Outline	Intro	Sekihara	Sutton	Applicazioni numeriche

Distorsioni geometriche nelle immagini MRI

Annalisa Pascarella a.pascarella@iac.cnr.it

Istituto per le Applicazioni del Calcolo "Mauro Picone" - CNR

28 Aprile 2015

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche

1 Intro

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche

Imaging

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Concetti ge	nerali			

L'Imaging di Risonanza Magnetica (MRI) è una tecnica utilizzata principalmente in campo medico per produrre immagini ad alta definizione dell'interno del corpo umano. L'MRI è basata sui principi della Risonanza Magnetica Nucleare (NMR) ed è il nucleo di idrogeno l'oggetto interessato a questo fenomeno.

• imaging della densità dei protoni dei nuclei di idrogeno

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Concetti ge	nerali			

L'Imaging di Risonanza Magnetica (MRI) è una tecnica utilizzata principalmente in campo medico per produrre immagini ad alta definizione dell'interno del corpo umano. L'MRI è basata sui principi della Risonanza Magnetica Nucleare (NMR) ed è il nucleo di idrogeno l'oggetto interessato a questo fenomeno.

• imaging della densità dei protoni dei nuclei di idrogeno

In un esperimento MRI i nuclei interagiscono con tre tipi di campi magnetici

- **B**₀ il campo magnetico principale
- ullet **B**₁ un impulso a radiofrequenza che eccita i nuclei
- G_{ξ} gradienti di campo magnetico che consentono la localizzazione del segnale

L'oggetto è posizionato nel campo magnetico statico ${f B}_0$

- si crea una magnetizzazione netta della quale si vuole fare l'imaging
- la frequenza di risonanza dei protoni è proporzionale a B₀

 $\omega_0 = \gamma B_0$, equazione di Larmor

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

5 / 55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Concetti ge	nerali			

L'oggetto è posizionato nel campo magnetico statico ${\boldsymbol B}_0$

- si crea una magnetizzazione netta della quale si vuole fare l'imaging
- la frequenza di risonanza dei protoni è proporzionale a B₀

 $\omega_0 = \gamma B_0$, equazione di Larmor

Un campo magnetico che oscilla, B_1 , è applicato per abbattere il vettore di magnetizzazione nel piano trasversale al campo B_0 . In tale piano il vettore precede intorno alla direzione di B_0 con una frequenza proporzionale all'intensità del campo statico (ω_0). Questo moto di precessione crea il segnale registrato dalla bobina.

Outline Intro Sekihara Sutton Applicazioni numeriche Equazione dell'imaging

Il problema dell'**Imaging di Risonanza Magnetica** consiste nel determinare la **densit**à **protonica** $\rho(\mathbf{r})$ del tessuto in esame a partire dalle misure del segnale registrato s(t), legato a $\rho(\mathbf{r})$ dall'equazione dell'imaging:

$$\mathbf{s}(t) = \int \rho(\mathbf{r}) e^{i\phi(\mathbf{r},t)} d^3 \mathbf{r}$$
(1)

dove $\phi(\mathbf{r}, t) = -\int_0^t \Delta \omega(\mathbf{r}, t') dt' = -\int_0^t \gamma \Delta B(\mathbf{r}, t') dt'$ è l'angolo di fase. Si deve quindi risolvere un **problema inverso**: si vogliono determinare le cause di un determinato fenomeno del quale si sono osservati gli effetti.

Outline Intro Sekihara Sutton Applicazioni numeriche Equazione dell'imaging

Il problema dell'**Imaging di Risonanza Magnetica** consiste nel determinare la **densit**à **protonica** $\rho(\mathbf{r})$ del tessuto in esame a partire dalle misure del segnale registrato s(t), legato a $\rho(\mathbf{r})$ dall'equazione dell'imaging:

$$s(t) = \int \rho(\mathbf{r}) e^{i\phi(\mathbf{r},t)} d^3 \mathbf{r}$$
(1)

dove $\phi(\mathbf{r}, t) = -\int_0^t \Delta \omega(\mathbf{r}, t') dt' = -\int_0^t \gamma \Delta B(\mathbf{r}, t') dt'$ è l'angolo di fase. Si deve quindi risolvere un problema inverso: si vogliono determinare le cause di un determinato fenomeno del quale si sono osservati gli effetti.

La codifica spaziale della densità protonica si basa su successive applicazioni dei gradienti di campo magnetico G_{ξ} , (variazioni del campo magnetico rispetto alla posizione).

Outline Intro Sekihara Sutton Applicazioni numeriche Equazione dell'imaging Intro Intro</td

Il problema dell'**Imaging di Risonanza Magnetica** consiste nel determinare la **densit**à **protonica** $\rho(\mathbf{r})$ del tessuto in esame a partire dalle misure del segnale registrato s(t), legato a $\rho(\mathbf{r})$ dall'equazione dell'imaging:

$$s(t) = \int \rho(\mathbf{r}) e^{i\phi(\mathbf{r},t)} d^3 \mathbf{r}$$
(1)

dove $\phi(\mathbf{r}, t) = -\int_0^t \Delta \omega(\mathbf{r}, t') dt' = -\int_0^t \gamma \Delta B(\mathbf{r}, t') dt'$ è l'angolo di fase. Si deve quindi risolvere un problema inverso: si vogliono determinare le cause di un determinato fenomeno del quale si sono osservati gli effetti.

La codifica spaziale della densità protonica si basa su successive applicazioni dei gradienti di campo magnetico G_{ξ} , (variazioni del campo magnetico rispetto alla posizione).

Le informazioni relative ai tipi di gradienti e impulsi da utilizzare, il loro ordine di applicazione, la loro durata e i tempi di acquisizione e ripetizione degli impulsi, sono contenute nelle **sequenze di impulsi**.

