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Abstract. Normalized mutual information (NMI) is a widely used metric for performance
evaluation of community detection methods, recently proven to be affected by finite size effect. To
overcome this issue, a metric called relative normalized mutual information (rNMI) has been
proposed. However, we show here that INMI is still a biased metric and may lead, under given
circumstances, to erroneous conclusions. The bias is an effect of the so called reverse finite size
effect. We discuss different strategies to address this issue, and then propose a new metric the
corrected normalized mutual information (c(NMI), symmetric and well normalized, in the form of
empirical calculation and closed-form expression. The experiments show that cNMI not only
removes the finite size effect of NMI but also the reverse finite size effect of rNMI, and is hence
more suitable for performance evaluation of community detection methods and for other

approaches typical of the more general clustering context.

I. Introduction

Community detection in a complex network corresponds to the partition of the
network into groups of nodes with much denser connections within each group than
among such groups. This represents an important and challenging problem in network
structural analysis, applied in a variety of fields including sociology, biology,
computer science, to name a few. Plenty of different community detection methods
have thus been designed [1] and, as a consequence, testing and comparing
performances is of great importance and usefulness in facilitating end-users,
especially those outside of the fields of physics and computer science, to effectively
improve or apply community detection methods in their own area.

Performance testing and comparison of different community detection methods
is by no means a trivial task due to the different motivations and intended applications.
As a result, determining if one community detection method is better than another is
usually done in a simplified way by employing canonical benchmarks like computer
generated synthetic networks and real-world networks where node classification is
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known. Benchmark networks are generated with arbitrarily designed built-in
community structures or selected with already known correct community structure
(termed known partition of the network). The accuracy is usually computed in terms
of similarity by comparing the solution delivered by the method (termed computed
partition of the network) with the known partition of the network. The larger the
similarity the better the performance of the method on the given benchmark is.
Synthetic networks with built-in community structure generated by statistical models
like stochastic block model [2, 3], planted partition model [4] or its variant proposed
by Lancichinetti, Fortunato, and Radicchi (denoted as LFR model) [5], and real-world
networks as karate club network [6], football network [7], politics network [8] to
name a few, are routinely used as benchmark networks. With these well-known
benchmarks, performance testing thus involves defining a metric to establish how
similar the computed partition is to the known partition.

A metric designed for this purpose must have a number of desirable properties.
First, it should equal 1 when the computed partition is identical to the known partition.
Second, when the computed partition is a random permutation of the known partition,
the value of their similarity should approach zero. Third, it should be symmetric, i.e.
the similarity computed by comparing the computed partition with the known
partition should be the same as that computed by comparing the known partition with
the computed partition.

Various such similarity metrics have been previously proposed. The Rand index,
based on pair counting scheme, defines the similarity of two partitions as the ratio of
the number of vertex pairs correctly classified in both partitions by the total number of
vertex pairs [9]. The Jaccard index [10] and the adjust rand index [11] are other
popular pair counting based metrics. If the number of groups of the two partitions is
identical, the similarity can be calculated by the so called overlap, scaling from 0 to 1,
which is the number of identical group labels between two partitions maximized over
all possible permutations and properly normalized [3]. Within the framework of
information theory, the problem of comparing partitions can be reformulated as a
problem of message decoding with the assumption that if two partitions are similar,
one needs very little information to infer one partition given the other. Normalized
mutual information (NMI) proposed by Danon et al. [12], a popular and currently
frequently adopted metric in the testing of community detection methods, defines the
similarity of two partitions as the mutual information of the two partitions normalized
by the entropies of the partitions. Different from overlap metric, NMI does not need
the number of groups of the two partitions be identical. Similar to NMI, variation of
information (V1) introduced by Meila [13] is another information-theoretic metric that
has the properties of distance and is a local measure. However, the maximum of VI
depends on the number of nodes of the networks and thus is not constant, making the
similarity values of partitions of network with different number of nodes not
comparable. A similar situation exists for other kind of metrics like modularity [14],
conductance [15] to name a few, which are not similarity metrics of two partitions but
that are often used as cost functions to find optimal partitions of a network. Although
these metrics can be used to decide which of two or more partitions is the best, their
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values depend strongly on the properties of the networks. As a result, metrics derived
from cost functions cannot be used to evaluate the performance of the community
detection methods in a systematic and consistent way. This differs from NMI used
with available benchmarks, since NMI has bounded values [0, 1] on different
networks and thus facilitates an easier explanation of the results. For its importance
and the ascending popularity, we, in this paper, focus on the discussions of NMI as a
mean for testing the performance of community detection methods. For more
comprehensive introductions to various other metrics, the reader is referred to Refs. [1,
13].

