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Abstract.  Normalized mutual information (NMI) is a widely used metric for performance 
evaluation of community detection methods, recently proven to be affected by finite size effect. To 
overcome this issue, a metric called relative normalized mutual information (rNMI) has been 
proposed. However, we show here that rNMI is still a biased metric and may lead, under given 
circumstances, to erroneous conclusions. The bias is an effect of the so called reverse finite size 
effect. We discuss different strategies to address this issue, and then propose a new metric the 
corrected normalized mutual information (cNMI), symmetric and well normalized, in the form of 
empirical calculation and closed-form expression. The experiments show that cNMI not only 
removes the finite size effect of NMI but also the reverse finite size effect of rNMI, and is hence  
more suitable for performance evaluation of community detection methods and for other 
approaches typical of the more general clustering context. 
 

I. Introduction  
Community detection in a complex network corresponds to the partition of the 

network into groups of nodes with much denser connections within each group than 
among such groups. This represents an important and challenging problem in network 
structural analysis, applied in a variety of fields including sociology, biology, 
computer science, to name a few. Plenty of different community detection methods 
have thus been designed [1] and, as a consequence, testing and comparing 
performances is of great importance and usefulness in facilitating end-users, 
especially those outside of the fields of physics and computer science, to effectively 
improve or apply community detection methods in their own area.  

Performance testing and comparison of different community detection methods 
is by no means a trivial task due to the different motivations and intended applications. 
As a result, determining if one community detection method is better than another is 
usually done in a simplified way by employing canonical benchmarks like computer 
generated synthetic networks and real-world networks where node classification is 



2 
 

known. Benchmark networks are generated with arbitrarily designed built-in 
community structures or selected with already known correct community structure 
(termed known partition of the network). The accuracy is usually computed in terms 
of similarity by comparing the solution delivered by the method (termed computed 
partition of the network) with the known partition of the network. The larger the 
similarity the better the performance of the method on the given benchmark is. 
Synthetic networks with built-in community structure generated by statistical models 
like stochastic block model [2, 3], planted partition model [4] or its variant proposed 
by Lancichinetti, Fortunato, and Radicchi (denoted as LFR model) [5], and real-world 
networks as karate club network [6], football network [7], politics network [8] to 
name a few, are routinely used as benchmark networks. With these well-known 
benchmarks, performance testing thus involves defining a metric to establish how 
similar the computed partition is to the known partition.  

A metric designed for this purpose must have a number of desirable properties. 
First, it should equal 1 when the computed partition is identical to the known partition. 
Second, when the computed partition is a random permutation of the known partition, 
the value of their similarity should approach zero. Third, it should be symmetric, i.e. 
the similarity computed by comparing the computed partition with the known 
partition should be the same as that computed by comparing the known partition with 
the computed partition.  

Various such similarity metrics have been previously proposed. The Rand index, 
based on pair counting scheme, defines the similarity of two partitions as the ratio of 
the number of vertex pairs correctly classified in both partitions by the total number of 
vertex pairs [9]. The Jaccard index [10] and the adjust rand index [11] are other 
popular pair counting based metrics. If the number of groups of the two partitions is 
identical, the similarity can be calculated by the so called overlap, scaling from 0 to 1, 
which is the number of identical group labels between two partitions maximized over 
all possible permutations and properly normalized [3]. Within the framework of 
information theory, the problem of comparing partitions can be reformulated as a 
problem of message decoding with the assumption that if two partitions are similar, 
one needs very little information to infer one partition given the other. Normalized 
mutual information (NMI) proposed by Danon et al. [12], a popular and currently 
frequently adopted metric in the testing of community detection methods, defines the 
similarity of two partitions as the mutual information of the two partitions normalized 
by the entropies of the partitions. Different from overlap metric, NMI does not need 
the number of groups of the two partitions be identical. Similar to NMI, variation of 
information (VI) introduced by Meila [13] is another information-theoretic metric that 
has the properties of distance and is a local measure. However, the maximum of VI 
depends on the number of nodes of the networks and thus is not constant, making the 
similarity values of partitions of network with different number of nodes not 
comparable. A similar situation exists for other kind of metrics like modularity [14], 
conductance [15] to name a few, which are not similarity metrics of two partitions but 
that are often used as cost functions to find optimal partitions of a network. Although 
these metrics can be used to decide which of two or more partitions is the best, their 
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values depend strongly on the properties of the networks. As a result, metrics derived 
from cost functions cannot be used to evaluate the performance of the community 
detection methods in a systematic and consistent way. This differs from NMI used 
with available benchmarks, since NMI has bounded values [0, 1] on different 
networks and thus facilitates an easier explanation of the results. For its importance 
and the ascending popularity, we, in this paper, focus on the discussions of NMI as a 
mean for testing the performance of community detection methods. For more 
comprehensive introductions to various other metrics, the reader is referred to Refs. [1, 
13].  