Outline Intro Sekihara Sutton Applicazioni numeriche Equazione dell'imaging

Data una sequenza di impulsi, se il campo magnetico statico B_0 è omogeneo ci si può ricondurre alla seguente equazione

$$s(k_{x}(t), k_{y}(t)) = \int \int \rho(x, y, z_{0}) e^{-i2\pi [xk_{x}(t) + yk_{y}(t)]} dx dy$$
(2)

in cui k_x, k_y sono i punti del k-space

$$k_{x}(t) = \frac{\gamma}{2\pi} \int_{0}^{t} G_{x}(\tau) d\tau, \quad k_{y}(t) = \frac{\gamma}{2\pi} \int_{0}^{t} G_{y}(\tau) d\tau$$
(3)

La (2) è la formula generale che sta alla base dell'MRI: per ottenere la densità protonica basterà applicare la Trasformata di Fourier inversa alla (2).

 Outline
 Intro
 Sekihara
 Sutton
 Applicazioni numeriche

 Equazione dell'imaging - k-space

Il *k*-space è un piano cartesiano dove vengono collezionati i **campionamenti del segnale emesso** e rappresenta quindi il **contenuto di frequenza spaziale** dell'oggetto analizzato; un algoritmo di ricostruzione, spesso basato sulla Trasformata di Fourier, viene applicato per convertire le informazioni del *k*-space in immagine; per questo spesso il *k*-space è detto piano di Fourier. La **traiettoria nel** *k***-space** è determinata dai gradienti di campo magnetico varianti nel tempo applicati durante la misurazione ed è definita dalle (3).

Spatial Resolution Example

2D data in image domain

Low spatial freq data (image domain)

< E ト < E ト E の Q で 8/55

Outline Intro Sekihara Sutton Applicazioni numeriche Disomogeneità del campo magnetico B₀

L'omogeneità del campo magnetico statico B_0 in cui viene immerso il corpo e la linearità dei gradienti sono fattori fondamentali per l'accuratezza della ricostruzione MRI

- se una di queste due condizioni non è verificata si ottiene un'errata localizzazione dei vettori di magnetizzazione con la conseguente presenza di una distorsione geometrica nell'immagine ricostruita;
- si ottiene un'equazione dell'imaging differente e l'inversione con la Trasformata di Fourier inversa discreta (IFFT) fornisce un'immagine distorta geometricamente che non corrisponde all'immagine reale; in altre parole non si ha più corrispondenza tra il segnale e la zona dell'oggetto in esame che l'ha generato;
- il problema della disomogeneità del campo magnetico statico è abbastanza frequente sia per questioni tecniche (apparecchiature di Risonanza Magnetica a cielo aperto) sia per motivi economici;
- metodi per l'eliminazione delle distorsioni geometriche.

Se \mathbf{B}_0 non è uniforme, il segnale registrato non sarà più esprimibile come Trasformata di Fourier della densità protonica che vogliamo ricostruire (2). L'equazione del segnale sarà infatti modificata dalla presenza del termine di disomogeneità.

Outline Intro Sekihara Sutton Applicazioni numeriche Effetti della disomogeneità di B₀

Se \mathbf{B}_0 non è uniforme, il segnale registrato non sarà più esprimibile come Trasformata di Fourier della densità protonica che vogliamo ricostruire (2). L'equazione del segnale sarà infatti modificata dalla presenza del termine di disomogeneità.

Il corpo in esame sarà soggetto ad un campo magnetico ${\boldsymbol B}_0$ dato da:

$$\mathbf{B}_0 = (B_0 + \Delta B(x, y, z))\mathbf{z} \tag{4}$$

dove $\Delta B(x, y, z)$ denota le variazioni spaziali della intensità di campo dal valore nominale B_0 .

Per ricavare l'equazione del segnale nel caso di disomogeneità del campo magnetico statico consideriamo un esempio di sequenza Gradient Echo (GE) e una Spin Echo (SE).

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Gradient	t Echo			

Consideriamo una sequenza GE con gradienti di campo costanti nel tempo e sia $\Delta B(x, y, z)$ la disomogeneità in funzione della posizione spaziale.

Consideriamo una sequenza GE con gradienti di campo costanti nel tempo e sia $\Delta B(x, y, z)$ la disomogeneità in funzione della posizione spaziale.

Dopo aver selezionato la slice con l'impulso RF e il gradiente G_z , si procede alla codifica spaziale in due dimensioni nel piano della slice $z = z_0$.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Gradient Ec	cho			

Consideriamo una sequenza GE con gradienti di campo costanti nel tempo e sia $\Delta B(x, y, z)$ la disomogeneità in funzione della posizione spaziale.

Dopo aver selezionato la slice con l'impulso RF e il gradiente G_z , si procede alla codifica spaziale in due dimensioni nel piano della slice $z = z_0$.

La presenza del termine di disomogeneità modifica il valore del campo magnetico esterno al quale gli spin sono sottoposti e questo risulta in un comportamento della **fase degli spin** esprimibile tramite:

$$\phi(x, y, t) = -\gamma y G_y \tau_y - \gamma x G_x (t - TE) - \gamma \Delta B(x, y) t$$
(5)

anzichè

$$\phi(x, y, t) = -\gamma y G_y \tau_y - \gamma x G_x (t - TE)$$
(6)

con $\Delta B(x, y) \equiv \Delta B_0(x, y)$ disomogeneità in $z = z_0$ e nel caso in cui si consideri come direzione del gradiente di lettura quella della x.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Gradient Ec	cho			

La presenza di una disomogeneità del campo comporta una variazione nell'equazione del segnale, infatti sostituendo il termine di fase (5) nell'equazione dell'imaging (1) si ottiene la seguente equazione dell'imaging per le sequenze GE:

$$s(G_{y},t) = \int \int e^{-i\gamma\Delta B(x,y)TE} \rho(x,y) e^{-i\gamma[yG_{y}\tau_{y}+(xG_{x}+\Delta B(x,y))(t-TE)]} dxdy$$
(7)

13 / 55

Questo significa che gli spin, fisicamente presenti in posizione x, verranno erroneamente assegnati nell'immagine ricostruita, alla posizione

$$\begin{cases} x' = x + \frac{\Delta B(x,y)}{G_x} \\ y' = y \end{cases}$$
(8)