Because of its useful properties NMI has quickly become a very popular
performance measure soon after its introduction [1, 16, 17, 18]. However, it was
recently observed that NMI may suffer from serious systematic errors in finite size
networks [19]. Such errors are the result of using frequencies to approximate the
probability of a randomly selected node to be in a community, when computing
entropies. To overcome the finite size effect of NMI, Zhang proposed the relative
normalized mutual information (rNMI) as an alternative similarity metric of two
partitions of a network [19]. Although rNMI is designed to remove the bias in NMI,
we found that it introduces another bias which we termed reverse finite size effect to
differentiate it from the one of NMI. To overcome both the biases of NMI and rNMI,
we propose a new similarity metric named corrected mutual normalized information
(cNMI) and demonstrate its behaviors on the performance testing of popular
community detection methods.

In the following, we first introduce the background concepts of contingency table
and NMI in section II, and then demonstrate the bias of rNMI and explain why it
occurs in section III. In section IV, we propose the new metric cNMI and compare it
with other metrics on benchmark networks. We also derive an explicit expression of
cNMI, and compare it with the empirical scheme of computing ¢cNMI in section V.
We give applications of cNMI in a more general context in section VI. Based on the
above results and discussions, we then draw conclusions.

II. Contingency Table and Normalized Mutual Information

Given a network with N nodes V={vi, ... , w}, the relationship between two
partitions X and Y of the network can be established through a contingency table.
Suppose X = {Xy,-",X¢,} and Y ={Yy,-,Y,} represent respectively the
partitions of nodes in V into Cy and Cy communities, the elements in X and Y are
then all not-empty subsets of the node set V, and are called communities or groups

satisfying: 1) X, N X =0 for 1 <r # s < Cy; ii) Ufﬁer =V;iil) YoyNYy =@

for 1 <r'" #s' <Cy; iv) Uf)’zerr = V. If n,¢ denotes the number of nodes in X,

of partition X that appear in Y; of partition Y, the overlap between the two partitions X
and Y can be written in the form of a contingency table as in Table 1, where
n,. = YN, and n, = Y., N, are respectively the number of nodes in X, and Y.
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Table 1. Contingency table of two partitions
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With the notations presented in Table 1, the normalized mutual information
(NMI) is defined as [12]:
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From the classical or frequentist interpretation of probability, the probabilities
are viewed in terms of the frequencies of random, repeatable events. Consequently,
the probability of a randomly selected node being in community/group X, (or Yg) is

P(r) =% (or P(s) =%), and similarly P(r,s) =% is the probability of a

randomly selected node in group X, being in Ys;. NMI can thus be reformulated as a
function of probabilities:
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Here — Zfﬁl P(r)logP(r) £ H(X) is the entropy of the distribution of partition X,

P(r,s)

o) = HOO + H(D) = H(X,Y) £ 1(X,Y) is  the

and XX ¥ P(r,s) log(

mutual information between partitions X and Y. When P(r,s) = P(r)P(s) for each
pair r and S, the two partitions X and Y are independent, and thus their NMI reaches its
minimal value zero. Conversely, for two identical partitions, i.e. when for each
community I in X there is only one matching community Sin Y and vice versa (in this
case, P(r,s) = P(r) = P(s) or n,. = n;, = n,g), NMI’s value reaches its maximal
value, one. It can be easily verified that NMI is a symmetric measure. As a result,
NMI fulfills the desirable requirements for a useful similarity measure.

III. The bias of NMI and its improved variant rNMI

Despite its advantages, NMI was recently shown to suffer from serious
systematic errors in finite size networks [19]. Such errors are the result of using the
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frequency % to approximate the probability P(r) of a randomly selected node to be

in community r, when computing entropies. Under the assumption of the Bernoulli
distribution of community size n,., NMI between two random partitions X and Y of a
network with a finite number N of nodes can be approximated as [19]:

1 CxCy_Cx—Cy+1

3)

It can be inferred from equation (3) that two random partitions have a non-vanishing
NMI. Owing to its origin, this phenomenon is termed finite size effect. Such an effect
forces NMI to prefer a partition with larger number of communities, leading to a

biased performance evaluation.
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(a) Fraction of nodes flipping group lables (b) Fraction of nodes flipping group labels
Figure 1. NMI-normalized mutual information (a) and rNMI-relative normalized mutual information (b) between
two partitions with the computed partition obtained by flipping the group labels of a fraction of nodes in the known
partition. The known partitions were generated with group sizes ranging from 20 to 400 in two different network

sizes. Each point in the figure is averaged over 10 network instances and 10 repetitions.