Because of its useful properties NMI has quickly become a very popular 
performance measure soon after its introduction [1, 16, 17, 18]. However, it was 
recently observed that NMI may suffer from serious systematic errors in finite size 
networks [19]. Such errors are the result of using frequencies to approximate the 
probability of a randomly selected node to be in a community, when computing 
entropies. To overcome the finite size effect of NMI, Zhang proposed the relative 
normalized mutual information (rNMI) as an alternative similarity metric of two 
partitions of a network [19]. Although rNMI is designed to remove the bias in NMI, 
we found that it introduces another bias which we termed reverse finite size effect to 
differentiate it from the one of NMI. To overcome both the biases of NMI and rNMI, 
we propose a new similarity metric named corrected mutual normalized information 
(cNMI) and demonstrate its behaviors on the performance testing of popular 
community detection methods.  

In the following, we first introduce the background concepts of contingency table 
and NMI in section II, and then demonstrate the bias of rNMI and explain why it 
occurs in section III. In section IV, we propose the new metric cNMI and compare it 
with other metrics on benchmark networks. We also derive an explicit expression of 
cNMI, and compare it with the empirical scheme of computing cNMI in section V. 
We give applications of cNMI in a more general context in section VI. Based on the 
above results and discussions, we then draw conclusions. 

 

II. Contingency Table and Normalized Mutual Information 
Given a network with N nodes V={v1, … , vN}, the relationship between two 

partitions X and Y of the network can be established through a contingency table. 
Suppose X = { Xଵ, ⋯ , X஼೉}  and Y = { Yଵ, ⋯ , Y஼ೊ}  represent respectively the 
partitions of nodes in V into ܥ௑ and ܥ௒ communities, the elements in X and Y are 
then all not-empty subsets of the node set V, and are called communities or groups 

satisfying: i) X௥ ∩ X௦ = ∅ for 1 ≤ ݎ ≠ ݏ ≤ ⋃ (௑; iiܥ X௥஼೉௥ୀଵ = ܸ; iii) Y௥ᇲ ∩ Y௦ᇲ = ∅ 

for 1 ≤ ᇱݎ ≠ ᇱݏ ≤ ⋃ (௒; ivܥ Y௥ᇲ஼ೊ௥ᇲୀଵ = ܸ. If ݊௥௦ denotes the number of nodes in Xr 

of partition X that appear in Ys of partition Y, the overlap between the two partitions X 
and Y can be written in the form of  a contingency table as in Table 1, where ݊௥∙ = ∑ ݊௥௦௦  and ݊∙௦ = ∑ ݊௥௦௥  are respectively the number of nodes in X௥ and ௦ܻ.  



4 
 

Table 1. Contingency table of two partitions 
Partition Y 

Pa
rti

tio
n 

X 

Community 
/group 

Y1   Y2       …   Y஼ೊ ݊௥∙ = ෍ n୰ୱ௦  

X1 
X2 
. 
. 
. X஼೉ 

n11    n12      …  nଵ஼ೊ 
n21    n22      …  nଶ஼ೊ 
.      .      …    . 
.      .      …    . 
.      .      …    . n஼೉ଵ  n஼೉ଶ     …  n஼೉஼ೊ

݊ଵ∙ ݊ଶ∙ 
. 
. 
. ݊஼೉∙ ݊∙௦ = ෍ n୰ୱ௦  ݊∙ଵ    ݊∙ଶ      …  ݊∙஼ೊ ܰ = ෍ n୰ୱ௥௦  

 
With the notations presented in Table 1, the normalized mutual information 

(NMI) is defined as [12]:  NMI(X, Y)  =  ିଶ ∑ ∑ ௡ೝೞ୪୭୥ ( ಿ∙೙ೝೞ೙ೝ∙∙೙∙ೞ)಴ೊೞసభ಴೉ೝసభ∑ ௡ೝ∙୪୭୥ (೙ೝ∙ಿ )಴೉ೝసభ ା∑ ௡∙ೞ୪୭୥ (೙∙ೞಿ)಴ೊೞసభ .                            (1) 