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Gradient Ec	cho			

La (7) non è più la TDF della densità protonica $\rho(x, y)$ ma effettuando il cambio di variabili (8), avremo

$$s(G_{y},t) = \int \int \rho'(x',y') e^{-i\gamma[y'G_{y}\tau_{y}+x'G_{x}(t-TE)]} dx'dy'$$
(9)

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

14 / 55

con

$$\rho'(x',y') = e^{-i\gamma\Delta B(x,y)TE}\rho(x,y)|\mathcal{J}(x,y)|^{-1}, \quad |\mathcal{J}(x,y)| = 1 + \frac{1}{G_x}\frac{\partial\Delta B(x,y)}{\partial x}$$

dove $\mathcal{J}(x, y)$ è lo Jacobiano della trasformazione.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Gradient Ec	cho			

La (7) non è più la TDF della densità protonica $\rho(x, y)$ ma effettuando il cambio di variabili (8), avremo

$$s(G_{y},t) = \int \int \rho'(x',y') e^{-i\gamma[y'G_{y}\tau_{y}+x'G_{x}(t-TE)]} dx' dy'$$
(9)

con

$$ho'(x',y')=e^{-i\gamma\Delta B(x,y)\mathcal{T}E}
ho(x,y)|\mathcal{J}(x,y)|^{-1}, \quad |\mathcal{J}(x,y)|=1+rac{1}{G_x}rac{\partial\Delta B(x,y)}{\partial x}$$

dove $\mathcal{J}(x, y)$ è lo Jacobiano della trasformazione. Posto

$$k_x(t) = \frac{\gamma G_x(t - TE)}{2\pi}, \quad k_y(G_y) = \frac{\gamma G_y \tau_y}{2\pi}$$
(10)

si ottiene che l'equazione del segnale

$$s(k_x, k_y) = \int \int \rho'(x', y') e^{-i2\pi [x'k_x + y'k_y]} dx' dy'$$
(11)

è di nuovo la **TDF** della densità protonica $\rho'(x', y')$, ma la presenza del termine di disomogeneità $\Delta B(x, y)$ fa sì che l'immagine ricostruita non sia più l'immagine reale $\rho(x, y)$ ma una sua versione distorta $\rho'(x', y')$. 14/55

Riassumendo, in presenza di una disomogeneità del campo ${f B}_0$

- il segnale proveniente dal punto (x, y, z₀) viene registrato come segnale emesso dal punto (x', y', z₀) e nella ricostruzione il punto di partenza viene visualizzato alla posizione dettata dalle (8);
- applicando l'IFFT al segnale acquisito (11), si avrà che nell'immagine ricostruita le posizioni dei punti sono modificate, rispetto a quelle dell'immagine reale, in base alla trasformazione (8): si hanno quindi delle distorsioni geometriche nell'immagine ricostruita;
- l'immagine ricostruita $\rho'(x', y')$ avrà un'intensità diversa rispetto a quella originale di $\rho(x, y)$ a causa della presenza del termine esponenziale $e^{-i\gamma\Delta B(x,y)TE}$ e dello Jacobiano $\mathcal{J}(x, y)$;
- la distorsione nella direzione della codifica in fase è nulla;
- la distorsione è inversamente proporzionale al gradiente di lettura G_x .

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Spin Echo				

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Spin Echo				

Nel caso di una sequenza SE, l'applicazione di un secondo impulso RF 180 riduce lo sfasamento dovuto alla presenza del termine di disomogeneità. Se al tempo $t = \tau_s + \tau_y + \tau_x < TE/2$ la fase risulta essere

$$\phi(x, y, t) = -\gamma y \mathcal{G}_y \tau_y - \gamma x \mathcal{G}_x \tau_x - \gamma \Delta B(x, y) t, \qquad (12)$$

l'effetto dell'applicazione, al tempo t = TE/2, del secondo impulso sull'angolo di fase sarà un cambiamento di segno:

$$\phi(x, y, \frac{TE}{2}) = \gamma y G_y \tau_y + \gamma x G_x \tau_x + \gamma \Delta B(x, y) t,$$
(13)

Nella fase di lettura avremo quindi che la fase sarà data da:

$$\phi(x, y, t) = \gamma y \mathcal{G}_y \tau_y + \gamma x \mathcal{G}_x (TE - t) + \gamma \Delta B(x, y) (TE - t), \quad t_3 < t < t_4$$
(14)

e il segnale registrato in una SE sarà ora espresso dall'equazione:

$$s(G_y, t) = \int \int \rho(x, y) e^{-i\gamma \left[-yG_y\tau_y + (xG_x + \Delta B(x, y))(t - TE)\right]} dxdy$$
(15)

17 / 55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Spin Echo				

Come nel caso della GE, la (15) non rappresenta più la TDF della densità protonica $\rho(x, y)$ che si vuole ricostruire ma, effettuando il cambio di variabili (8) e le sostituzioni (10) si riottiene nuovamente la (11)

$$s(k_{x},k_{y}) = \int \int \rho'(x',y') e^{-i2\pi [x'k_{x}+y'k_{y}]} dx' dy'$$
(16)

Dall'espressione dell'angolo di fase (14), si vede come nella sequenza SE si attutisca il problema della disomogeneità in quanto nell'istante dell'echo, per t = TE, non si ha l'accumulo di fase dovuto al termine di disomogeneità e all'applicazione del gradiente di lettura, e in tale istante il segnale è massimo. Ciò non si verifica nella GE, dove l'accumulo di fase dovuto al termine di disomogeneità è sempre presente (5).

