
Enhanced Modularity-based Community Detection by Random Walk Network
Preprocessing

Darong Lai∗ and Hongtao Lu
Department of Computer Science and Engineering, Shanghai Jiao Tong University,

800 Dong Chuan Road, 200240, Shanghai, China

Christine Nardini
Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology,

Chinese Academy of Sciences, 320 Yue Yang Road, 200031, Shanghai, China
(Dated: April 20, 2010)

The representation of real systems with network models is becoming increasingly common and
critical to both capture and simplify systems’ complexity, notably, via the partitioning of networks
into communities. In this respect, the definition of modularity, a common and broadly used quality
measure for networks partitioning, has induced a surge of efficient modularity-based community
detection algorithms. However, recently, the optimization of modularity has been found to show
a resolution limit, which reduces its effectiveness and range of applications. Therefore, one recent
trend in this area of research has been related to the definition of novel quality functions, alternative
to modularity. In this paper, however, instead of laying aside the important body of knowledge de-
veloped so far for modularity-based algorithms, we propose to use a strategy to preprocess networks
before feeding them into modularity-based algorithms. This approach is based on the observation
that dynamic processes triggered on vertices in the same community possess similar behavior pat-
terns but dissimilar on vertices in different communities. Validations on real-world and synthetic
networks demonstrate that network preprocessing can enhance the modularity-based community de-
tection algorithms to find more natural clusters and effectively alleviates the problem of resolution
limit.

PACS numbers: 89.75.Hc

I. INTRODUCTION

Many real complex systems have recently been conve-
niently modeled as networks, with elements as vertices
and relations between pairs of vertices as edges. Al-
though as diverse as real complex systems can be, these
networks exhibit number of interesting and important
common properties, such as power-law degree distribu-
tion, small-world average shortest paths and high local
interconnections, i.e. high clustering coefficients [1–3].
Recent researches reveal that networked systems are or-
ganized as interconnected subgroups of vertices, called
communities. For example, communities may be sets of
web pages with common topics [4], functional modules
[5, 6] and groups of peoples in different organizations [5].
Communities are in general subgroups of vertices with

more chances to interconnect in the same subgroup but
less often to connect to other vertices in different sub-
groups. Since the seminal work of community structure
analysis in complex networks by Girvan and Newman [5],
this topic has attracted growing attention. Modularity,
an important and popular quality function, is then pro-
posed to qualify the community decomposition [7], which
greatly drives the advance of the researches on commu-
nity detection. Modularity is often calculated based on
the comparison of the actual network with its null model

∗darong.lai@gmail.com

(or configuration model) [8]. The null model is a network
with the same number of vertices and edges incident to
each vertex, but randomly rewired. The larger the value
of the modularity of a partition, the more exactly the
network can be decomposed into its real communities.
Modularity was first used in a class of divisive algorithms
to select the partition with the highest value [7], and has
frequently been used as a quality index ever since. Works
of this type include spectral methods based on Laplacian
matrix [9], information based divisive algorithm [10] and
more. Modularity has also been used as a target function
to be optimized directly, in algorithms such as simulated
annealing [11], extremal optimization [12], spectral opti-
mization [8, 13, 14] (for a more complete description see
review [15]).

Although modularity is important and popular, For-
tunato and Barthélemy recently found that modularity
optimization has a resolution limit [16], indicating that
clusters that are small with respect to the size of the
whole network tend to be merged into larger ones by
modularity optimization, even if they are cliques. Several
works have tried to address this problem. For example,
some works concentrate on recursively maximizing mod-
ularity for each single cluster found by previous partitions
[16, 17], without warranty of finding the proper commu-
nities; others have tried to define novel quality indexes
as alternatives, such as modularity density [18], which
are completely different from modularity-based ones and
force to abandon the large body of previously developed
efficient modularity-based methods. A spin model-based

