prior density is chosen by the user. For a general t, assume we have
a sample {xi

t−1}i=1,...,N distributed according to π(xt−1|y1:t−1); then (6) guarantees that∑N
i=1 π(xt|xi

t−1) →
∫

π(xt|xt−1)π(xt−1|y1:t−1)dxt−1. Therefore, one can draw samples from this
mixture; the easiest way consists in drawing one point for each i. (ii) The resampling procedure,
which makes particle filters a powerful method (because here they loose track of unlikely states),
introduces correlation among the particles, which makes standard convergence results not valid;
however, convergence results for particle filters exist as well, under some additional assumptions
(see for example [2]). (iii) Importance sampling is a generalization of random sampling, and
the performances are increasingly better as the proposal density resembles the target density.
Therefore, the variance of the weights is a measure of the goodness of the proposal density.

2.2. A semi-analytic approach: Rao-Blackwellization
Next we consider a special subset of models, which turns out to be of particular interest for our
applied problem. We assume that the state vector can be decomposed Xt = (Pt, Qt) in such a
way that the model equations (1),(2) can be written as

Pt+1 = Pt + ∆Pt (8)
Qt+1 = Qt + ∆Qt (9)

Yt = g(Pt) · Qt + W y
t (10)
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with g(·) a possibly non-linear function; then, under the assumption of Gaussian distribution
for W y

t , Q1 and ∆Qt, the model for Qt conditional on Pt is a linear Gaussian model to which
Kalman filter can be applied. To state it differently, the fact that the posterior density naturally
splits

π(pt, qt|yt) = π(qt|pt, yt)π(pt|yt) (11)

can be properly exploited and, given a random sample pi
t for the density π(pt|yt), one can use a

set of Kalman filters for computing the first and second moment of π(qt|pi
t, yt), i = 1, ..., N .

This procedure is known in statistical literature as Rao-Blackwellization; it can be proven that
it provides a reduction of the variance of the importance weights [3].

3. The MEG inverse problem
Magnetoencephalography measurements consist of a high-frequency (∼ 1000 Hz) sampling of
the magnetic field produced by neural currents; the magnetic field is collected by an helmet
shaped array of sensors around the subject’s head. Due to the temporal scale of the detectable
neural events, the quasi-static approximation holds [4] and the MEG inverse problem is therefore
described by the Biot-Savart equation:

yt(ri) =
∫

Ω
xt(r′) ×

ri − r′

|ri − r′|3 dr′ (12)

where yt(ri) is the magnetic field measured by the i-th sensor, located in ri, and produced by
the current distribution xt(r′) inside the brain volume Ω.

The so called dipolar assumption, commonly used in the MEG community, consists in
approximating the neural current distribution inside the head as a set of point-wise currents
(current dipoles) xt(r) =

∑
qi
tδ(r − pi

t), located in pi and of moment qi. For a single dipolar
source, and neglecting the contribution of volume currents, the Biot-Savart equation reads

yt(ri) =
µ0

4π

(
qt ×

pt − ri

|pt − ri|3
)

. (13)

We remark that this equation implies a strong non-linear relationship between the dipole position
pt and the measurements. On the other hand, measurements depend linearly on the dipole
moment qt. In the following we denote by yt = (yt(r1), ..., yt(rN )) the collection of measurements
at time t and by y(xt) the measurement set produced by a current dipole xt.

4. A Rao-Blackwellized particle filter for MEG
In our applied problem, the state process {Xt}t=1,... is the neural current process and the
measurements process {Yt}t=1,... is the sequence of magnetic measurements; the two processes
are related by (13), a strongly non-linear equation. Following [8], we apply a particle filter for
solving such a problem, however, we apply Rao-Blackwellization for improving the statistical
performances of the algorithm.
The implementation of a particle filter requires to define three probability densities: the
likelihood function, the transition kernel and the initial prior density. The first prior density
π(x1) is chosen to be a uniform density for the position p1, and a Gaussian density with high
variance for the dipole moment q1; the rationale for this choice is that we assume to have no
prior information about the source, and thus use non-informative priors. The likelihood function
is constructed on the basis of equation (13) and of a Gaussian measurement noise: its explicit
form is therefore π(yt|xt) = N (yt|y(xt),Σ), where N (·|µ,Ψ) denotes the Gaussian distribution
of mean µ and covariance matrix Ψ, and Σ is the covariance matrix of noise, which is assumed
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to be stationary. The choice of the transition kernel implies an assumption on the underlying
dynamics of the neural current, which is basicly unknown. Therefore we assume no specific
dynamics, and treat the neural dynamics as a random walk in the parameter space; the explicit
form of the transition kernel is then π(xt+1|xt) = N (xt+1|xt,Γ), where Γ controls the step size
of the random walk.

5. Numerical results: performance improvement and variance reduction
Following [8] we consider a 2D limit of the MEG inverse problem: sources, current dipoles, move
on the plane z = 0, while the sensors are placed on a square grid on the plane z = 1. We consider
the synthetic data produced by a single dipolar source, which moves clockwise on the plane, and
whose orientation changes as well with time, and add a resonable quantity of Gaussian noise
(about 5%).

We run both a SIR particle filter and a Rao-Blackwellized particle filter on the same data set
and compare the results provided by the two algorithms. In Fig. 1 we show the reconstructions
provided by the standard SIR particle filter and by the R-B particle filter, when both run with
500 particles. The superiority of the Rao-Blackwellized version is clear in this figure, as the
positions of the original source and of the reconstructed source coincide almost always, which
does not happen for the SIR filter.

−5 0 5
−5

0

5
SIR particle filter

−5 0 5
−5

0

5
R−B particle filter

Figure 1. The sequence of source dipoles (dashed) together with the reconstructions (solid)
provided by the SIR filter (left) and the R-B filter (right). The improvement obtained by Rao-
Blackwellization is clear.

Figure 2 provides a more quantitative information about the difference perfomances of the
two methods by plotting the localization error as a function of time. The localization error of
the Rao-Blackwellized version is considerably smaller and more constant throught the sequence
of measurements with respect to the error produced by the SIR filter.

Finally, we consider the variance of the importance weights, i.e.

vart =
1
N

N∑

i=1

(wi
t − w̄t)2 with w̄t =

1
N

N∑

i=1

wi
t . (14)

Rao-Blackwellization is expected to provide a reduction of this quantity [3]. Indeed, Figure
3 shows that the variance of the importance weights of the SIR filter is always higher than
the variance of the importance weights of the R-B filter. From the statistical viewpoint, this
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Figure 2. The localization error, computed as the euclidean distance between the position of
the source dipole and the position of the reconstructed dipole.

0 5 10 15 20 25 30
0

1

2

3
x 10

−3

Time [au]

V
ar

ia
nc

e 
of

 Im
po

rt
an

ce
 W

ei
gt

hs

SIR particle filter
R−B particle filter

Figure 3. The variance of the importance weights for the standard SIR filter and the R-B
version as a function of time.

variance reduction represents an improvement because it means that the importance density is
more similar to the target density.

6. Conclusions
We considered the application of particle filters for the solution of the MEG inverse problem in
a dipolar approximation. We showed that the linear dependence of the measurements on the
dipole moment allows the use of Rao-Blackwellization, in other words, the analytic computation
of the posterior density for the dipole moment. This leads to improved results as far as the
reconstruction accuracy is concerned, and to a statistical improvement as far as the variance of
the importance weights is concerned. On the other hand, we observe that the computational
cost of the Rao-Blackwellized version, for a given number of points, is definitely higher than
that of the standard SIR filter. A more accurate analysis, together with examples in 3D and
applications to real data, will be part of future work.
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