Outline Intro Sekihara Sutton Applicazioni numeriche Non linearità dei gradienti Image: Sekihara Sutton Image: Sekihara Sutton

Nel caso in cui si considerino anche le non **linearità dei gradienti** le equazioni del segnale (7) e della distorsione geometrica (8) presenteranno dei termini legati a tali non linearità:

$$s(G_{y},t) = \int \int e^{-i\gamma\Delta B(x,y)TE} \rho(x,y) e^{-i\gamma\{(y+\varepsilon_{y})G_{y}\tau_{y}+[(x+\varepsilon_{x})G_{x}+\Delta B(x,y)](t-TE)\}} dxdy \quad (17)$$

$$\begin{cases} x' = x + \varepsilon_x + \frac{\Delta B(x,y)}{G_x} \\ y' = y + \varepsilon_y \end{cases}$$
(18)

Effettuando il cambio di variabili dato dalle (18) si riottiene la (11).

In presenza di disomogeneità del campo magnetico statico e di non linearità dei gradienti le immagini presenteranno distorsioni geometriche in entrambe le direzioni di codifica e di lettura.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Caso genera	ale			

Nel caso generale di una sequenza di impulsi qualsiasi, trascurando i problemi dovuti alla non linearità dei gradienti, e considerando solo la disomogeneità del campo magnetico statico, $\Delta B(\mathbf{r})$, che può portare distorsioni in entrambe le direzioni, la modellizzazione corretta del segnale al tempo t porta alla seguente equazione:

$$s(\mathbf{k}(t)) = \int_{FOV} \rho(\mathbf{r}) e^{-i\Delta B(\mathbf{r})t} e^{-i2\pi \mathbf{k}(t) \cdot \mathbf{r}} d\mathbf{r}$$
(19)

che differisce dalla (2) per la presenza del termine di disomogeneità $\Delta B(\mathbf{r})$.

Applicando la Trasformata di Fourier inversa alla (19) si ottiene un'immagine distorta geometricamente $\rho'(\mathbf{r'})$ che non corrisponde all'immagine reale $\rho(\mathbf{r})$.

In questi due esempi è ben visibile la distorsione geometrica: sono messe a confronto le immagini reali con le loro ricostruzioni visibilmente distorte. Un tro effetto che si può o notare è la variazione dell'intensità dell'immagine ricostruita rispetto alloriginale.

I metodi sviluppati per correggere e ridurre le distorsioni geometriche, possono essere divisi in **due categorie**:

- metodi basati sulla conoscenza della mappa del campo magnetico (field-map) e che, attraverso le informazioni ricavate da essa sulla distribuzione della disomogeneità, correggono le distorsioni nel dominio spaziale dell'immagine ricostruita o modificano direttamente i dati nel k-space prima di effettuare la ricostruzione;
- metodi che agiscono sulla composizione delle sequenze di impulsi, in particolare sull'ordine e i tempi di applicazione dei gradienti. Il metodo più importante si basa su una doppia acquisizione dell'immagine cambiando, nelle due sequenze, i gradienti applicati. Una semplice comparazione delle due immagini distorte ottenute, permette di calcolare le coordinate esatte dell'oggetto.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Algoritmi	di correzi	one		

Le tecniche appartenenti alla prima categoria consistono di due principali passaggi:

- stima a priori della field-map che quantifica la ripartizione spaziale delle disomogeneità;
- ricostruzione dell'immagine non distorta $\rho(\mathbf{r})$ a partire dalla field-map stimata.

La stima della field-map può essere fatta utilizzando un phantom uniforme, o costituito da sferette opportunatamente posizionate o si può utilizzare un fantoccio costituito da una fitta griglia 3D in cui i punti di controllo sono dati dall'intersezione di tre piani ortogonali. Una misura accurata della posizione dei punti di controllo nello spazio fisico del fantoccio e la conoscenza delle loro nuove coordinate nello spazio dell'immagine distorta caratterizza pienamente la distorsione geometrica.

Data una stima della field-map, si hanno due possibili approcci differenti alla correzione delle distorsioni:

- l'immagine non distorta ρ(r) è stimata direttamente in fase di ricostruzione, tramite la regolarizzazione della soluzione;
- si ricostruisce mediante l'IFFT l'immagine distorta $\rho'(\mathbf{r}')$, e con tecniche di interpolazione, si cerca di ricollocare ogni pixel dell'immagine ricostruita nella giusta posizione, ossia quella che avrebbe nell'immagine corretta $\rho(\mathbf{r})$. Non si tiene conto dell'equazione di modello.

Considereremo due algoritmi appartenenti alla prima categoria di metodi e presupporemo di avere già a disposizione un'accurata mappa del campo magnetico \mathbf{B}_0 .

24 / 55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Paramed				

- implementazione dell'algoritmo di Sekihara
- rispetto all'algoritmo originale è stata implementata la correzione della distorsione geometrica anche nel caso di immagini MRI in cui tali distorsioni siano dovute anche alle non linearità dei gradienti di campo

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche

Algoritmo di Sekihara

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 26 / 55

Algoritmo proposto da K. Sekihara, M. Kuroda e H. Kohno nell'articolo *Image restoration* from non-uniform magnetic field influence for direct Fourier NMR imaging.

La correzione delle distorsioni in ogni punto dell'immagine diventa un **problema di interpolazione** che viene risolto solo dopo la ricostruzione dell'immagine.

Il punto centrale dell'algoritmo è la conoscenza della mappa delle disomogeneità di campo magnetico $\Delta B(\mathbf{r})$.

