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Abstract

Motivation: DNA methylation is a stable epigenetic mark with major implications in both physiological
(development, aging) and pathological conditions (cancers and numerous diseases). Recent research
involving methylation focuses on the development of molecular age estimation methods based on DNA
methylation levels (mAge). An increasing number of studies indicate that divergences between mAge
and chronological age may be associated to age-related diseases. Current advances in high-throughput
technologies have allowed the characterization of DNA methylation levels throughout the human genome.
However, experimental methylation profiles often contain multiple missing values, that can affect the
analysis of the data and also mAge estimation. Although several imputation methods exist, a major
deficiency lies in the inability to cope with large datasets, such as DNA methylation chips. Specific methods
for imputing missing methylation data are therefore needed.
Results: We present a simple and computationally efficient imputation method, metyhLImp, based on
linear regression. The rationale of the approach lies in the observation that methylation levels show a
high degree of inter-sample correlation. We performed a comparative study of our approach with other
imputation methods on DNA methylation data of healthy and disease samples from different tissues.
Performances have been assessed both in terms of imputation accuracy and in terms of the impact
imputed values have on mAge estimation. In comparison to existing methods, our linear regression model
proves to perform equally or better and with good computational efficiency. The results of our analysis
provide recommendations for accurate estimation of missing methylation values.
Availability and implementation: The R package methyLImp is freely available at https://github.
com/pdilena/methyLImp.
Contact: name@bio.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Among the plethora of omics that are now available for the study of
biological systems, epigenomics is gaining strength. Epigenomics is
concerned with the study of alterations in gene expression that do not
imply DNA base sequence changes, but imply instead stable yet reversible

modifications that chemically alter such bases or histones, and that are
mitotically (and sometimes meiotically) heritable. This heritability makes
epigenetics a crucial factor to be considered in the study of causative
biological mechanisms, and a desirable mean of investigation, owing to
its stability. Epigenetics is more specifically concerned with three types
of modifications: DNA methylation, histones’ modification and post-
transcriptional changes such as the activity of miRNAs. This work focuses
on DNA methylation, enabled by cost-effectiveness of highly parallel
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assays (methylation arrays) and by robustness of the signals, owing to
the reversible, enzyme-dependent addition (DNA methylatranspherase) of
a methyl group to the 5’-end of the CpG dinucleotide.

DNA methylation is crucial in embryonic development and in aging
(Nardini et al., 2018), leading to tissue-specific cells’ identity, by
selective and stable, although reversible, silencing of portions of the
genome. Importantly, methylation is linked to the accessibility to the
DNA molecule, normally tightly packed around histones. Therefore,
methylation patterns present with regularity across individuals owing
to the underlying biophysical regularity of the packaging, observable
even in the unfolded methylated DNA. Methylation is also involved in
phenomena with higher dynamics, tied to the reversibility of epigenomic
changes, such as the modifications of immune cells upon environmental
challenges, for periods that can last from weeks to years and up to a
lifetime, fundamental in the setup of the so-called cell memory, crucial
in vaccination (Ciabattini et al., 2018). Recently, research involving
methylation has focused on establishing correlations between changes
in chronological and methylation age (mAge), assessed via a number of
epigenetic clocks (Garagnani et al., 2012; Hannum et al., 2013; Horvath,
2013; Weidner et al., 2014). The rationale for epigenetic clocks descends
from the observation that divergence form the expected correlation
between chronological and the expected methylation at specific CpGs
(base of the computation of mAge) is proven to be: i) indicative and
sometimes predictive (Durso et al., 2017) of a number of diseases in case
of acceleration (i.e. mAge higher than chronological age), such as in Down
Syndrome, Parkinson’s and Alzheimer’s diseases, cancers (Horvath and
Raj, 2018); ii) indicative of successful aging in case of deceleration, such
as in centenarians and their off-springs (Horvath et al., 2015).

Given the relevance of the computation of mAge for application in
areas that go from cancer prevention to healthy aging, we here focus
on the optimization of such calculation, intimately tied to the presence
of valid values at the clocks’ specific CpGs. Similarly to other omics,
missing data represent an issue researchers have been coping with via
a number of imputation approaches (see Section 2.2). With reference
to the computation of mAge the issue is more pressing, as relevant
information does not have the dimensionality of the whole chip, but is
restrained to the CpGs necessary to compute the clock, from a handful to
some hundreds. Based on this need and on the peculiar characteristics of
methylation (stability and robustness) resulting in inter-sample correlation,
we can successfully exploit simple multiple linear regression models for
limited-range missing values imputation. Although the more advanced
approaches for data imputation are able to deal with heterogeneous
(continuous and categorical) variables, this usually comes at the cost of
being computationally intensive. Despite linear regression models may
not be suitable for imputation in heterogeneous datasets, we show how,
in this context, they represent the best compromise between accuracy and
computational efficiency for data imputation in general, and for assessment
of mAge, in particular.