By construction, the expected value of NMI between two partitions should
decline with the dissimilarity of the two partitions, scaling from 1 to 0. To see more
concretely how NMI is affected by the finite size effect, we generated known
partitions with group sizes ranging from 20 to 400 and following power law
distributions [5], and then obtained computed partitions from these known partitions
by flipping the group labels of a fraction of nodes. When no group label is flipped, the
NMI value between computed and known partitions is strictly 1, and declines, as
expected, with the growing fraction of flipping nodes. However, the finite size effect
prevents the NMI value from being zero when the computed partition becomes a
random permutation of the known partition (see Figure 1(a), in this case the fraction
equals 1). Since, under the modeling used here, a larger network comes with a larger
number of communities, the NMI between a partition and its random permutation is
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farther apart from O than in a smaller network, indicating that a network with a larger
number of communities is more heavily affected by the finite size effect.

To overcome the finite size effect of NMI, Zhang proposed the relative
normalized mutual information (rNMI), defined as [19]:

rNMI(X,Y) = NMI(X,Y)—-< NMI(X, Zy) >, (4)
where Zy is a random partition that has the same community-size distribution as
partition Y, and < NMI(X,Z,) > is the expectation of NMI between X and Zy.
Practically, < NMI(X,Zy) > is usually computed by averaging on a number of
realizations of Zy. Due to the symmetry of NMI, rNMI is also symmetric. The finite
size effect leads NMI to give higher value of a partition with larger number of
communities. That is if partition Y has a larger number of communities, the value of
NMI(X,Y) will be larger, leading to a biased evaluation. Since the value of
NMI(X,Zy) between partition X and the random permutation Z, of partition Y will
also be large, the bias will eventually be removed under the adjustment proposed for
rNMI. As a consequence, rNMI has a vanishing value when two partitions X and Y are
independent even if Y has a large number of communities, as it can be seen from the
bottom right corner of Figure 1(b).

Although rNMI overcomes the finite size effect of NMI, we observed here that it
suffers from another undesirable issue. In fact, INMI is not a well normalized metric.
In Figure 1(b) (see the upper left corner), it is shown that even if there is no group
label flipping, INMI computed for a partition against itself is smaller than 1, which is
counterintuitive and practically undesirable.

We thus generated a series of synthetic partitions with equal size groups in
network of different sizes, and with the number of groups ranging from 2 to N/5, to
systematically reveal the defect of INMI. As shown in Figure 2, INMI values between
two identical partitions decline with the increasing number of groups of partitions for
different network sizes. This effect becomes more visible with smaller networks. For
instance, when the number of groups is 10?, INMI between two identical partitions of
a network with 10° nodes is the smallest and approaches zero. Furthermore, if the
number of groups is large enough, the value between two identical partitions can be
negligible.

To describe how this happens and simplify the analysis, we here assume that the
distribution of the variable n,. of group size follows a Bernoulli distribution, and that
partitions X and Y are identical and both have C communities of equal size K and Zy
is the random permutation of partition Y. From equation (3), the average NMI
between X and Zy can be approximated by

1 C?-2c+1
2CK 2logC

NMIy (X, Z) = (5)

As a result, the INMI between X and Y is approximated to
rNMI(X,Y) = rNMI(X, X)
= NMI(X,X)-< NMI(X,Zy) >
1 c*-2C+1

=1-
2CK  2logC




4K logC

Since C > logC, it is obvious that rNMI(X,Y) declines with increasing values of C.
In contrast to the finite size effect of NMI that biases to a non-vanishing NMI value
for two random partitions with a large number of groups, rNMI biases towards a value
unable to maximize even for two identical partitions with a large number of groups,
1.e. “1 - INMI” is a non-vanishing value. When C is fixed, this bias is more evident in
a smaller network since rNMI declines with the decreasing value of K. The two types
of effect are both due to the finite size of a network, and we thus similarly termed
such effect of INMI as reverse finite size effect.
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Figure 2. Relative normalized mutual information (rNMI) between identical partitions versus the number of
communities in the corresponding partitions. The partitions were generated with different number of communities
in different network sizes. (a) The partitions of networks with N= 1x10° nodes; (b) The partitions of networks with
N = 5x10° nodes; (c) The partitions of networks with N = 5x10* nodes; (d) The partitions of networks with N =

1x10° nodes. Each point in the figure is averaged over 10 network instances.