27 / 55

Outline Intro Sekihara Sutton Applicazioni numeriche Algoritmo di Sekihara

Nel caso generale in cui le disomogeneità siano presenti sia nella direzione del gradiente di fase che in quella del gradiente di lettura, l'equazione del segnale (19) diventa:

$$s(t,\tau_y) = \int \int \rho(x,y) e^{-i\gamma [(\Delta B(x,y)+yG_y)\tau_y + (\Delta B(x,y)+xG_x)t]} dx dy.$$
⁽²⁰⁾

イロン イロン イヨン イヨン 三日

28 / 55

Outline Intro Sekihara Sutton Applicazioni numeriche Algoritmo di Sekihara

Nel caso generale in cui le disomogeneità siano presenti sia nella direzione del gradiente di fase che in quella del gradiente di lettura, l'equazione del segnale (19) diventa:

$$s(t,\tau_y) = \int \int \rho(x,y) e^{-i\gamma[(\Delta B(x,y)+yG_y)\tau_y+(\Delta B(x,y)+xG_x)t]} dxdy.$$
(20)

イロン イヨン イヨン イヨン 三日

28 / 55

Le equazioni della distorsione assumono quindi la forma

$$\begin{cases} x' = x + \frac{\Delta B(x,y)}{G_x} \\ y' = y + \frac{\Delta B(x,y)}{G_y} \end{cases} (21)$$

Outline Intro Sekihara Sutton Applicazioni numeriche Algoritmo di Sekihara

Nel caso generale in cui le disomogeneità siano presenti sia nella direzione del gradiente di fase che in quella del gradiente di lettura, l'equazione del segnale (19) diventa:

$$s(t,\tau_y) = \int \int \rho(x,y) e^{-i\gamma [(\Delta B(x,y) + yG_y)\tau_y + (\Delta B(x,y) + xG_x)t]} dx dy.$$
(20)

Le equazioni della distorsione assumono quindi la forma

$$\begin{cases} x' = x + \frac{\Delta B(x,y)}{G_x} \\ y' = y + \frac{\Delta B(x,y)}{G_y} \end{cases} (21)$$

modificando l'equazione (20):

$$s(t,\tau_y) = \int \int \rho'(x',y') e^{-i\gamma[y'G_y\tau_y + x'G_xt]} dx' dy' = \int \int \rho'(x',y') e^{-i2\pi[x'k_x + y'k_y]} dx' dy'$$
(22)

con

$$k_{x}(t) = \frac{\gamma G_{x}t}{2\pi}, \quad k_{y}(\tau_{y}) = \frac{\gamma G_{y}\tau_{y}}{2\pi}, \quad \rho'(x', y') = \rho(x, y)|\mathcal{J}(x, y)|^{-1}$$
(23)

$$|\mathcal{J}(x,y)| = 1 + \frac{1}{G_x} \frac{\partial \Delta B(x,y)}{\partial x} + \frac{1}{G_y} \frac{\partial \Delta B(x,y)}{\partial y}$$
(24)

dove \mathcal{J} è lo Jacobiano della trasformazione.

28 / 55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Algoritmo d	di Sekihara			

Il segnale (22) assume nuovamente la forma della Trasformata di Fourier della densità dei protoni $\rho'(x', y')$, ma la presenza del termine di disomogeneità $\Delta B(x, y)$ comporta che il segnale sia registrato come proveniente da un punto diverso da quello di origine: il segnale proveniente dal punto (x, y) viene infatti registrato nei punti (x', y').

Le equazioni della distorsione sono date da (21), mentre la variazione di intensità è rappresentata dall'equazione (23).

L'idea alla base dell'algoritmo è quella di ricostruire un'immagine non distorta $\rho(x, y)$ partendo da $\rho'(x', y')$ sfruttando le equazioni della distorsione (21) e il fattore peso $\mathcal{J}(x, y)$ per la correzione dell'intensità (23).

Il primo passo consiste nella discretizzazione del problema e delle relative equazioni.

La distribuzione della densità protonica $\rho(x, y)$ è codificata in un reticolo di $N_x \times N_y$ pixel ognuno di dimensione $\Delta x \times \Delta y$. Alle variabili continue (x, y) sono associate quindi le variabili discrete (I, J) che rappresentano le **coordinate dei pixel** e sono legate alle coordinate continue (x, y) dalle relazioni

$$\begin{cases} x = \Delta x (I - N_x/2) \\ y = \Delta y (I - N_y/2) \end{cases}$$
(25)

イロン イヨン イヨン イヨン 三日

30 / 55

Il primo passo consiste nella discretizzazione del problema e delle relative equazioni.

La distribuzione della densità protonica $\rho(x, y)$ è codificata in un reticolo di $N_x \times N_y$ pixel ognuno di dimensione $\Delta x \times \Delta y$. Alle variabili continue (x, y) sono associate quindi le variabili discrete (I, J) che rappresentano le **coordinate dei pixel** e sono legate alle coordinate continue (x, y) dalle relazioni

$$\begin{cases} x = \Delta x (I - N_x/2) \\ y = \Delta y (I - N_y/2) \end{cases}$$
(25)

L'immagine reale ρ e l'immagine distorta ρ' sono discretizzate dalle funzioni discrete corrispondenti C(I, J) e C(I', J'), con (I, J) e (I', J') coordinate dei pixel. In ogni pixel (I, J) è rappresentato il valore della densità protonica, legata al segnale proveniente da tale punto.

Analogamente, anche le disomogeneità del campo magnetico statico $\Delta B(x, y)$ vengono codificate con la matrice $\Delta B(I, J)$ di dimensione $N_x \times N_y$.

La discretizzazione dell'equazione del segnale (22) diventa:

$$s(K_{x}, K_{y}) = \sum_{I'=1}^{N_{x}} \sum_{J'=1}^{N_{y}} C'(I', J') e^{-i2\pi [K_{x}I' + K_{y}J']} \Delta x \Delta y$$
(26)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

31 / 55

dove

$$C'(I', J') = \frac{C(I, J)}{D(I, J)}, \quad K_x(t_i) = \frac{\gamma G_x t_i}{2\pi}, \quad K_y(G_y) = \frac{\gamma G_y \tau_y}{2\pi}$$
 (27)

con D(I, J) discretizzazione dello Jacobiano della trasformazione (24).

La discretizzazione dell'equazione del segnale (22) diventa:

$$s(K_{x}, K_{y}) = \sum_{I'=1}^{N_{x}} \sum_{J'=1}^{N_{y}} C'(I', J') e^{-i2\pi [K_{x}I' + K_{y}J']} \Delta x \Delta y$$
(26)

dove

$$C'(I', J') = \frac{C(I, J)}{D(I, J)}, \quad K_{x}(t_{i}) = \frac{\gamma G_{x} t_{i}}{2\pi}, \quad K_{y}(G_{y}) = \frac{\gamma G_{y} \tau_{y}}{2\pi}$$
(27)

con D(I, J) discretizzazione dello Jacobiano della trasformazione (24).