2 Background

2.1 DNA methylation

DNA methylation is an epigenetic modification involving the covalent
addition of a methyl group to the 5’-carbon of cytosine in a CpG
dinucleotide, making DNA CpGs rich areas more prone to methylation.
The Illumina Infinium assay (Illumina 27k and 450k and now 850k Human
Beadchip) is currently the most cost-effective technology for estimating
the methylation level of DNA samples. Infinium assays utilize a pair of
probes to measure the intensities of the methylated and unmethylated
alleles at each CpG site. The methylation level is then estimated based

on the measured intensities of this pair of probes, across all cells in the
sample tissue.

Two measures are commonly used to quantify the methylation level.
The first one, called β-value (ranging from 0 to 1), is the ratio between
the methylated probe intensity and the overall intensity of both methylated
and unmethylated alleles. The second method, called M -value (ranging
from −∞ to ∞), is the log2 ratio of the β-value, i.e log2(β/(1 −
β)). Despite the desirable statistical properties of M -value metric for
differential analysis of methylation levels (Du et al., 2010), β-value is the
predominantly used metric owing to its intuitive biological interpretation,
and it is recommended by array producers (Bibikova et al., 2006).

Age-related changes in DNA methylation has recently become an
active field of investigation. In particular, several studies describe mAge
estimators, based on β-value representation of methylation levels from a
limited number of CpG sites across the human genome. Garagnani et al.
(2012) identified the methylation of the EOVL2 gene as an epigenetic
marker of aging; Hannum developed an age predictor based on 71 CpG
markers from the whole blood tissue (Hannum et al., 2013); Weidner’s
predictor (Weidner et al., 2014) is based on the methylation level of three
CpGs in blood samples; Horvath’s model is a multi-tissue predictor relying
on 353 CpGs markers, trained with elastic-net regression that includes
both a ridge and a lasso penalization (Horvath, 2013). Given the limited
set of markers considered by such epigenetic clocks, the mAge estimation
accuracy is crucially dependent on the availability of the methylation levels
for all the selected CpGs. Due to its widespread usage and validation in
a variety of tissues, and to the number of CpGs, we limit our analysis to
Horvath’s clock.

2.2 Missing Data imputation

Missing value imputation involves the estimation of the missing entries in
a data matrix of experimental or analytical measurements by exploiting
information about available data. Missing data are a common issue
in numerous scientific research domains from Biology (Troyanskaya
et al., 2001; Stekhoven and Bülmann, 2012; Severson et al., 2017) to
Medicine (Donders et al., 2006) and Social Sciences (Durrant, 2009).
Many approaches have been proposed and there exists a vast literature
on this topic (Enders, 2010).

Missing data are categorized into the following three types (Little and
Rubin, 1986): a value is i) missing completely at random (MCAR) if the
probability of it being missing does not depend on either the observed or
the missing values; ii) missing at random (MAR) if the the probability of
it being missing does not depend on the value that is missing but it may
depend on the observed values; iii) missing not at random (MNAR) if
the probability of it being missing depends on the value that is missing.
Imputation methods require assumptions about the underlying missing data
mechanism. Unfortunately, there is no statistical way to determine in which
category of missingness the data falls. Assumptions are generally made
based upon the knowledge of the data and data collection procedure. There
is no reference in literature that addresses the missingness patterns in DNA
methylation data. Our assumption is that missing values are MCAR/MAR
due to random experimental errors and technology-related errors, e.g. some
probes fail to capture target sequences, hence for some probes there is a
slightly higher chance to have a missing value (independently of the value
itself).

In general terms, imputation approaches can be classified into methods
that deal with continuous or categorical variables (or both). Some
approaches can handle also limited-range variables, avoiding out-of-range
imputations. Another substantial distinction can be done between single
(SI) and multiple imputation (MI) methods. SI methods replace a missing
value with one reasonable value. MI methods perform several single
imputations and average the parameters’ estimates across the multiple
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imputations to produce a single estimate. The most basic imputation
method is the mean, where the missing value of a variable is replaced
with the mean of the non-missing observations for that variable. The mean
approach is the simplest example of SI method that can handle limited-
range continuous variables. Under the MCAR/MAR assumptions, the most
common (SI or MI) imputation methods can deal with the missing data
(Bennet, 2001). In MNAR data, the missingness needs to be modelled
explicitly.