IV. The proposed corrected normalized mutual information

To remove the new bias introduced by rNMI, a simple and naive solution to
overcome this latter issue is to properly normalize rNMI:

rNMIyppm (X, V) = TEMIEY)

rNMI(X,X)’ (6)

a solution also adopted in a recent work and there called relative rNMI [20]. The
denominator of the above equation has vanishing probability to be zero if the size of a
network and the number of groups is large enough, making the normalization possible.

Consequently, for two identical partitions of a network, the value of rNMI,,,,
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theoretically equals 1. Since rNMI gives vanishing value of two random partitions,
rNMI, 5, Wwill thus maintain this property. However, rNMI,,,,, is no longer
symmetric with such normalization. As discussed previously, INMI is symmetric, but
the denominator of rNMI,,,,.,,(Y,X) will be different from that of rNMI, ., (X,Y)
unless partition Y is identical to partition X. The asymmetry of rNMI,,,,,, rules out
the possibility to have it as a desirable metric for similarity. In addition, the maximal
value of rNMI, -, 1s not strictly equal to 1 but mildly larger, which makes the
explanation of the value of rNMI,,,,.,, between two identical partitions less rigorous.

We thus call for a new metric that should not be affected by any of the finite size
effects, and that is symmetric. In this paper, we introduce the corrected normalized
mutual information (¢cNMI) and define it as:

rNMI(X,Y)+rNMI(Y,X)

CNMI(X; Y) = rNMI(X,X)+rNMI(Y,Y)’

(7)

Let Zx and Zy be, respectively, the random permutations that have the same group-size

distribution as partition X and Y, exploiting the symmetry of rNMI, cNMI can be

simplified as

2NMI(X,Y)~<NMI(X,Zy)>—-<NMI(Y,Zx)>
2-<NMI(X,Zx)>-<NMI(Y,Zy)>

cNMI(X,Y) = , )]

taking advantage of the fact that NMI between two identical partitions is 1.

It can be verified that cNMI has the desirable properties of a similarity metric of
partitions. First, cNMI removes the finite size effect so that the cNMI value between
two random partitions can reach zero, even if the partitions have a large number of
groups. Suppose that partition Y is a random partition with regard to partition X,
leading to the fact that NMI(X,Y) =< NMI(X,Zy) > and
(Y,X) =< NMI(Y,Zy) > , then
CNMI(X,Y) = 2NMI(X,Y)—< NMI(X,Zy) > —< NMI(Y,Zy) >

2—< NMI(X,Zy) > —< NMI(Y, Zy) >
_<NMI(X,Zy) > +< NMI(Y,Zx) > —< NMI(X,Zy) > —< NMI(Y, Zx) >
- 2—< NMI(X,Zy) > —< NMI(Y, Zy) >

=0
Second, the value of cNMI between two identical partitions is strictly equal to 1, and
thus is not influenced by the reverse finite size effect.
2NMI(X,X)—< NMI(X,Zyx) > —< NMI(X, Zyx) >
2—< NMI(X,Zy) > —< NMI(X,Zx) >
_ 2-<NMI(X,Zx)>~<NMI(X,Zx)>
2-<NMI(X,Zx)>-<NMI(X,Zx)>

cNMI(X, X) =

Finally, cNMI is symmetric due to the symmetry of NMI.
CNMI(X,Y) = 2NMI(X,Y)—< NMI(X,Zy) > —< NMI(Y,Zy) >
2—< NMI(X,Zy) > =< NMI(Y, Zy) >
_2NMI(Y,X)—<NMI(Y,Zx) > —< NMI(X, Zy) >
a 2—< NMI(Y,Zy) > —< NMI(X, Zy) >
=cNMI(Y,X)
As shown in Figure 3, cNMI is well normalized and scales from assigning to value 0
the similarity of two random partitions to assigning to value 1 the similarity of two
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identical partitions.

cNMI
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Fraction of nodes flipping group labals

Figure 3. Corrected normalized mutual information (cNMI) between two partitions with the computed partition
obtained by flipping the group labels of a fraction of nodes in the known partition. The kmown partitions were
generated with group sizes ranging from 20 to 400 in two different network sizes. Each point in the figure is

averaged over 10 network instances and 10 repetitions.