Il pixel (I', J') è la nuova posizione del pixel (I, J): lo spostamento è dovuto alla disomogeneità ed è dato dalla discretizzazione delle equazioni della distorsione (21):

$$\begin{cases} g = I + \frac{\Delta B(I,J)}{\Delta x G_{\chi}} = I + \Delta I \\ h' = J + \frac{\Delta B(I,J)}{\Delta y G_{\chi}} = J + \Delta J \end{cases} \Rightarrow \begin{cases} I' = [g] = I + [\Delta I] \\ J' = [h] = J + [\Delta J] \end{cases}$$
(28)

La matrice C'(I', J') rappresenta quindi l'immagine distorta che si ottiene con l'inversione tramite Fourier; (I', J') saranno quindi le coordinate del nuovo pixel dove viene rappresentato il contributo al segnale proveniente dal pixel (I, J).

Punto fondamentale dell'algoritmo di Sekihara è ricostruire il valore dell'immagine di partenza C(I, J) nel pixel (I, J) interpolando i valori che l'immagine ricostruita C'(I', J') assume nei pixel vicini alla nuova posizione (I', J') del pixel considerato. Il pixel (I, J) dell'immagine esatta contribuisce infatti a quattro pixel dell'immagine registrata, per cui l'immagine corretta si ottiene interpolando questi quattro valori.

Quello che è in $(I + \Delta I, J + \Delta J)$ lo vogliamo riportare nel pixel $(I, J) \Rightarrow$ interpolazione bilineare

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Internol	azione bilin	eare		

$$f(P) = \frac{(x_2 - x)(y_2 - y)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{11}) + \frac{(x - x_1)(y_2 - y)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{21}) + + \frac{(x_2 - x)(y - y_1)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{12}) + \frac{(x - x_1)(y - y_1)}{(x_2 - x_1)(y_2 - y_1)} f(Q_{22})$$
(30)

33 / 55

Noti i valori dell'immagine ricostruita C' nei pixel

$$(I', J'), (I'+1, J'), (I'+1, J'+1), (I', J'+1)$$

applichiamo la formula dell'interpolazione bilineare (30) per ricostruire il valore dell'immagine originale C nel pixel (I, J).

$$C(I, J) = (1 - \beta)(1 - \gamma)C'(I', J') + \beta(1 - \gamma)C'(I' + 1, J') + + (1 - \beta)\gamma C'(I', J' + 1) + \beta\gamma C'(I' + 1, J' + 1)$$
(31)

dove

$$x_{2} - x_{1} = y_{2} - y_{1} = 1$$

$$x - x_{1} = I + \Delta I - I - [\Delta I] = \Delta I - [\Delta I] = \beta$$

$$x_{2} - x = I' + 1 - I - \Delta I = I + [\Delta I] + 1 - I - \Delta I = 1 - \beta$$

$$y - y_{1} = J + \Delta J - J - [\Delta J] = \Delta J - [\Delta J] = \gamma$$

$$y_{2} - y = J' + 1 - J - \Delta J = J + [\Delta J] + 1 - J - \Delta J = 1 - \gamma$$

$$(32)$$

$$y - y_{1} = J + \Delta J - J - [\Delta J] = \Delta J - [\Delta J] = \gamma$$

$$y_{2} - y = J' + 1 - J - \Delta J = J + [\Delta J] + 1 - J - \Delta J = 1 - \gamma$$

$$(32)$$

Outline Intro Sekihara Sutton Applicazioni numeriche Algoritmo di Sekihara - Correzione intensità

La discretizzazione dello Jacobiano della trasformazione (24) si ottiene usando i rapporti incrementali al posto delle derivate parziali:

$$D(I,J) \approx 1 + \frac{1}{\Delta x G_x} (\Delta B(I+1,J) - \Delta B(I,J)) + \frac{1}{\Delta y G_y} (\Delta B(I,J+1) - \Delta B(I,J))$$
(33)

Dalle equazioni (23) e (27) si vede che l'immagine ricostruita C'(I, J') differisce da quella originale per un fattore dovuto allo jacobiano della trasformazione: la correzione dell'intensità dell'immagine si ottiene pesando l'immagine corretta (31) con lo jacobiano discretizzato (33):

$$\rho(I,J) = \rho(I,J) \cdot D(I,J)$$
(34)

35 / 55

Outline Intro Sekihara Sutton Applicazioni numeriche Algoritmo di Sekihara in sintesi

A partire dall'immagine ricostruita C'(I', J'), nota la field-map $\Delta B(I, J)$ l'algoritmo ricostruisce un'immagine non distorta C(I, J)

- I passo: Trasformata di Fourier inversa del segnale registrato (26) per ottenere l'immagine ricostruita C'(I', J')
- Il passo: Applico la formula dell'interpolazione bilineare (31) all'immagine ricostruita C'(I', J') per ottenere l'immagine non distorta C(I, J)
- III passo: Correzione dell'intensità dell'immagine così ottenuta mediante la (34)

 Outline
 Intro
 Sekihara
 Sutton
 Applicazioni numeriche

 Immagini di esempio - simulazione

a. Immagine reale

c. Immagine distorta

b. Mappa delle disomogeneità

d. Immagine ricostruita

Immagini di esempio - caso reale	

corrected image

corrected image

- conoscenza accurata di vari fattori: esatta sequenza di imaging seguita in fase di acquisizione (le equazioni in gioco cambiano al variare del tipo di paradigma scelto), mappatura del campo, valore dei gradienti applicati
- la mappatura del campo magnetico statico all'interno dello scanner da 0.5T è stata fornita da Paramed
- l'immagine centrale è ottenuta supponendo che ci siano solo inomogeneità del campo magnetico statico
- l'immagine a destra è ottenuta applicando il metodo tenendo conto anche delle non linearità dei gradienti di campo
 ^{38/55}

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche

Algoritmo di Sutton

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > 三 の Q (C 39 / 55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Algoritm	no di Suttor	n - Idea		

Metodo di ricostruzione iterativo per l'eliminazione delle distorsioni geometriche proposto da Sutton nell'articolo *Fast, Iterative Image Reconstruction for MRI in the Presence of Field Inhomogeneities* di B. P. Sutton, D. C. Noll e J. A. Fessler.