Although all imputation methods that can deal with continuous
variables are, in principle, suitable for DNA methylation data imputation,
in this domain a comparative study of missing value imputation methods, as
well as specific imputation methods, has not been presented yet, to the best
of our knowledge. We only mention two recent works related to this topic.
In Zhang et al. (2016), the authors exploit a penalized functional regression
model to estimate the Illumina 450k Human Beadchip β-values from 27k
Human BeadChip samples. In Wu et al. (2016), the authors propose a site
selection method followed by MI to estimate missing covariate values and
to perform association tests in epigenome-wide association studies.

3 Materials and Methods

3.1 Linear regression model for β-value imputation

We exploit a simple SI multiple linear regression model for limited-
range continuous variables. In detail, the missing values are imputed
by iteratively performing linear regression with pseudo-inverse on the
available (observed) data. The restriction of the range is specified within
the imputation procedure. The rationale of this approach is that methylation
levels exhibit both long- and short-range correlations (Lövkvist et al., 2016;
Zhang et al., 2017) that can be captured by a simple linear regression.

The pseudo-code of the approach is described in Algorithm 1 (see
Supplementary Information 1). The method takes as input an n×m data
matrix containing missing values. The columns of the matrix correspond to
variables (CpGs) and the rows to observations (samples). In the following
we assume that the matrix does not contain samples with only missing
values and that it does contain only values in the range [0, 1] (e.gβ-values).
However, the interface of the R-package implementation methyLImp works
also with unrestricted-range continuous values.

The methyLImp algorithm contains a (parallelizable) loop (lines 7-18)
that evaluates a non-empty list L of variables containing missing values.
The body of the loop selects the first variable in theL list and extracts the list
of all observations RNA (i.e. rows of the matrix) whose value is missing
(line 8). In order to lower the number of linear regressions to be performed
and, thus, speed up the computation, the complete list of variables CNA
(i.e. columns of the matrix) for which only the selected observationsRNA
have missing values is also computed (line 9). In a single step (line 15)
the algorithm imputes all the values in the submatrixM [RNA, CNA] and
then removes the CNA variables from the evaluation list L (line 17). The
approach does not work for those variables whose value is missing in all
samples. Such variables are simply ignored (line 11). A linear regression
with pseudo-inverse is used to compute the coefficients, x, that solve the
linear system:

A · x = logit(B) =⇒ x = A−1·logit(B)

and the missing values are then imputed by logit−1(X · x), where:

• A is the submatrix of all non-missing variables not inCNA for all the
observations not in RNA (line 12);

• B is the submatrix of all non-missing variables in CNA for all the
observations not in RNA (line 13);

• X is the submatrix of all non-missing variables not inCNA for all the
observations in RNA (line 14).

The logit(p)= log(p/(1 − p)), p ∈ [0, 1] function and its inverse
logistic function logit−1(q) = 1/(1−exp(−q))), q ∈ (−∞,∞) are
used to ensure that the imputed values are in the range [0, 1]. The range of
the actual implementation of the logit function does not span from−∞ to
∞ but is fixed to a limited range. The pseudo-inverse A−1 is computed
using the singular value decomposition ofA. Although the implementation
allows for dimensionality reduction of the pseudo-inverse, in practice we
experimented that low rank representations lower the imputation accuracy
(data not shown).

We remark that our regression model uses only completely observed
submatrices. Thus, the approach cannot be applied if each variable in
the matrix contains at least one missing value. However, in practice this
does not happen, since due to the pattern distribution of missing values
in real DNA methylation data, the regression submatrices (A and X) are
typically very large, involving thousands of variables (see Supplementary
Information 1).