2

formulation with a tunable parameter has also been pro-
posed [19, 20]. In fact, the spin model-based method is
designed not to address the resolution limit of modular-
ity but to generalize modularity in view of statistical me-
chanics in physics. It is thus expected that such a gener-
alized quality function (Hamiltonian) has resolution limit
as well [20]. A parameter γ is used to tune modular reso-
lution to reveal underlying hierarchical structure in net-
works if a prior information on the community structure
is available. But in many cases the community structure
is not known in advance, thus there is no simple way
to find which γ will give the most probable mesoscale
description of the network. As it has already been rec-
ognized [20], when the size distribution of communities
of a network is broad (for example, collaboration net-
works), there is not unique proper γ to identify the most
probable communities. Besides the aforementioned ef-
forts, little attention has been drawn to preprocess the
networks before they are fed into modularity-based algo-
rithms. Arenas et al. [21] worked in this direction and
proposed a method to modify the topology of the original
network by adding self-loops with an identical weight r
to every vertex and then used modularity optimization to
detect dozens of possible candidates of community par-
titions. Such a method needs to sample a great number
of values of r, and it is usually difficult to choose one
or more probable partitions from so many possible can-
didates if a priori information is lacking (for larger net-
works this becomes increasingly difficult since partitions
with equal number of groups are not necessary identi-
cal). In this paper we similarly avoid developing a new
community detection algorithm, but we aim at combin-
ing modularity-based methods with a network prepro-
cessing strategy to analyze network communities. We
will show that modularity-based methods coupled with
network preprocessing can alleviate the problem of reso-
lution limit in an effective way. Several other works use
a similar strategy to attack multiscale modular structure
or overlapping communities of networks [22, 23], with the
help of the concept of stability of a network [24]. How-
ever, these methods are fundamentally different from the
one proposed in this paper with respect to the problems
addressed and the underlying methodology (more thor-
ough discussions of these differences will be given later
when the proposed method is detailed).
Community structure reflects that each community in

a network is to some extent independent from other com-
munities. If a dynamic process as random walk (a process
that a walker randomly takes from one vertex to one of its
neighbors with a probability proportional to the weight
of the edge connecting them) is triggered on one vertex,
the process is more likely to persist on the vertices in
the same community and far less on the vertices in dif-
ferent communities. Based on this fact, random walkers
starting from vertices in the same community are likely
to have similar patterns when visiting or influencing the
whole network. In other words, random walkers starting
from vertices in the same community will have similar

trajectories when they randomly walk on the network,
and will be likely to have very different trajectories from
those of random walkers starting from vertices in differ-
ent communities. If a suitable measure to capture such
type of relations is available, we can differentiate edges
by the partial and incomplete information on the commu-
nity membership of their connected vertices, and devise
a strategy to sharpen the differences.

In this paper, we indeed use random walk as a surro-
gate of the dynamic processes on the network to unveil
such relationship. If two random walkers starting from
two different vertices have highly similar patterns, the
vertices are said to be in the same community with high
probability, but if the patterns are very different, the
vertices are in the same community with very low proba-
bility. As a result, we can set high positive weight on an
edge to show that its two connected vertices are in the
same community with high probability, and very low pos-
itive weight otherwise. Obviously, the similarity of the
patterns associated with any two vertices can be used as
a way to increase or decrease the weight on the edge join-
ing the vertices. After reweighting the edges on the orig-
inal network, the topology of the network appears to be
changed, as caused by our diminishing uncertainty on the
community membership of the vertices on the network.
By iteratively operating the same strategy on the newly
weighted network, i.e. continuing to reduce the uncer-
tainty, we can sharpen the differences of weights between
intra- and inter-community edges. After a few rounds of
edge reweighting, the community structure of the origi-
nal network becomes more obvious since the weights of
the inter-community edges nearly vanish. Interestingly,
we can show that the cost of the network preprocessing is
low, while the ability of the modularity-based community
detection algorithms to find more natural communities in
networks is enhanced.