From the classical or frequentist interpretation of probability, the probabilities 
are viewed in terms of the frequencies of random, repeatable events. Consequently, 
the probability of a randomly selected node being in community/group X௥ (or Y௦) is P(ݎ) = ௡ೝ∙௡  (or P(ݏ) = ௡∙ೞ௡ ), and similarly P(ݎ, (ݏ = ௡ೝೞ௡  is the probability of a 

randomly selected node in group X௥ being in Y௦. NMI can thus be reformulated as a 
function of probabilities: 

NMI(X, Y) =  ିଶ ∑ ∑ ೙ೝೞಿ ୪୭୥ቆ ೙ೝೞಿ೙ೝ∙ಿ ∙೙∙ೞಿ ቇ಴ೊೞసభ಴೉ೝసభ∑ ೙ೝ∙ಿ ୪୭୥ቀ೙ೝ∙ಿ ቁ಴೉ೝసభ ା∑ ೙∙ೞಿ ୪୭୥ቀ೙∙ೞಿቁ಴ೊೞసభ = ଶ ∑ ∑ ௉(௥,௦) ୪୭୥ቀ ು(ೝ,ೞ)ು(ೝ)∙ು(ೞ)ቁ಴ೊೞసభ಴೉ೝసభି ∑ ௉(௥) ୪୭୥ ௉(௥)಴೉ೝసభ ି∑ ௉(௦) ୪୭୥ ௉(௦)಴ೊೞసభ . (2) 

Here − ∑ (ݎ)ܲ log ஼೉௥ୀଵ(ݎ)ܲ ≜  ,is the entropy of the distribution of partition X (ܺ)ܪ

and ∑ ∑ ,ݎ)ܲ (ݏ log ቀ ௉(௥,௦)௉(௥)∙௉(௦)ቁ஼ೊ௦ୀଵ஼೉௥ୀଵ = (ܺ)ܪ + (ܻ)ܪ − ,ܺ)ܪ ܻ) ≜ ,ܺ)ܫ ܻ) is the 

mutual information between partitions X and Y. When P(ݎ, (ݏ = P(ݎ)P(ݏ) for each 
pair r and s, the two partitions X and Y are independent, and thus their NMI reaches its 
minimal value zero. Conversely, for two identical partitions, i.e. when for each 
community r in X there is only one matching community s in Y and vice versa (in this 
case, P(ݎ, (ݏ = P(ݎ) = P(ݏ) or ݊௥∙ = ݊∙௦ = ݊௥௦), NMI’s value reaches its maximal 
value, one. It can be easily verified that NMI is a symmetric measure. As a result, 
NMI fulfills the desirable requirements for a useful similarity measure.  

III. The bias of NMI and its improved variant rNMI 
Despite its advantages, NMI was recently shown to suffer from serious 

systematic errors in finite size networks [19]. Such errors are the result of using the 
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farther apart from 0 than in a smaller network, indicating that a network with a larger 
number of communities is more heavily affected by the finite size effect. 

To overcome the finite size effect of NMI, Zhang proposed the relative 
normalized mutual information (rNMI), defined as [19]: ܫܯܰݎ(ܺ, ܻ) = ,ܺ)ܫܯܰ ܻ)−< ,ܺ)ܫܯܰ ܼ௒) >,                         (4) 
where ܼ௒ is a random partition that has the same community-size distribution as 
partition Y, and < ,ܺ)ܫܯܰ ܼ௒) > is the expectation of NMI between X and ܼ௒. 
Practically, < ,ܺ)ܫܯܰ ܼ௒) > is usually computed by averaging on a number of 
realizations of ܼ௒. Due to the symmetry of NMI, rNMI is also symmetric. The finite 
size effect leads NMI to give higher value of a partition with larger number of 
communities. That is if partition Y has a larger number of communities, the value of ܰܫܯ(ܺ, ܻ)  will be larger, leading to a biased evaluation. Since the value of ܰܫܯ(ܺ, ܼ௒) between partition X and the random permutation ܼ௒ of partition Y will 
also be large, the bias will eventually be removed under the adjustment proposed for 
rNMI. As a consequence, rNMI has a vanishing value when two partitions X and Y are 
independent even if Y has a large number of communities, as it can be seen from the 
bottom right corner of Figure 1(b). 