Algorithm 1 Impute missing values in a matrix of β-values

1: function methyLImp(M ∈ [0, 1]n×m)
2: M ′ ←M

3: R← {1, ..., n} . All row indexes
4: C ← {1, ...,m} . All column indexes
5: NA← {c | ∃r,M [r, c] is missing } . Cols with missing values
6: L← NA

7: while L 6= ∅ do
8: Select some col ∈ L
9: RNA ← {r |M [r, col] is missing }
10: CNA ← {c |M [r, c] is missing ⇐⇒ r ∈ RNA}
11: if R \RNA 6= ∅ and C \NA 6= ∅ then
12: A←M [R \RNA, C \NA]
13: B ←M [R \RNA, CNA]
14: X ←M [RNA, C \NA]
15: M ′[RNA, CNA]←logit−1(X · [A−1·logit(B)])

16: end if
17: L← L \ CNA
18: end while
19: return M ′

20: end function

3.2 Missing data imputation software

In order to cover representative techniques described in literature, our
linear regression model’s performances were benchmarked against six R-
implemented imputation methods. We focused only on methods that can
handle continuous variables and large amount of data without requiring
massive computational power. The complete list is available in the
Supplementary Information 1.

Briefly, two of the six methods, mean and impute.knn (Troyanskaya
et al., 2001), are based on the classical and computationally efficient
mean-value imputation technique. The mean approach consists of simply
replacing the missing value of a given variable by averaging all the known
values for that variable. The impute.knn approach, used in Horvath (2013),
replaces a missing element for a variable by averaging the non-missing
values of its nearest neighbours. Three methods, SVDmiss (Fuentes et al.,
2006), softImpute (Mazumder et al., 2010) and imputePCA (Josse and
Husson, 2013), are roughly based on iterative soft-thresholding of the
input matrix. The techniques in this class first replace the missing values
with some initial guess and then iteratively update, up to convergence,
the missing elements with values generated by a low-rank approximation



“output” — 2020/3/25 — page 4 — #4

4 Di Lena et al.

of the input matrix. SVDmiss and softImpute iteratively perform a soft-
thresholding SVD (Singular Value Decomposition) of the input matrix.
imputePCA implements a low-rank approximation version of the iterative
PCA (Principal Component Analysis) algorithm, also known as EM-PCA
(Dempster et al., 1977). Finally, missForest (Stekhoven and Bülmann,
2012) is an iterative method based on random forest regression trees. All
such methods have been run with the default parameters provided in their
R implementations.

3.3 Benchmark data

Benchmark datasets, were chosen from the NCBI database Gene
Expression Omnibus (GEO) (Edgar et al., 2002), filtering by platform
GPL13534 (450k Human Beadchip) available up to July 1st 2017. The
datasets were split into smaller sets, separating healthy controls from
disease case samples. Healthy and disease datasets were further split in
order to separate samples from different tissues. Only healthy controls with
age information and datasets containing at least four samples were retained.
The healthy control set consists of 37 benchmark datasets with overall
1,495 samples. The disease case set consists of 21 benchmark datasets with
overall 386 samples. Due to the high cpu time required by some imputation
methods to process the largest datasets, we chose to pre-filter all datasets in
order to decrease their size. We reduced the dataset information by keeping
only the methylation sites in the intersection between the Illumina 27k and
450k Human Beadchips, approximatively 21k sites, already selected by
Horvath for training his epigenetic clock.

Each dataset originally contains a variable number of missing
values. On average, the number of variables (CpGs) that contain
missing informations is typically quite small. The full list with detailed
informations is available in the Supplementary Information 1.

3.4 Experimental setup

The general workflow of our analysis is as follows. Given a DNA
methylation dataset, we introduced in the data varying percentages of
missing values, under the MCAR assumption of random experimental
error. The selected methods were used to impute the missing values in
the dataset and Horvath’s clock was used to estimate the mAge after
imputation.Calculation of mAge was done using the wateRmelon (Pidsley
et al., 2013) implementation of the Horvath’s epigenetic clock (Horvath,
2013). Performances were evaluated in terms of difference between
imputed and original β-values, as well as difference in mAge estimation
between original and imputed data. For performance evaluation we
adopted the most popular evaluation metrics for missing data imputation
(see Supplementary Information 1): RMSE (Root Mean Square Error),
MAE (Mean Absolute Error), PCC (Person Correlation Coefficient) and
MAPE (Mean Average Percentage Error).

Since one of our primary interest is investigating to which extent data
imputation affects the mAge estimation, we introduced missing values
uniquely for the 353 CpG markers used in Horvath’s clock: inaccurate
imputations for different markers do not affect Horvath’s mAge estimation.
In more detail, we randomly introduced 10% (35), 30% (106), 50% (176)
and 70% (247) missing values among the Horvat’s 353 markers. In order to
make the analysis more robust, we repeated such random introduction of
missing values 10 times for each percentage. These 40 random sets of CpG
markers are stable throughout the analysis. In each test, missing values
were introduced only for a single sample at a time, leaving the remaining
samples in the dataset unchanged. Thus, for each sample we performed 40
different tests with varying percentages and types of missing values. Each
imputation method was then run a total of 40 · (1, 495+386) = 75, 240

times.