In the following, after briefly introducing the concept
of modularity and its resolution limit, in Section II we
extend the concept on binary networks to weighted ones,
a step necessary to apply weighting concepts to modu-
larity, originally defined on binary networks. We then
propose our combined strategy to find communities in
networks in Section III. We also give in Section IV a
series of examples of application of the proposed method
to real and synthetic networks with known community
structure, to show its effectiveness. We further discuss
the proposed method and draw conclusions in Section V.

II. MODULARITY AND ITS RESOLUTION
LIMIT

Modularity guides us to identify the best decomposi-
tions of networks into communities. In this section, we
first introduce the modularity for binary networks and
its resolution limit when it is optimized, and then extend
the analysis to weighted networks.

3

A. Binary Networks

An undirected binary network is usually associated
with a symmetric adjacency matrix A, whose element
aij = 1 if there exists an edge between vertex i and j,
and aij = 0 otherwise. Vertex degree ki is the total num-
ber of edges incident to vertex i. Given a partition of an
undirected network into C groups, modularity is defined
as [7, 8]:

Q =
C∑

s=1

ls
L

− (
ds
2L

)2

=
1

2L

∑
ij

(aij −
kikj
2L

)δ(ci, cj)

(1)

where L is the total number of edges in the network and
the sum is over C groups which can be cast into element-
wise sum by function δ(·, ·)(δ(ci, cj) = 1 if i and j are in
the same community, i.e. community index ci = cj , and
0 otherwise); ls is the number of edges within the group
s, and the total degree of vertices in this group is ds.
The goal of modularity-based community detection algo-
rithms is to maximize the modularity. Modularity max-
imization sets an intrinsic scale to the communities that
can be found, which means that communities that are
smaller than this scale may not be discovered [16]. This
resolution limit depends on the total number of edges
in the network and the degree of interconnectedness be-
tween pairs of communities, which can be as large as the
order of size of the network. Fortunato and Barthélemy
defined a sub-graph to be a valid community if in a binary
network it satisfies:

ls
L

− (
ds
2L

)2 > 0 (2)

To illustrate the behavior of modularity maximization,
we briefly present an adaptation of the example used
by Fortunato and Barthélemy to illustrate the concept
[16]. Consider a binary network with L edges and with
at least three communities (community C1, C2 and the
rest of the network Rnet that contains one or more com-
munities). All these communities satisfy the definition
in Eq. 2. Two different partitions of this network are
considered. The first partition A considers C1 and C2 as
independent communities, while the second partition B
merges them into one larger community. The partition
of the rest of the network Rnet with respect to C1 and C2

is the same in both partition A and B. Intuitively, it is
more reasonable to say partition A is more natural than
partition B since both sub-graphs C1 and C2 are commu-
nities under the definition given in Eq. 2. Consequently,
the modularity QA of partition A should be larger than
the modularity QB of partition B, i.e. QA > QB , which
implies:

l2 >
2La1

(a1 + b1 + 2)(a2 + b2 + 2)
(3)

Here, l2 is the number of edges in C2; a1 is the ratio of the
number lC1C2

of edges between C1 and C2 to the number
of edges l1 in C1 , and a2 is the one between lC1C2 and l2.
Similarly, b1 is the ratio of the number of edges between
C1 and Rnet to l1, and b2 is the ratio of the number of
edges between C2 and Rnet to l2. If there is no edge be-
tween C1 and C2, i.e. a1 = a2 = 0, we always obtain par-
tition A as we maximize modularity. In an undirected bi-
nary network, however, there must exist at least one edge
between C1 and C2 if they are directly connected. Under
the simplest case where l1 = l2 = l, the minimal value of
the coefficients is a1 = a2 = b1 = b2 = 1