Application of such findings is shown here on networks generated using
stochastic block model (SBM), a popular and important benchmark model for testing
community detection methods [2, 3]. To generate a commonly studied network with C
communities of equal size, SBM assigns the probability pi, to connect a pair of nodes
in the same community and Py if they are in different communities. € = pyy:/Pin
thus reflects the strength of the community structure in a network. If € =1, the
partition of an SBM network is said to be in the undetectable phase, and no algorithm
can group nodes better than chance [3, 21]. For such cases, INMI can give zero value
even when algorithms wrongly detect communities while NMI fails due to the finite
size effect. We thus used cNMI to reevaluate the performance of two efficient and
popular community detection methods: InfoMap and Louvain method. InfoMap aims
at finding a partition that produces an optimal compression of information diffusion
on a network [22]. Louvain method iteratively conducts a two-step procedure of
nodes moving and aggregation to search an optimal partition that maximizes the
modularity [23]. The benchmark networks generated have C=100 communities. As
shown in Figure 4, in contrast to NMI, cNMI also reports zero value as NMI does for
InfoMap and Louvain method in detecting communities in these networks, meaning
that there is no community structure in these networks.
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Figure 4. The values of different metrics for evaluating the performance of InfoMap and Louvain method on
benchmark networks generated by stochastic block model with e = 1 and the number of communities C=100. (a)
Normalized mutual information (NMI); (b) Relative normalized mutual information (rNMI); (c) Corrected
normalized mutual information (¢cNMI). Each point in the figure is averaged over 10 instances of the model in each

network size N.

1 T T T 0.8

| i In[oMapI ) ) ) ) —=—InfoMap
0.95 === Louvain Louvain
0.9 0.75F 1
i //_y—’—’_‘fA % i
0.8

0.75 Wﬂ’-’_‘-—‘—_qﬂ—‘ 065} M

0.7

088y 2 4 6 8 10 12 0 2 4 6 8 10 12
@ N x10° L xte’
1 - T T T __.IrlfoMlp“ 0.8 = InfoMap
0.95 Louvain, Louvain
o >——o—o 0.85
il //-l" _.._InluMap“
o Louvain, L
; 085 . ! vx _ o8
= PR Sy : = 2
Z os “ 075}
0.75
0.7}
o7t
o'ss . n.—— " L n 1 -
[] 2 4 6 8 10 12 ) 2 4 6 8 10 12
eIN x10° o N x 10"

Figure 5. Performance evaluations of InfoMap and Louvain method on benchmark networks generated with
different sizes by LFR model. (a) Performance evaluation under normalized mutual information (NMI); (b)
Performance evaluation under relative normalized mutual information (rNMI); (¢) Performance evaluation under
relative normalized mutual information with naive normalization (rtNMl,,,.,,); InfoMapyy represents INMI,,., (X, Y)
and InfoMapyy is INMI,,om, (Y, X) , where Y is the partition obtained by InfoMap and X is the ground truth partition.
Symbols for Louvain method are similar. (d) Performance evaluation under corrected normalized mutual

information (¢cNMI). Each point in the figure is averaged over 10 instances of the model in each network size N.

Recently, Zhang [19] reported that by rNMI, the performance of Louvain method
was better than InfoMap, against the prior results obtained with NMI (InfoMap being
more accurate than Louvain method). To contribute to this analysis and reveal further
the differences between cNMI and other NMI-type metrics, we generated a series of
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synthetic networks by LFR model [5], with different network sizes. The average
degrees of the networks are all set to 8, and the maximal degrees to 50, with mixing
parameter u=0.45. The community sizes range from 20 to 400 to obtain more
heterogeneous communities and other parameters are using default values. Figure 5
shows the testing results of InfoMap and Louvain method under different metrics.
From Figure 5, all the metrics except INMI demonstrate that InfoMap performs
much better than Louvain method on these LFR networks, while under INMI we may
conclude that Louvain method works better than InfoMap. In addition, although
NMI,oim can give evaluation of InfoMap and Louvain method similar to NMI and
cNMI (see the red and blue curves in Figure 5(c)), we found that INMI,,r, would lead
to the opposite conclusion (see the black and green curves in Figure 5(c)). Since
NMlI, o 1S not a symmetric measure, when reversing the order of computed and
known partitions in equation (6) for computing rNMI,om, the results are different. If
partitions of InfoMap and Louvain method are used as the first input partition, the
conclusion is that InfoMap performs much better than Louvain method, while with
the second input partitions the conclusion is reversed. As a result, rNMIom shows
important limitations as a metric for performance testing of community detection.

1.05 T T ' v
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- N =i _Ouvain
0.95p |
0.9 |
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Figure 6. The values of INMI between identical partitions from different methods. The green straight line is for the
expected values of similarity between two identical partitions. Each point in the figure is averaged on 10 network

instances.