All the experiments were performed on a computer with a double Intel
Xeon® E5-2683 v4 CPU @ 2.10GHz with a total of 64 computing cores
and 256 GB of RAM at the Smart Cities Living Lab, CNR.

4 Results

4.1 Imputation accuracy assessment

We compare here the performances of the imputation methods in terms of
imputation accuracy per CpG site.

Table 1 and Table 2 show the overall performances with respect to the
percentage of missing values among the 353 CpGs in Horvath’s clock on
healthy and disease samples, respectively. The evaluation metric scores in
Tables 1 and 2 have been averaged over the ten random replicas. The error
measures and the detailed results per dataset are available in Supplementary
Information 2.

Since, in some cases softImpute, imputePCA and SVDmiss impute
values outside the [0, 1] range of β-values, we consider also the
performances of the three methods after a post-imputation truncation of
the overflowed values. As shown in Supplementary Information 2, the
accuracy of the three methods (SVDmissT , softImputeT and imputePCAT )
is not significantly affected by out-of-range imputations.

From Table 1 and Table 2, we can notice that the performances of
most methods do not decrease with increasing percentages of missing
markers, likely owing to the high intercorrelation among methylated
regions of the genome. On the other end, independently from the specific
approach, imputations are less accurate on disease-related samples. In
particular, the mean absolute error per site is more than doubled in datasets
related to cancer (see Supplementary Information 2), the most common
disease type in our benchmark set. This is somewhat expected, due to
the known heterogeneity of tumors and the associated higher inter-sample
methylation variability (Lomberk et al., 2018; Klughammer et al., 2018).

In Fig 1, we can notice that absolute errors are not equally distributed
over the range of β-values, being smaller at the extremes. Although
Fig. 1 shows performances on healthy samples only, this general trend
is clearly visible also for the disease-related samples and in each single
tissue-specific dataset (see Supplementary Information 2), as well as for
all metrics but MAPE (which is, not surprisingly, higher for smaller
β-values). This behaviour can be explained by the already discussed
heteroscedasticity ofβ-values (Du et al., 2010), i.e. the standard deviations
of β-values are compressed in the low and high ranges. The error
distribution of mean imputations in Fig. 1 are a clear evidence of such
variability. Furthermore, this behaviour corresponds to the strength of the
biological signal, as 1 and 0 correspond to situations where all or none
of the cells in the tissue under study are methylated, indicating a very
robust biological condition, easier to predict than a situation where only a
proportion of the cells presents a given methylation pattern (intermediate
values). Unexpectedly, impute.knn is the only method for which the
errors increase with increasing range of the β-values. This seems to
be particularly evident in the smaller datasets, independently from the
specific tissue (see Supplementary Information 2). This behaviour affects
the overall performances of the impute.knn method, which, especially on
control samples, behaves slightly worse than the baseline mean method.

In general terms, the imputation accuracy of our methyLImp linear
model is higher in comparison to the other methods and with respect to all
selected metrics. In order to test whether the performances of methyLImp
are statistically significantly higher than those of the other methods, we use
the one-tailed Wilcoxon paired rank-sum test with Benjamini-Hochberg
multiple test correction. In Tables 1 and 2 we indicate with the † symbol
only those cases for which the null hypothesis of having the same accuracy
could not be rejected (p-value≥0.05). In summary, all metrics show
that methyLImp behaves statistically significantly better than the other
methods (p-value<0.05) for all the percentages of missing value, with the
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Fig. 1. Global CpG imputation performances in terms of MAE and with respect to β-value
range. Healthy control samples.

exception of the MAPE in the case of 10% missing values, for which the
null hypothesis of methyLImp having the same MAPE than impute.knn,
imputePCA and missForest could not be rejected.

Finally, recall that, in each test we artificially introduce a maximum of
247 missing values on a single sample. In order to stress the imputation
capabilities of the benchmarked methods, we replicated the same
experiments for much larger sets of missing values (see Supplementary
Informations 3). On such larger sets the imputation accuracies remain
unaffected for all methods but softImpute and impute.knn, which show
considerably lower performances.

4.2 DNA methylation age estimation from imputed data

We compare here the performances of the imputation methods in terms of
the impact they have on mAge estimation.