l . In this case,

if l2 ≤
√

L
2 − 1, we obtain partition B as optimal. This

analysis demonstrates that modularity sets a resolution
scale to the communities found and some of them may
be the combinations of other smaller communities below
this scale. However, the network should be decomposed
into natural groups, with more edges within groups but
far fewer between them. If a binary network can be trans-
formed into a weighted one by incorporating information
on the structure of the network, a possible solution to
this issue would be to add more weights inside the groups
by putting fewer weights on the inter-community edges,
iteratively increasing the differences between inter- and
intra-community edges. The idea of random walk based
iterative edge reweighting has been used in Markov Clus-
ter Algorithm [25] and random walk based hierarchical
clustering [26], however, to the best of our knowledge,
its implications in network modularity were not foreseen.
Weighting edges by random walk has also been found to
optimize modularity [22, 23], with the help of the con-
cept of stability of a network [24]. Although both stabil-
ity weighting and our method determine edge weights by
random walks within a certain time scale (called random
walk length in the current paper), the stability weighting
strategy consists of a single time weighting and is funda-
mentally different from the one used in the current paper.
Stability weighting, in fact, tends to add new edges to or
remove old edges from the original network by increasing
or decreasing the time scale, which modifies the connect-
edness of a network while our method does not, since it
only weights differently already existing edges according
to the knowledge on inter- and intra- community edges.
More importantly, stability weighting uses directly the
random walk probabilities as similarities, which biases
the weighting process since it gives higher values between
high degree vertices and other vertices. Conversely, our
approach uses the sum of probabilities as dimensional
properties of vertex vectors and thus the similarities are
induced from the similarities between vertex vectors (see
Section III for more details).

B. Weighted Networks

To adapt the concept of iterative reweighting to edges,
a first necessary step consists of extending the modularity

4

concept from binary networks to weighted ones. This can
be easily done since weighted networks can be regarded
as binary networks with multiple edges between pairs of
vertices, if suitable weight unit is chosen [27]. A weighted
network is determined by its weighted adjacency matrix
W , whose element wij is a positive real number if there
exists an edge between vertex i and j, and 0 otherwise.
The weighted extension of modularity is [28]:

Qw =
C∑

s=1

wss

M
− (

ws

2M
)2

=
1

2M

∑
ij

(wij −
wi.wj.

2M
)δ(ci, cj)

(4)

here M is the total weight of edges in the network; wi·
and ws are respectively the weighted degree of vertex i
and group s, while wss is the total weight of edges within
group s. Similarly, the extension of the valid definition
of community in a weighted network is:

wss

M
− (

ws

2M
)2 > 0 (5)

Since in an undirected binary network a1 = a2 = b1 =
b2 = 1

l is the minimal value that we can obtain, nothing
can be done to improve the resolution scale. However,
if the binary network is transformed into a weighted one
in an effective way, the minimal value of these coeffi-
cients can be as small as desired, since we can weigh the
inter-community edges. Moreover, if the cost of network
preprocessing is not excessively high we are sure to pre-
process the networks. The benefit is that we can use
already developed algorithms without any modification
and we do not add important extra costs to achieve bet-
ter results. With this in mind, we first consider a simple
extreme case and assume aw1 = aw2 = bw1 = bw2 = wmin

w
with the total weights of C1 and C2 in a weighted net-
work being w1 and w2, and set w1 = w2 = w. As a
result, we obtain partition A as our optimal partition
when maximizing the modularity if:

w2 = w >
2Maw1

(aw1 + bw1 + 2)((aw2 + bw2 + 2)

=
2M wmin

w

(wmin

w + wmin

w + 2)(wmin

w + wmin

w + 2)

(6)

Conversely, if w ≤
√

Mwmin

2 − wmin, we get partition B

as optimal by maximizing the modularity of the weighted
network. Ideally, if we can put infinitesimal weights on
the inter-community edges, i.e. wmin → 0, we can over-
come the resolution limit problem imposed by modular-
ity. That is to say, we will always find the more natural
partition A of the network into communities.