To disambiguate the situations we computed rNMI values of the identical
partitions obtained by InfoMap, Louvain method and ground truth. The ground truth
partitions are the real community structure of the generated networks. The results are
shown in Figure 6. As it can be seen from Figure 6, the values of INMI on identical
partitions obtained by Louvain method are very large and stable across different
network sizes, while those for partitions obtained by InfoMap and ground truth
decline as the network size grows, with the ones for InfoMap being the smallest.
When the network size grows, the number of communities in the ground truth
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partition grows as well. Due to the reverse finite size effect, INMI biases to the
partition with smaller number of communities. Since the partitions obtained by
Louvain method usually contain smaller number of communities, the values of INMI
are thus much larger than that of partitions obtained from ground truth and InfoMap,
leading to the erroneous conclusion that Louvain method works better than InfoMap
[19]. In contrast, cNMI not only removes the finite size effect of NMI but also the
reverse finite size effect of rNMI, which, based on the self-similarity experiment,
leads to the evidence that InfoMap works better than Louvain method.

V.  The closed form expression of c(NMI

In the previous sections, both INMI and ¢cNMI adopt a correction to remove the
bias from NMI by using the partitions sampled from a null model that has the same
number of communities and nodes as the computed partition. As a consequence, the
expectation of NMI between the ground-truth partition and a random partition is
computed by averaging on realizations of the null model. In fact, there are closed
form expressions for both INMI and cNMI. In this section, we discuss such possible
closed form expressions of cNMI.

If one assumes that the distribution of the variable of the number of nodes n,. in
any community I follows the Bernoulli distribution, the closed form expression of the
expectation of NMI can be obtained from equation (3), as in [19]. This is of interest,
as an explicit closed form expression for the expectation of NMI may make the
implementation more efficient.

One possible type of closed form expression of cNMI based on the
approximation of equation (3), denoted as cNMIp, is defined as:

1CXCy—Cx—Cy+1

ZNMI(X,Y) TN HXO+HTY)
_ (X)+H(Y)
CNMIB (X, Y) - 1 C%-ZCX"']- 1 C}2,—2Cy+1 (9)
2 - -
2N 2H(X) 2N 2H(Y)

However, as pointed out by Zhang [19] (see Figure 2 therein), adopting the
Bernoulli distribution makes the value of the expectation of NMI less accurate than
the simulation value. As it can be seen from Figure 7(a), cCNMlg gives poorer
evaluation on results obtained from Louvain method when the number of nodes is
larger. In fact, we find that equation (3) is an even worse estimation of the expectation
of NMI. When the number of communities in a network is large enough, say Cy and

Cy are larger than V2N, equation (3) is dominated by the term CyCy, making the

estimated expectation of NMI much larger than 1. This unrealistic estimation makes
the value of rINMI negative and that of CcNMIg larger than 1, which is why on results
from Louvain method ctNMIy is increasing with the increasing number of nodes (also
increasing the number of communities, see Figure 7(a)) and is even much larger than
1 on the results from InfoMap (data not shown).
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Figure 7. cNMI and the computational time on community partition results, computed by different strategies. (a)
cNMI values of community partition results obtained by Louvain method. (b) The computational time of
computing cNMI by different strategies on results obtained by Louvain method. (¢) cNMI wvalues of community
partition results obtained by InfoMap. (d) The computational time of computing cNMI by different strategies on
results obtained by InfoMap, together with the computational time of rNMI for comparison. Each point in the
figure is averaged on 10 different networks. The computational time was obtained by the implementation of C++

under Linux on DELL PC with Dural 3.4GHz CPU cores and 8GB memory.

Differently from setting the randomness on the number of nodes in a community,
Hubert and Arabie modeled the randomness on the variable n,; of the number of
nodes that were common to community I and S[11]. They assumed that the variable
n,s follows the generalized hypergeometric distribution that the number of
communities and nodes therein are the same of the computed partition, i.e. the
contingency table is constructed from the same distribution. We here employ this
generalized hypergeometric distribution to derive an explicit expression for the
expectation of NMI.

As previously discussed, to compute the expectation < NMI(X,Zy) >, the
partition X is fixed while the partition Zy is generated from the generalized
hypergeometric model with n,(1 <1< (Cy) fixed. Consequently, this procedure
introduces the randomness in the contingency table between X and Zy, making n,g a
random variable. Therefore, the number of different ways to create contingency tables
that makes n,; nodes common to community X, and Zg reads:

?O(n,s) = (:T) (nNS_::l:S) . Hg}; . (N—n-s;li:’f;;l n.l). (10)

S

On the other hand, the total number of different ways to create contingency tables
between partitions X and Zy without constraint on any entry of the table is:

0() =1, (V). (1)
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As a result, the distribution of random variable n,; can be obtained as follows:
(D(nrs) ny. N—ny. N
P(an) oC) (nrs) (n-s_nrs)/(n-s). (12)
To make sense the equation for P(n,,), conditions that n,. >n,, and N —n,. >
ng —N,s, as well as n,g < ng, should be satisfied for 1 <r < Cy, 1 < s < (Cy,

leading to the constraint that max(0,n,. + n., — N) < n,; < min(n,., n.y). With this
distribution, the expectation of NMI can then be computed:

n Nys
c c N
—225 silﬁl"g(&.h)

N N
< NMI(X,Zy) > =< >
cx N cy N. n.
Zr}=(11\710g( )+ZSY1NS (NS)
n
= - < Z ZCY o Ar/s >
T HX) + H(Zy) s=1 I %
——2ch v [< =10 (£)>_10 (l._'S)<E>] (13)
H(X)+H(Y) s=1 N & N g N N N

The last equation holds under the assumption that all entries n,, of the contingency
table are independent and identically distributed (iid) variables. The expectation terms
in the above equation are given by:

Nys Nys min(n,., n.s) Nrs Nrs\ .
< Tlog( ) == ans—maX(O Np.+ns—N) N lo g(T) P(an)'

Nrs 1 _ 1 npng
<7>—ﬁ<nr5>—ﬁT.
Consequently, the closed form of the expectation of NMI under the generalized
hypergeometric model can be obtained:

< NMI(X,Zy) > =

—2 ZCX Cy min(ny, n.s) nrsl (nrs) . (nr.) ( N—-n,. )/( N) _
H(X)+H(Y) &T=14s5=14nrs=max(0, ny.+n.s—N) N N Nyg) \Ng—Npg ng
-2

Cx Cy l Ny.N.g
H(X)+H(Y) Zr=1 (14)

s=ly N

To simplify the denotations, let Ny = (n,.,-,n¢,.) and Ny = (n,, -, n¢,.) and
denote < NMI(X,Z,) >2< NMI(X, Zy; Ny, Ny) > to make explicit the dependence
of the expectation of NMI on the community sizes, the closed form expression of
cNMI between partitions X and Y under the generalized hypergeometric model
(denoted as cNMI;(X,Y)) reads:

2NMI(X,Y)—-2<NMI(X,Zy;Nx,Ny)>
2—<NMI(X,Zx,'NX,Nx)>—<NMI(Y,Zy;Ny,Ny)>.

cNMI;(X,Y) = (15)

Here we make use of the fact that < NMI(X,Zy;Ny,Ny) > is equal to
< NMI(Y, Zy; Ny, Ny) > according to equation (12).

Figure 7 shows cNMI values computed by different strategies on community
partition results obtained by Louvain method and InfoMap. Although the
computational time for cNMIg is constant (Figure 7(b)), cNMIg cannot correctly
evaluate partition results, as discussed previously (Figure 7(a)) and we thus exclude
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the curve of cNMIy in Figure 7(c) for results by InfoMap for its inaccurate values
larger than 1. As an alternative, cNMI computed by averaging on different samples
from null model gives an accurate empirical estimation and is easy to compute. In
practice, such estimation makes the estimated cNMI converge fast to its true value. As
it can be seen from the Figure 7, cNMI computed by averaging on 10 samples has
almost the same curve as by averaging on 100 samples, but the former obviously
takes far less computational time. Figure 7 (a) and (c¢) show that the closed form
expression cNMI; also gives good evaluations on the community partition results,
with the computation time lying between averaging on 10 and 100 samples. cNMI;
gives mildly higher cNMI scores across networks of different scales than that of the
empirical calculations by averaging on samples, however such differences are
negligible, as shown in Figure 8. The small overestimation is the result of the
violation of the iid assumption in the calculation of the expectation in equation (13),
since n,g is not strictly independent under the constraints that n.g is fixed for
1 < s < Cy. The effect of such violation is alleviated for growing values Cy of
communities, which is exemplified by the fact that cNMI; gives more accurate
values by InfoMap on larger networks when compared to those by Louvain method.
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Figure 8. The difference between cNMI in closed form cNMI; and cNMI computed by averaging on 10 samples
of the null model cNMIg4mpie=19, Of the results obtained by InfoMap and Louvain method. Each point in the

figure is averaged on 10 different networks.

In addition to Figure 7 (b) and (d) showing that the computation of cNMI is
efficient enough, complexity analysis can also be exploited. To compute NMI(X,Y),
one needs first construct a contingency table between partitions X and Y and then
compute NMI according to equation (1), taking respectively O(N) and O(CxCy +
Cx + Cy). Thus, it takes O(N + CxCy) time to compute NMI. Computing the
expectation NMI(X,Zy) by averaging on samples from null model requires first to
permute partition Y to obtain Zy, which takes O(N). As a consequence, the time
complexity of computing rNMI(X,Y) is O(I(N + CxCy)) and cNMI(X,Y) is
O(I(N + CZ% + C2 + 2C4Cy)), where | is the number of samples. On the other hand, it
takes at most O(n,. + ny) time to compute the term
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compute the expectation < NMI(X,Zy) > and cNMI,;.