In first place, we analyze how much the mAge estimation diverges
from the expected measure at increasing percentage of imputed values.
This represents the final aim of our work, i.e. identification of the
appropriateness of imputing methylation values in order to gain insight into
the mAge value. The overall performances on healthy and disease samples
are shown in Tables 3 and 4, respectively. As expected, the performances
decrease uniformly for all methods at increasing percentages of imputed
values. Furthermore, the deviations are higher for disease samples than for
control samples, mirroring the known clinical and biological difficulties
in capturing regularities among the heterogeneity of tumor samples. This
is consistent with the results in Tables 1 and 2, where imputation accuracy
is shown to be considerably lower in disease-related datasets. Overall,
methyLImp imputed values induce smaller mAge approximation errors in
comparison to all other methods. In particular, methyLImp performances
are almost everywhere significantly better than those of the other methods
(Wilcoxon paired rank test at significance level < 0.05 with Benjamini-
Hochberg multiple test correction), except for very few cases for which
there is no significant difference (indicated with † in the tables).

In Fig. 2, we can observe how the absolute errors are distributed
with respect to the mAge ranges in control samples. In short, imputation
errors seem to affect more the mAge evaluation in elderly than in young
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Fig. 2. Global mAge accuracy from imputed values in terms of MAE and with respect to
mAge range. Healthy control samples.

individuals. Interestingly, as previously reported (Horvath, 2013; Horvath
et al., 2015), the mAge estimation for such individuals is not very accurate
also with complete data. Approximatively the same trend can be observed
in disease case samples as well (see Supplementary Information 2). In Fig.
2 we can also notice that impute.knn imputations tend to heavily affect the
mAge estimation in the range 20-40. This may be the consequence of
the inaccurate imputations of high range β-values, as shown in Fig. 1.
However, this behaviour is not observed in disease-related samples (see
Supplementary Information 2).

In order to assess how reliable the mAge evaluated from imputed values
is, we measured the concordance between mAge and chronological age
in healthy samples. We do not consider here the predictive accuracy in
disease-related samples since, in this setting, mAge is expected to indicate
a deviation from chronological age. The most commonly adopted accuracy
measure between mAge and chronological age is the Pearson correlation
coefficient, usually denoted as age correlation. The age correlation of
Horvath’s clock for the original 1495 healthy control samples is 0.914 (p-
value< 10−15). Table 5 shows the age correlation of the Horvath’s clock
with respect to the percentage of values imputed by the benchmarked
methods. The age correlations in Table 5 have been averaged over the
ten random tests. Although all correlations in Table 5 are statistically
significant (pvalue < 10−15), a statistical test of the difference between
paired correlations with Benjamini-Hochberg multiple test correction (see
Supplementary Information 2) shows that with 70% imputed values the
age correlations deviates significantly from the original age correlation. On
the other end, up to 30% imputed values do not statistically significantly
affect Horvath’s clock mAge estimation, almost independently of the
specific imputation method. Among all methods, the imputations of
methyLImp and missForest induce smaller deviations in the age correlation,
consistently with their performances shown in Tables 1 and 3.

4.3 Computational efficiency

The average memory requirements and running times over the 75k runs
performed with each imputation method are shown in Table 6. The
fastest methods are mean, impute.knn, softImpute and imputePCA, while
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10% missing markers 30% missing markers 50% missing markers 70% missing markers

Method RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE

mean 0.043 0.026 0.99 20.8 0.043 0.026 0.99 19.4 0.043 0.026 0.99 20.4 0.042 0.026 0.99 19.9
impute.knn 0.057 0.027 0.98 16.8 0.055 0.026 0.98 17.0 0.063 0.028 0.98 18.2 0.074 0.030 0.97 18.3
softImpute 0.042 0.024 0.99 19.5 0.043 0.025 0.99 18.3 0.049 0.025 0.99 19.5 0.048 0.025 0.99 19.0
imputePCA 0.039 0.023 0.99 18.3 0.039 0.024 0.99 17.3 0.039 0.023 0.99 18.3 0.039 0.023 0.99 17.9
SVDmiss 0.039 0.023 0.99 18.7 0.040 0.023 0.99 17.6 0.040 0.023 0.99 18.6 0.039 0.023 0.99 18.1
missForest 0.037 0.022 0.99 19.2 0.037 0.022 0.99 17.4 0.038 0.022 0.99 18.7 0.037 0.022 0.99 18.1
methyLImp 0.035 0.021 0.99 15.1 0.035 0.021 0.99 14.7 0.035 0.021 0.99 15.0 0.035 0.021 0.99 14.9

Table 1. Global CpG imputation performances on 1495 healthy control samples with respect to percentage of missing markers. The results have been averaged
over the 10 random replicas per percentage of missing markers. Standard errors (see Supplementary Information 2) are in the order of magnitude 10−4 for RMSE,
MAE, PCC and on the order of 10−1 for MAPE. Best results per metric are highlighted in bold. Results for which the Wilcoxon paired rank-sum test p-value is
≥ 0.05 are indicated with the † symbol.