Although rNMI overcomes the finite size effect of NMI, we observed here that it 
suffers from another undesirable issue. In fact, rNMI is not a well normalized metric. 
In Figure 1(b) (see the upper left corner), it is shown that even if there is no group 
label flipping, rNMI computed for a partition against itself is smaller than 1, which is 
counterintuitive and practically undesirable.  

We thus generated a series of synthetic partitions with equal size groups in 
network of different sizes, and with the number of groups ranging from 2 to N/5, to 
systematically reveal the defect of rNMI. As shown in Figure 2, rNMI values between 
two identical partitions decline with the increasing number of groups of partitions for 
different network sizes. This effect becomes more visible with smaller networks. For 
instance, when the number of groups is 102, rNMI between two identical partitions of 
a network with 103 nodes is the smallest and approaches zero. Furthermore, if the 
number of groups is large enough, the value between two identical partitions can be 
negligible.  

To describe how this happens and simplify the analysis, we here assume that the 
distribution of the variable ݊௥∙ of group size follows a Bernoulli distribution, and that 
partitions X and Y are identical and both have C communities of equal size K and ܼ௒ 
is the random permutation of partition Y. From equation (3), the average NMI 
between X and ܼ௒ can be approximated by  NMIே(X, Z) ≅ ଵଶ஼௄ ஼మିଶ஼ାଵଶ௟௢௚஼                                          (5) 

As a result, the rNMI between X and Y is approximated to  ܫܯܰݎ(ܺ, ܻ) = ,ܺ)ܫܯܰݎ ܺ)                                   = ,ܺ)ܫܯܰ ܺ)−< ,ܺ)ܫܯܰ ܼ௒) >                                   = 1 − ܭܥ12 ଶܥ − ܥ2 + ܥ݃݋12݈  
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theoretically equals 1. Since rNMI gives vanishing value of two random partitions, ܫܯܰݎ௡௢௥௠  will thus maintain this property. However, ܫܯܰݎ௡௢௥௠  is no longer 
symmetric with such normalization. As discussed previously, rNMI is symmetric, but 
the denominator of ܫܯܰݎ௡௢௥௠(Y, X) will be different from that of ܫܯܰݎ௡௢௥௠(X, Y) 
unless partition Y is identical to partition X. The asymmetry of ܫܯܰݎ௡௢௥௠ rules out 
the possibility to have it as a desirable metric for similarity. In addition, the maximal 
value of ܫܯܰݎ௡௢௥௠ is not strictly equal to 1 but mildly larger, which makes the 
explanation of the value of ܫܯܰݎ௡௢௥௠ between two identical partitions less rigorous.  

We thus call for a new metric that should not be affected by any of the finite size 
effects, and that is symmetric. In this paper, we introduce the corrected normalized 
mutual information (cNMI) and define it as: ܿܰܫܯ(ܺ, ܻ) = ௥ேெூ(௑,௒)ା௥ேெூ(௒,௑)௥ேெூ(௑,௑)ା௥ேெூ(௒,௒).                                  (7) 

Let ZX and ZY be, respectively, the random permutations that have the same group-size 
distribution as partition X and Y, exploiting the symmetry of rNMI, cNMI can be 
simplified as ܿܰܫܯ(ܺ, ܻ) = ଶேெூ(௑,௒)ିழேெூ(௑,௓ೊ)வିழேெூ(௒,௓೉)வଶିழேெூ(௑,௓೉)வିழேெூ(௒,௓ೊ)வ ,                      (8) 

taking advantage of the fact that NMI between two identical partitions is 1.  
It can be verified that cNMI has the desirable properties of a similarity metric of 