VI. Applications beyond community detection

Community detection in networks consists of clustering nodes into groups,
which in essence is a special case of the general clustering problem [1, 24]. As an
important and improved measure for performance evaluation, cNMI is by no means
only limited to community detection field, but can be applied to a wider context for
evaluating general clustering results.

In this section, we apply cNMI to evaluate clustering results on real-world
datasets as COIL-20 [25] and COIL-100 [26]. COIL-20 contains 20 objects, each of
which has 72 images that are represented as 1024-dimensional vectors, while
COIL-100 contains similarly represented objects but for 100 objects and thus 7200
instances. Figure 9 shows the results on these two datasets by a recently designed
clustering method SCC (sparse concept coding) [27] and the classical K-means
method [28], evaluated by rNMI and cNMI.
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Figure 9. The values of INMI (a) and cNMI (b) of the clustering results obtained by SCC and K-means on datasets
COIL-20 and COIL-100. Each bar in the figure is obtained by averaging on 20 repetitions of algorithms.

SCC is a two-step procedure that first learns K bases and then derives sparse
representations of objects under these bases for K-means clustering. We used default
parameters’ values to apply SCC on COIL-20 and compared its performance with that
of K-means. Both rNMI and cNMI reveal that SCC performs better than K-means on
COIL-20, as previously shown [27]. When applied to COIL-100, SCC is also shown
to be a better method on this scaling up dataset with more diverse objects under both
rNMI and ¢cNMI. However, more subtle differences in this context can be learned
from the figure if we are concerned with the performance stability of SCC and
K-means methods. Under cNMI, the performance of K-means remains good when
shifting from the application on a smaller dataset COIL-20 to the application on

16



another larger dataset COIL-100, showing good stability of the performance of
K-means. In contrast, if one uses instead rNMI to evaluate the clustering results, the
performance of K-means drops much faster (4% vs. 15%) compared to cNMI when
the variety of objects enriches, which may mislead to the inaccurate conclusion that
the stability of the performance of K-means on these datasets is not good. Similarly,
cNMI also reveals that SCC has higher stability than when using rNMI, since under
cNMI the performance drops only about 18% instead of 27% under rNMI. All these
phenomena are due to the reverse finite size effect of INMI that cannot give the score
1 when two partitions are identical. In fact, rNMI scores the ground truth partition
against itself 0.9509 on COIL-20 and 0.8355 on COIL-100.

VII. Conclusions

In this paper, we theoretically and experimentally show a relevant problem of a
recently proposed metric tTNMI for performance testing of community detection
methods. Although rNMI is originally designed to remove the finite size effect of
NMI, it suffers from a different limitation, the reverse finite size effect that biases to a
partition with small number of communities and small community size. If the number
of communities is large enough or the size of the community is small enough, the
value of rNMI, even between two identical partitions may shrink to a very small or
even vanishing value, and not to the intuitive value of 1 that the similarity of two
identical partitions should have. We thus proposed a new metric cNMI on the basis of
the definition of rINMI. cNMI scales from giving value 0 to two random partitions to
giving value 1 to two identical partitions, and thus is a well normalized metric. cNMI
is also a symmetric metric. It not only removes the finite size effect of NMI but also
the reverse finite size effect of INMI. Compared to rNMI that in some cases may give
a wrong estimate of performance of community detection methods, cNMI can more
objectively test different community detection methods. We thus suggest to use cNMI
for performance testing of community detection methods.

We further discuss different strategies to compute cNMI, that is, by averaging on
instances sampled from the hypothesized null models and by closed form
approximations. In the closed form approximations of ¢cNMI, we find that the
approximation by setting Bernoulli distribution of the number of nodes in a
community is poor for both tNMI and cNMI. If the randomness of the number of
common nodes between two communities is modeled to follow the generalized
hypergeometric distribution, the resulting closed form expression of cNMI becomes a
good approximation. Since the calculation of such closed form ¢cNMI introduces the
iid assumption on the random variable of the number of common nodes, its value is
slightly, but negligibly, overestimated. Compared to the closed form expressions of
cNMI, cNMI by averaging on limited samples can be computed faster and more
accurately. It is thus preferable to use ¢cNMI by averaging on samples for the
performance testing of community detection methods and other clustering methods in
the much wider clustering field as exemplified in the previous section.
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