III. RANDOM WALK NETWORK
PREPROCESSING

Dynamic processes like random walk on a network can
explore the underlying network structure and this con-
cept has already been employed to reveal communities
in networks [22–24, 29–33]. Starting from a vertex, a
walker will randomly move to one of the neighbors of
that vertex in the next time step with a probability de-
termined by a transition matrix P . The element pij of
the transition matrix is the ratio between the weight of
edge (i, j) and the total weight of edges associated to
vertex i, i.e. pij =

aij

ki
or pij =

wij

wi
. In recent re-

searches, it has been found that a random walker will be
trapped for a longer time within than between communi-
ties [22, 24, 32]. In other words, random walkers starting
from vertices in the same community will behave simi-
larly when they randomly walk across the network. In
the following, for convenience, we use vertex behavior to
indicate the trajectory of a random walker starting from
it. Based on this, if two vertices have very similar be-
haviors, we can say with high confidence that -if they are
connected- these two vertices are in the same community,
and thus the edge connecting them is very likely to be
an intra-community edge. Conversely, large differences
between behaviors of two connected vertices mean that
the edge they are connected with is very likely to be an
inter-community edge.

In order to get some sense of this approach, we briefly
introduce an example making use of a social network
(Zachary Karate Club Network [34]), which will be dis-
cussed in more details later in Section IV to compare the
behaviors of vertices in the same versus different commu-
nities. In the real community partition of this network,
vertex 2 and 8 are in the same community, while vertex
1 and 34 are in different ones. As expected, we can see
from Fig. 1(a) that the behavior patterns of vertex 2 and
8 are comparably consistent, indicating that vertex 2 and
8 are in the same community with high probability. The
far difference between the behavior patterns of vertex 2
and 34 gives the opposite evidence that they are unlikely
to be in the same community (see Fig. 1(b)).

One of the implications of community partition is to
correctly differentiate inter-community edges from intra-
community ones. Modularity optimization can be re-
garded as a way to add as many weights as possible
into communities and reduce weights of inter-community
edges. A pair of vertices can easily and frequently be
visited by random walks triggered on them if they are in
the same community. As a consequence, we can give high
weight to an edge with its two endpoints having similar
behaviors under random walk processes and low weight
otherwise. Based on a suitable similarity metric that cap-
tures well the similarities of behaviors among vertices, we
can reweigh the edges of the original network without de-
teriorating its underlying community structure.

The probability of a walker starting from one vertex
to reach another in t-step random walk is determined

5

0 5 10 15 20 25 30 35
0

0.5

1
Be

ha
vio

r q
ua

nt
ity

(a)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

vertex index

Be
ha

vio
r q

ua
nt

ity

(b)

vertex 1

vertex 34

vertex 2

vertex 8

FIG. 1. Illustration of random walk behavior patterns of ver-
tices in Zachary karate club network [34]. (a) Behavior pat-
terns of vertex 2 and 8 that are in the same community; (b)
Behavior patterns of vertex 1 and 34 that are in different
communities.

by matrix P t (t is called random walk length here). P t

records the trajectories of random walks and has been
used to reveal community structure in networks [32],
where each row of P t is considered as a vector in n-
dimensional Euclidean metric space to induce similari-
ties between pairs of vertices in term of Euclidean dis-
tances between vectors, denoted PL-Similarity here. We
similarly view each vertex in network space as a vector
but use instead

∑t
τ=1 P

τ to track the trajectories of ran-
dom walks. As the behavior patterns can be quantified
as n-dimensional vectors, several similarity/dissimilarity
measures can capture their coherence, such as square Eu-
clidean distance [32], cosine similarity or angular distance
[9], and so on. In practice, we empirically find that co-
sine similarity or angular distance captures such simi-
larity much more accurately, since the dimension of the
vector n is very high. What the similarity needs to reflect
is the difference between the directions of two vectors, for
instance to what extent they are parallel, not the abso-
lute distance to indicate how far apart they are.
Both PL-Similarity and the one proposed here are