partitions. First, cNMI removes the finite size effect so that the cNMI value between 
two random partitions can reach zero, even if the partitions have a large number of 
groups. Suppose that partition Y is a random partition with regard to partition X, 
leading to the fact that ܰܫܯ(ܺ, ܻ) ≅< ,ܺ)ܫܯܰ ܼ௒) >  and (ܻ, ܺ) ≅< ,ܻ)ܫܯܰ ܼ௑) > , then ܿܰܫܯ(ܺ, ܻ) = ,ܺ)ܫܯ2ܰ ܻ)−< ,ܺ)ܫܯܰ ܼ௒) > −< ,ܻ)ܫܯܰ ܼ௑) >2−< ,ܺ)ܫܯܰ ܼ௑) > −< ,ܻ)ܫܯܰ ܼ௒) >  ≅ < ,ܺ)ܫܯܰ ܼ௒) > +< ,ܻ)ܫܯܰ ܼ௑) > −< ,ܺ)ܫܯܰ ܼ௒) > −< ,ܻ)ܫܯܰ ܼ௑) >2−< ,ܺ)ܫܯܰ ܼ௑) > −< ,ܻ)ܫܯܰ ܼ௒) >        = 0 
Second, the value of cNMI between two identical partitions is strictly equal to 1, and 
thus is not influenced by the reverse finite size effect. ܿܰܫܯ(ܺ, ܺ) = ,ܺ)ܫܯ2ܰ ܺ)−< ,ܺ)ܫܯܰ ܼ௑) > −< ,ܺ)ܫܯܰ ܼ௑) >2−< ,ܺ)ܫܯܰ ܼ௑) > −< ,ܺ)ܫܯܰ ܼ௑) >            = ଶିழேெூ(௑,௓೉)வିழேெூ(௑,௓೉)வଶିழேெூ(௑,௓೉)வିழேெூ(௑,௓೉)வ   = 1. 

Finally, cNMI is symmetric due to the symmetry of NMI.  ܿܰܫܯ(ܺ, ܻ) = ,ܺ)ܫܯ2ܰ ܻ)−< ,ܺ)ܫܯܰ ܼ௒) > −< ,ܻ)ܫܯܰ ܼ௑) >2−< ,ܺ)ܫܯܰ ܼ௑) > −< ,ܻ)ܫܯܰ ܼ௒) >                          = ,ܻ)ܫܯ2ܰ ܺ)−< ,ܻ)ܫܯܰ ܼ௑) > −< ,ܺ)ܫܯܰ ܼ௒) >2−< ,ܻ)ܫܯܰ ܼ௒) > −< ,ܺ)ܫܯܰ ܼ௑) >                          = ,ܻ)ܫܯܰܿ ܺ) 
As shown in Figure 3, cNMI is well normalized and scales from assigning to value 0 
the similarity of two random partitions to assigning to value 1 the similarity of two 
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partition grows as well. Due to the reverse finite size effect, rNMI biases to the 
partition with smaller number of communities. Since the partitions obtained by 
Louvain method usually contain smaller number of communities, the values of rNMI 
are thus much larger than that of partitions obtained from ground truth and InfoMap, 
leading to the erroneous conclusion that Louvain method works better than InfoMap 
[19]. In contrast, cNMI not only removes the finite size effect of NMI but also the 
reverse finite size effect of rNMI, which, based on the self-similarity experiment, 
leads to the evidence that InfoMap works better than Louvain method. 

V. The closed form expression of cNMI 
In the previous sections, both rNMI and cNMI adopt a correction to remove the 

bias from NMI by using the partitions sampled from a null model that has the same 
number of communities and nodes as the computed partition. As a consequence, the 
expectation of NMI between the ground-truth partition and a random partition is 
computed by averaging on realizations of the null model. In fact, there are closed 
form expressions for both rNMI and cNMI. In this section, we discuss such possible 
closed form expressions of cNMI.  

If one assumes that the distribution of the variable of the number of nodes ݊௥∙ in 
any community r follows the Bernoulli distribution, the closed form expression of the 
expectation of NMI can be obtained from equation (3), as in [19]. This is of interest, 
as an explicit closed form expression for the expectation of NMI may make the 
implementation more efficient.  