L'idea alla base della tecnica da loro proposta prevede di ricostruire l'immagine reale non distorta partendo dall'equazione di modello ed utilizzando il metodo dei Minimi Quadrati Regolarizzati associato al Gradiente Coniugato (CG).

Il primo passo da affrontare è la discretizzazione dell'equazione del segnale (19).

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

41 / 55

dove $\rho = (\rho_0, \dots, \rho_{N-1})$ contiene i valori incogniti della funzione $\rho(\mathbf{r})$ negli N pixel che costituiscono l'immagine, $\mathbf{y} = (y_1, \dots, y_M)$ rappresenta il segnale rumoroso campionato in M tempi di lettura, $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_M)$ il noise registrato (rumore bianco Gaussiano) e \mathbf{A} la discretizzazione dell'operatore

$$ho(\mathbf{r})
ightarrow \int_{FOV}
ho(\mathbf{r}) e^{-i\Delta B(\mathbf{r})t} e^{-i2\pi \mathbf{k}(t)\cdot\mathbf{r}} d\mathbf{r}$$

Il primo passo da affrontare è la discretizzazione dell'equazione del segnale (19).

dove $\rho = (\rho_0, \dots, \rho_{N-1})$ contiene i valori incogniti della funzione $\rho(\mathbf{r})$ negli N pixel che costituiscono l'immagine, $\mathbf{y} = (y_1, \dots, y_M)$ rappresenta il segnale rumoroso campionato in M tempi di lettura, $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_M)$ il noise registrato (rumore bianco Gaussiano) e \mathbf{A} la discretizzazione dell'operatore

$$ho(\mathbf{r})
ightarrow \int_{FOV}
ho(\mathbf{r}) e^{-i\Delta B(\mathbf{r})t} e^{-i2\pi \mathbf{k}(t)\cdot\mathbf{r}} d\mathbf{r}$$

Si tratta di risolvere un problema inverso lineare mal posto (35).

L'algoritmo di Sutton ricerca la discretizzazione ρ dell'immagine non distorta, ossia della distribuzione della magnetizzazione, direttamente in fase di ricostruzione tramite la regolarizzazione della soluzione.

La discretizzazione (35) viene effettuata parametrizzando la magnetizzazione e la mappa del campo in termini di basi di funzioni (ad es. le funzioni indicatrici dei pixel):

$$a_{m,n} = F_{\phi}(\mathbf{k}(t_m)) e^{-i\delta_n t_m} e^{-i2\pi \mathbf{k}(t_m) \cdot \mathbf{r}_n}$$
(38)

dove

- ρ_n e δ_n sono il valore della densità protonica e della mappa del campo in corrispon-denza di r_n (vettore posizione dell'*n*-esimo pixel dell'immagine)
- F_{ϕ} denota la TDF delle funzioni base $\phi(\mathbf{r})$
- A è una matrice di dimensioni $M \times N$ i cui elementi sono dati da (38)

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Algoritm	o di Sutto	n - Metodo d	i Tikhonov	

Il metodo di Sutton agisce, prima della ricostruzione, direttamente sull'operatore **A** per stimare l'immagine discretizzata $\rho = (\rho_0, \dots, \rho_{N-1})$ a partire dai dati rumorosi **y** del k-space.

Per risolvere il problema inverso mal posto (35) viene utilizzato il Metodo di Tikhonov (o dei Minimi Quadrati Regolarizzati)

$$\psi(\boldsymbol{\rho}) = \frac{1}{2} ||\mathbf{y} - \mathbf{A}\boldsymbol{\rho}||_2^2 + \alpha R(\boldsymbol{\rho})$$

$$\hat{\boldsymbol{\rho}} = \operatorname{argmin}_{\boldsymbol{\rho}} \psi(\boldsymbol{\rho})$$
(39)

con α parametro di regolarizzazione. Il termine $R(\rho)$ rappresenta una funzione di regolarizzazione che penalizza le irregolarità dell'immagine da stimare ed è discretizzata tramite una matrice **R**:

$$R(\boldsymbol{\rho}) = \frac{1}{2} ||\mathbf{R}\boldsymbol{\rho}||_2^2$$

Un modo per affrontare il mal condizionamento del problema è utilizzare algoritmi iterativi che hanno un effetto regolarizzante sulla soluzione.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Gradiente (Coniugato			

Sutton utilizza per la risoluzione del metodo di Tikhonov il **metodo del Gradiente Coniugato** che ha una rapida velocità di convergenza e consente quindi l'utilizzo di un numero minore di iterazioni rispetto ad altri metodi iterativi con conseguente diminuzione del tempo di calcolo.

イロト 不得下 イヨト イヨト 二日

44 / 55

Inizializzazione

- stima iniziale dell'immagine: $ho=
 ho_0$
- $\mathbf{r} = \mathbf{y} \mathbf{A} \boldsymbol{\rho}_0$ (residuo)

Iterazioni

▶
$$\mathbf{g}_{new} = \mathbf{A}^T \mathbf{r} - \alpha \mathbf{R}^T \mathbf{R} \rho_k$$

▶ if $k = 0, \gamma = 0$, else, $\gamma = \frac{\mathbf{g}_{new}^T \mathbf{g}_{new}}{\mathbf{g}_{old}^T \mathbf{g}_{old}}$
▶ $\mathbf{d} = \mathbf{g}_{new} + \gamma \mathbf{d}$
▶ $\mathbf{q} = \mathbf{A} \mathbf{d}$
▶ $\beta = \frac{\mathbf{d}^T \mathbf{g}_{new}}{\mathbf{q}^T \mathbf{q} + \alpha \mathbf{d}^T \mathbf{R}^T \mathbf{R} \mathbf{d}}$
▶ $\rho_{k+1} = \rho_k + \beta \mathbf{d}$ (update image)
▶ $\mathbf{r} = \mathbf{r} - \beta \mathbf{q}$ (update residuo)
▶ $\mathbf{g}_{old} = \mathbf{g}_{new}$