10% missing markers 30% missing markers 50% missing markers 70% missing markers

Method RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE

mean 0.090 0.053 0.95 33.3 0.088 0.052 0.95 32.3 0.089 0.052 0.95 32.2 0.089 0.052 0.95 32.7
impute.knn 0.084 0.047 0.96 25.3† 0.084 0.047 0.96 25.2 0.088 0.048 0.96 26.0 0.092 0.049 0.95 26.5
softImpute 0.087 0.049 0.95 29.1 0.085 0.048 0.96 28.8 0.087 0.049 0.96 29.1 0.089 0.049 0.95 29.5
imputePCA 0.080 0.046 0.96 27.9† 0.079 0.045 0.96 27.4 0.079 0.046 0.96 27.5 0.079 0.045 0.96 27.7
SVDmiss 0.084 0.046 0.96 29.0 0.081 0.045 0.96 28.6 0.082 0.046 0.96 28.6 0.081 0.045 0.96 28.8
missForest 0.075 0.044 0.96 27.3† 0.074 0.043 0.97 26.9 0.075 0.043 0.97 27.2 0.075 0.043 0.97 27.3
methyLImp 0.071 0.039 0.97 25.4 0.070 0.038 0.97 23.4 0.071 0.039 0.97 24.4 0.070 0.038 0.97 24.5

Table 2. Global CpG imputation performances on 386 disease case samples with respect to percentage of missing markers. The results have been averaged over the
10 random replicas per percentage of missing markers. Standard errors (see Supplementary Information 2) are in the order of magnitude 10−4 for RMSE, MAE,
PCC and on the order of 10−1 for MAPE. Best results per metric are highlighted in bold. Results for which the Wilcoxon paired rank-sum test p-value is ≥ 0.05

are indicated with the † symbol.

10% imputed markers 30% imputed markers 50% imputed markers 70% imputed markers

Method RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE

mean 1.8 1.3 0.99 4.3 3.8 2.9 0.98 10.8 5.6 4.3 0.96 17.4 7.9 6.0 0.92 26.6
impute.knn 2.7 1.8 0.99 5.8 4.7 3.4 0.98 11.1 6.4 4.7 0.95 15.4 8.8 6.4 0.91 20.5
softImpute 1.7 1.2 0.99 3.7 3.7 2.8 0.98 9.3 5.6 4.1 0.96 14.6 8.0 5.8 0.92 22.0
imputePCA 1.6 1.1 0.99 3.6 3.5 2.6 0.99 8.8 5.0 3.8 0.97 13.4 7.2 5.4 0.94 19.9
SVDmiss 1.6 1.1 0.99† 3.2 3.5 2.4 0.98 7.1 5.0 3.4 0.97 10.0 7.0 4.8 0.94 14.0
missForest 1.5† 1.1 0.99† 3.3 3.2 2.3 0.99 7.9 4.5 3.4 0.98 11.8 6.3 4.7 0.95 17.4
methyLImp 1.4 0.9 0.99 2.8 2.8 1.9 0.99 5.7 3.8 2.6 0.98 7.8 5.1 3.6 0.97 10.5

Table 3. Global mAge accuracy from imputed values on 1495 healthy control samples with respect to percentage of imputed markers. The results have been
averaged over the 10 random replicas per percentage of imputed markers. Standard errors (see Supplementary Information 2) are in the order of magnitude 10−1

for RMSE, MAE, MAPE and on the order of 10−4 for PCC. Best results per metric are highlighted in bold. Results for which the Wilcoxon paired rank-sum test
p-value is ≥ 0.05 are indicated with the † symbol

.