One possible type of closed form expression of cNMI based on the 
approximation of equation (3), denoted as ܿܰܫܯ஻, is defined as:  ܿܰܫܯ஻(ܺ, ܻ) = ଶேெூ(௑,௒) ି భಿ ಴೉಴ೊష಴೉ష಴ೊశభಹ(೉)శಹ(ೊ)ଶ ି భమಿ಴೉మ షమ಴೉శభమಹ(೉)  ି భమಿ಴ೊమ షమ಴ೊశభమಹ(ೊ)                             (9) 

However, as pointed out by Zhang [19] (see Figure 2 therein), adopting the 
Bernoulli distribution makes the value of the expectation of NMI less accurate than 
the simulation value. As it can be seen from Figure 7(a), cNMIB gives poorer 
evaluation on results obtained from Louvain method when the number of nodes is 
larger. In fact, we find that equation (3) is an even worse estimation of the expectation 
of NMI. When the number of communities in a network is large enough, say ܥ௑ and ܥ௒ are larger than √2ܰ, equation (3) is dominated by the term ܥ௑ܥ௒, making the 

estimated expectation of NMI much larger than 1. This unrealistic estimation makes 
the value of rNMI negative and that of cNMIB larger than 1, which is why on results 
from Louvain method cNMIB is increasing with the increasing number of nodes (also 
increasing the number of communities, see Figure 7(a)) and is even much larger than 
1 on the results from InfoMap (data not shown).  
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As a result, the distribution of random variable n௥௦ can be obtained as follows: P(n௥௦) = ∅(୬ೝೞ)∅(∙) = ቀ୬ೝ∙୬ೝೞቁ ቀ ேି௡ೝ∙௡∙ೞି௡ೝೞቁ ቀ ே௡∙ೞቁൗ .                              (12) 

To make sense the equation for P(n௥௦), conditions that n௥∙ ≥ n௥௦ and ܰ − ݊௥∙ ≥݊∙௦ − ݊௥௦ , as well as n௥௦  ≤ ݊∙௦ , should be satisfied for 1 ≤ ݎ ≤ ,௑ܥ 1 ≤ ݏ ≤ ௒ܥ , 
leading to the constraint that max (0, ݊௥∙ + ݊∙௦ − ܰ) ≤ n௥௦ ≤ min (݊௥∙, ݊∙௦). With this 
distribution, the expectation of NMI can then be computed: 

< NMI(X, Z௒) > = < −2 ∑ ∑ ݊௥௦ܰ log ൭ ݊௥௦ܰ݊௥∙ܰ ∙ ݊∙௦ܰ ൱஼ೊ௦ୀଵ஼೉௥ୀଵ∑ ݊௥∙ܰ log ቀ݊௥∙ܰ ቁ஼೉௥ୀଵ + ∑ ݊∙௦ܰ log ቀ݊∙௦ܰቁ஼ೊ௦ୀଵ > 

= (ܺ)ܪ2− + (Z௒)ܪ < ෍ ෍ ݊௥௦ܰ log ቌ ݊௥௦ܰ݊௥∙ܰ ∙ ݊∙௦ܰ ቍ஼ೊ௦ୀଵ஼೉௥ୀଵ >  
    = ିଶு(௑)ାு(௒) ∑ ∑ [< ௡ೝೞே log ቀ௡ೝೞே ቁ஼ೊ௦ୀଵ஼೉௥ୀଵ > −log (௡ೝ∙ே ∙ ௡∙ೞே ) < ௡ೝೞே >]       (13) 

The last equation holds under the assumption that all entries ݊௥௦ of the contingency 
table are independent and identically distributed (iid) variables. The expectation terms 
in the above equation are given by: < ௡ೝೞே log ቀ௡ೝೞே ቁ > =  ∑ ௡ೝೞே log ቀ௡ೝೞே ቁ୫୧୬(௡ೝ∙, ௡∙ೞ)௡ೝೞୀ୫ୟ୶ (଴, ௡ೝ∙ା௡∙ೞିே) ∙ ܲ(݊௥௦), < ௡ೝೞே > = భಿ < ݊௥௦ > = ଵே  ௡ೝ∙௡∙ೞே . 

Consequently, the closed form of the expectation of NMI under the generalized 
hypergeometric model can be obtained:  < NMI(X, Z௒) > =ିଶு(௑)ାு(௒) ∑ ∑ ∑ ௡ೝೞே log ቀ௡ೝೞே ቁ୫୧୬(௡ೝ∙, ௡∙ೞ)௡ೝೞୀ୫ୟ୶ (଴, ௡ೝ∙ା௡∙ೞିே)஼ೊ௦ୀଵ஼೉௥ୀଵ ∙ ቀ୬ೝ∙୬ೝೞቁ ቀ ேି௡ೝ∙௡∙ೞି௡ೝೞቁ ቀ ே௡∙ೞቁൗ −ିଶு(௑)ାு(௒) ∑ ∑ ଵே  ௡ೝ∙௡∙ೞே஼ೊ௦ୀଵ஼೉௥ୀଵ                                             (14) 