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Gradiente	Coniugato			

I parametri da definire sono:

- la stima iniziale dell'immagine ho_0
- la matrice R: si sceglie una matrice che considera le differenze tra i pixel vicini
- $\bullet\,$ il parametro di regolarizzazione $\alpha\,$
- il criterio di arresto per le iterazioni.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Osservazion	e			

Sia nel metodo di Sekihara che in quello di Sutton, il problema inverso lineare discreto da risolvere è rappresentato dall'equazione (35), ma il termine $\mathbf{A}\rho$ è diversamente interpretato nei due metodi.

Nell'algoritmo di Sekihara si ricostruisce tramite l'inversione con la Trasformata di Fourier l'immagine distorta $\rho'(\mathbf{r}') = \rho(\mathbf{r})e^{-i\Delta B(\mathbf{r})t}$ discretizzata e, con tecniche di interpolazione, si cerca di ricollocare ogni pixel nella giusta posizione per ottenere la versione discreta dell'immagine corretta $\rho(\mathbf{r})$; **A** in questo caso rappresenta quindi la discretizzazione dell'operatore:

$$ho'(\mathbf{r}')
ightarrow \int_{FOV}
ho'(\mathbf{r}') e^{-i2\pi\mathbf{k}(t)\cdot\mathbf{r}'} d\mathbf{r}'$$

46 / 55

Outline Intro Sekihara **Sutton** Applicazioni numeriche

Immagini di esempio - simulazione

47 / 55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche

Applicazioni numeriche

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Simulazione	e dei dati			

Simulazioni:

- ullet si costruisce un'immagine reale ho
- a partire dall'immagine ρ si calcola il segnale **y** (nella realtà, sarebbe il solo dato a disposizione) tenendo conto del termine di disomogeneità δ ; si usa la (35) per Sutton e la (26) per Sekihara
- a partire dal segnale simulato y si ricostruisce l'immagine ρ usando i due metodi: si ottiene l'immagine ricostruita $\hat{\rho}$
- per valutare l'efficienza dei due metodi si confronta l'immagine ricostruita $\hat{\rho}$ con l'immagine originale ρ calcolando l'errore di ricostruzione relativo $e = \frac{||\hat{\rho} - \rho||_2^2}{||\rho||^2}$

Dati:

- ho e δ matrici di 64 imes 64 pixel di dimensioni 1 imes 1
- $\phi = rect(\frac{r_1}{\Delta_1})rect(\frac{r_2}{\Delta_2})$, funzioni rettangolo che individuano i pixel nell'immagine
- $\mathbf{k}(t_i)$ griglia 2D di estensione totale $(W_{k_x}, W_{k_y}) = (1, 1)$ e densità di campionamento $(\Delta_{k_x}, \Delta_{k_y}) = (\frac{1}{64}, \frac{1}{64})$
- r_n coordinate cartesiane del punto corrispondente nell'immagine centrata rispetto or agli assi
 49/55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Dati				

Immagine reale ρ che si vuole ricostruire e immagine distorta ottenuta con la ricostruzione attraverso la Trasformata di Fourier Inversa.

Dutling	
Outillie	

Intro

Sekihara

Sutto

Applicazioni numeriche

Confronto

<u>Sekihara</u>

Sutton

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Robustezz	a - dison	nogeneità		

Errore relativo	0.0064	0.0057	0.0063
	•		0

Outline	Intro	Sekihara

Sutton

Applicazioni numeriche

Robustezza - rumore

SNR	36	22	16	8	2	-0.5
Errore Sekihara	0.1215	0.1243	0.1273	0.1621	0.3181	0.4988
SNR	36	22	16	8	2	-0.5
Errore Sutton	0.0064	0.0131	0.0337	0.1863	0.7147	1.4801

▶ ▲ ■ ▶ ■ • ○ Q (~ 53 / 55

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Considerat	zioni			

- A livello computazionale risulta molto più rapido l'algoritmo di Sekihara dovendo effettuare solamente delle somme pesate rispetto ai prodotti matrice-vettore di dimensioni elevate contenuti in ogni passo dell'algoritmo del Gradiente Coniugato alla base del metodo di Sutton
- Le ricostruzioni con il metodo di Sutton risultano qualitativamente migliori rispetto a quelle ottenute con il metodo di Sekihara
- Il problema della ricostruzione con l'algoritmo di Sekihara sono i bordi
- Il metodo risulta essere robusto rispetto a grandi disomogeneità del campo magnetico statico e al noise
- La migliore qualità del metodo è visibile anche in presenza di rumore gaussiano bianco con valori del rapporto segnale/rumore non troppo basso.

Outline	Intro	Sekihara	Sutton	Applicazioni numeriche
Reference				

- K. Sekihara. M. Kuroda. and H. Kohno. Image restoration from non uniform magnetic field influence for direct Fourier NMR imaging, Phys. Med. BioZ., 1984, vol. 29, no. 1, pp. 15-24.
- B. P. Sutton, D. C. Noll and J. A. Fessler, Fast, Iterative Image Reconstruction for MRI in the Presence of Field Inhomogeneities, IEEE Trans. Med. Imag., Vol. 22, NO. 2, pp. 178-188, Feb. 2003.
- E. Leoncini, *Ricostruzione di immagini per la riduzione di distorsioni geometriche in Risonanza Magnetica*, Laurea Specialistica in Matematica
- A. Caleo, *Riduzione di distorsioni geometriche in immagini di Risonanza Magnetica*, Laurea Specialistica in Matematica
- G. Zaccaria, *Limiti di applicabilità di un metodo di ricostruzione di immagini in Risonanza Magnetica*, Laurea Triennale in Matematica