10% imputed markers 30% imputed markers 50% imputed markers 70% imputed markers

Method RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE RMSE MAE PCC MAPE

mean 3.8 2.8 0.99 6.4 7.1 5.2 0.96 19.0 9.3 7.0 0.93 42.2 12.5 9.3 0.86 79.1
impute.knn 3.5 2.4 0.99 5.5† 6.3 4.5 0.97 13.4† 8.8 6.3 0.93 23.3† 12.3 8.8 0.87 36.2†
softImpute 3.9 2.6 0.99 6.1 7.1 4.9 0.96 17.0 9.4 6.7 0.92 35.1 12.8 9.1 0.85 66.8
imputePCA 3.5 2.5 0.99 5.8 6.4 4.6 0.97 14.2 8.7 6.4 0.94 26.5 11.8 8.8 0.88 44.7
SVDmiss 3.8 2.5 0.99 6.1 6.5 4.6 0.96 17.7 9.0 6.5 0.93 39.1 12.0 8.9 0.87 74.1
missForest 3.2 2.3 0.99 5.7 5.9 4.3 0.97 16.7 8.0 5.9 0.95 35.8 11.0 8.1 0.89 69.2
methyLImp 3.1 2.1 0.99 5.1 5.5 3.9 0.97 12.1 7.4 5.3 0.95 22.1 10.1 7.3 0.91 39.3

Table 4. Global mAge accuracy from imputed values on 386 disease case samples with respect to percentage of imputed markers. The results have been averaged
over the 10 random replicas per percentage of imputed markers. Standard errors (see Supplementary Information 2) are in the order of magnitude 10−1 for RMSE,
MAE, MAPE and on the order of 10−4 for PCC. Best results per metric are highlighted in bold. Results for which the Wilcoxon paired rank-sum test p-value is
≥ 0.05 are indicated with the † symbol

.
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missForest is the slowest, requiring the equivalent of 2 years of total
calculation on a single processor machine. In terms of extra memory
usage (other than the dataset memory requirements), SVDmiss is the most
demanding method. SVDmiss is virtually unusable on large datasets with
full 450k CpG sites. In comparison to the other methods methyLImp is
reasonably efficient in terms of memory requirements and acceptable in
terms of running time. A significant speed-up in computation time can be
gained by using the parallelized version of the algorithm, at the cost of
higher memory requirements.

Method Avg time (sec) Avg RAM (Mb)

mean < 1 63
impute.knn 3 259
softImpute < 1 238
imputePCA 20 450
SVDmiss 160 4072
missForest 879 426
methyLImp 185 281

Table 6. Average time and memory usage over 75,240 runs.

5 Conclusion
We have designed a novel imputation method, methyLImp, for DNA
methylation data. Our model implements a simple linear regression
approach that exploits the inter-samples correlation descending from
the biological nature of the methylated DNA. Imputation performances
have been assessed on a variety of samples (healthy and disease) under
increasing stress (missing values) and by a variety of accuracy metrics. In
comparison to existing methods, our linear model provides a reasonably
fast and accurate way to impute missing values in DNA methylation data.
Given the relevance of methylation data in the study of the mechanism
of action of a variety of biological functions, our approach significantly
contributes to this area, allowing the research to be taken forward even in
case of imperfect or clearly impaired datasets. However, the results of our
tests indicate that it is important to take cautions when drawing conclusions
from biological analyses including partially imputed methylation values.
In particular, independently from the specific method, imputation accuracy
is significantly lower in disease than in normal samples, mirroring the
well-known biological and clinical issue associated to the heterogeneity of
tumor samples. Similarly, data prediction is more reliable for low and high
range methylation levels (i.e., β-values close to 0 and 1), again mirroring
the biological event where the signal is coherent for all cells in the tissue
(all methylated or non-methylated) versus intermediate situations. Finally,
special care needs to be taken when using DNA methylation-based clocks
with imputed values, since even few poorly imputed values may severely
affect the mAge estimation.
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Percentage of imputed markers

Method 10% 30% 50% 70%

mean 0.915 0.913 0.902∗∗ 0.877∗∗∗∗

impute.knn 0.912 0.911 0.896∗∗∗ 0.893∗∗∗

softImpute 0.915 0.912 0.900∗∗ 0.875∗∗∗∗

imputePCA 0.915 0.911 0.902∗∗ 0.880∗∗∗∗

SVDmiss 0.914 0.909∗ 0.900∗∗∗ 0.879∗∗∗∗

missForest 0.915 0.914 0.909 0.895∗∗∗

methyLImp 0.914 0.913 0.909 0.900∗∗∗

Table 5. Pearson correlation coefficient (age correlation) between mAge
(predicted age) and chronological age on 1495 healthy control samples,
with respect to the percentage of imputed values. Significance levels for the
difference between paired correlations, original correlation (0.914) and post-
imputation-correlation, are encoded as: * < 10−2, ** < 10−4, *** < 10−6,
**** < 10−8.