To simplify the denotations, let ௑ܰ = (݊௥∙, ⋯ , ݊஼೉∙) and ௒ܰ = (݊௥∙, ⋯ , ݊஼ೊ∙) and 
denote < NMI(X, Z௒) >≜< NMI(X, Z௒; ௑ܰ, ௒ܰ) > to make explicit the dependence 
of the expectation of NMI on the community sizes, the closed form expression of 
cNMI between partitions X and Y under the generalized hypergeometric model 
(denoted as ܿܰܫீܯ (ܺ, ܻ)) reads: ܿܰܫீܯ (ܺ, ܻ) = ଶேெூ(௑,௒)ିଶழேெூ(௑,௓ೊ;ே೉,ேೊ)வଶିழேெூ(௑,௓೉;ே೉,ே೉)வିழேெூ(௒,௓ೊ;ேೊ,ேೊ)வ.                      (15) 

Here we make use of the fact that < ,ܺ)ܫܯܰ ܼ௒; ௑ܰ, ௒ܰ) > is equal to  < ,ܻ)ܫܯܰ ܼ௑; ௒ܰ, ௑ܰ) > according to equation (12).  
Figure 7 shows cNMI values computed by different strategies on community 

partition results obtained by Louvain method and InfoMap. Although the 
computational time for ܿܰܫܯ஻ is constant (Figure 7(b)), ܿܰܫܯ஻ cannot correctly 
evaluate partition results, as discussed previously (Figure 7(a)) and we thus exclude 
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another larger dataset COIL-100, showing good stability of the performance of 
K-means. In contrast, if one uses instead rNMI to evaluate the clustering results, the 
performance of K-means drops much faster (4% vs. 15%) compared to cNMI when 
the variety of objects enriches, which may mislead to the inaccurate conclusion that 
the stability of the performance of K-means on these datasets is not good. Similarly, 
cNMI also reveals that SCC has higher stability than when using rNMI, since under 
cNMI the performance drops only about 18% instead of 27% under rNMI. All these 
phenomena are due to the reverse finite size effect of rNMI that cannot give the score 
1 when two partitions are identical. In fact, rNMI scores the ground truth partition 
against itself 0.9509 on COIL-20 and 0.8355 on COIL-100. 

VII. Conclusions 
In this paper, we theoretically and experimentally show a relevant problem of a 

recently proposed metric rNMI for performance testing of community detection 
methods. Although rNMI is originally designed to remove the finite size effect of 
NMI, it suffers from a different limitation, the reverse finite size effect that biases to a 
partition with small number of communities and small community size. If the number 
of communities is large enough or the size of the community is small enough, the 
value of rNMI, even between two identical partitions may shrink to a very small or 
even vanishing value, and not to the intuitive value of 1 that the similarity of two 
identical partitions should have. We thus proposed a new metric cNMI on the basis of 
the definition of rNMI. cNMI scales from giving value 0 to two random partitions to 
giving value 1 to two identical partitions, and thus is a well normalized metric. cNMI 
is also a symmetric metric. It not only removes the finite size effect of NMI but also 
the reverse finite size effect of rNMI. Compared to rNMI that in some cases may give 
a wrong estimate of performance of community detection methods, cNMI can more 
objectively test different community detection methods. We thus suggest to use cNMI 
for performance testing of community detection methods.  

We further discuss different strategies to compute cNMI, that is, by averaging on 
instances sampled from the hypothesized null models and by closed form 
approximations. In the closed form approximations of cNMI, we find that the 
approximation by setting Bernoulli distribution of the number of nodes in a 
community is poor for both rNMI and cNMI. If the randomness of the number of 
common nodes between two communities is modeled to follow the generalized 
hypergeometric distribution, the resulting closed form expression of cNMI becomes a 
good approximation. Since the calculation of such closed form cNMI introduces the 
iid assumption on the random variable of the number of common nodes, its value is 
slightly, but negligibly, overestimated. Compared to the closed form expressions of 
cNMI, cNMI by averaging on limited samples can be computed faster and more 
accurately. It is thus preferable to use cNMI by averaging on samples for the 
performance testing of community detection methods and other clustering methods in 
the much wider clustering field as exemplified in the previous section. 
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