based on the fact that random walks triggered on ver-
tices in the same community will have similar trajec-
tories. However, PL-Similarity only considers a t-step
random walk, and one of the difficulties of PL-Similarity
is its sensitive dependence to parts of the network far
away from the target vertices considered each time. If
the network is nearly bipartite, PL-Similarity will have
fluctuations which result in an unstable measure. Con-
versely, the similarity used here takes into account t types
of random walks whose steps vary from 1 to t. Such a
similarity emphasizes the contributions from the vertices
near the target vertices currently considered, since the
identification of two target vertices as being in the same
community is mainly dependent on the interconnected-
ness between the target vertices and the nearby vertices,

not on that between the target vertices and the far away
vertices. The cosine similarity of two vectors vi and vj is
defined:

Simcos(vi, vj) =
(vi, vj)√

(vi, vi)
√
(vj , vj)

(7)

where (vi, vj) is the inner product of vector vi and vj . If
two behaviorial vectors vi and vj are highly consistent,
i.e. vi almost parallels to vj , cosine similarity Simcos →
1; but if vi and vj are orthogonal, i.e. elements of vi and
vj are alternatively 0, Simcos → 0. Thus, Simcos can be
used as the probability of an edge to lie in a community.

For each edge of the original network, we set as weight
the cosine similarity of the behavior patterns of its two
connected vertices. A new weighted network is then
produced irrespectively from whether the original net-
work is binary or weighted. Repeating the same strat-
egy on the newly obtained weighted network, we itera-
tively sharpen the differences between weights of intra-
and inter-community edges. After the original network is
preprocessed, we feed the finally weighted network into
an already developed community detection algorithm and
obtain the community decomposition of the original net-
work.

In this paper, we focus on four main modularity-based
community detection algorithms. Two have comparable
accuracy and high efficiency, and are the eigenvector-
based method proposed by Newman [14], denoted as
EigenMod , and a very fast algorithm developed by
Blondel et al. [35], denoted as FastMod . Two other
stochastic algorithms are also considered in the cases
of small networks in section IV: one by Guiméra and
Amaral [11] uses simulated annealing to optimize mod-
ularity, and is denoted SAMod , and the other by Duch
and Arenas [12] uses extremal optimization, named EO-
Mod . The two stochastic algorithms can obtain higher
accuracy if they are run several times to select the best
results, but consequently this requires much higher com-
putation time than EigenMod and FastMod. The four
modularity-based algorithms all have very good perfor-
mance in terms of accuracy, and any improvement on
the results obtained by these algorithms indicates that
the proposed strategy is useful and effective.

We here briefly introduce the four modularity-based
algorithms. EigenMod reformulates modularity in a
quadratic form:

Q =
1

2M

∑
ij

(wij −
wi·wj·

2M
)δ(ci, cj)

=
1

4M

∑
ij

siBijsj = sTBs

(8)

and casts community detection as Eigen-decomposition
of the matrix B. Here Bij = wij − wi·wj·

2M and s is the
membership vector representing the partition of the net-
work into two communities (vertex i is assigned to one
community if si = +1, or to another one if si = −1).

6

EigenMod searches vector s to be as much as possible
parallel to vector u corresponding to the largest eigen-
value, which is achieved by extracting the signs of the
components of the vector u: si = +1 if ui > 0 and
si = −1 if ui ≤ 0. The result is further refined by vertex
sweep to get the highest increase of modularity. This bi-
secting procedure continues on each of the clusters until
modularity cannot be improved any further. Differently
from EigenMod, FastMod first treats each vertex as a
separate community and then computes the modularity
gain by removing vertex i from its community and mov-
ing it to the community of its neighbor j. If there exists a
moving with highest positive modularity gain, vertex i is
put in that community and otherwise stays in its original
community. This step of vertex moving is repeated until
no improvement can be achieved. The next step builds a
new network whose vertices are communities found in the
first step, and the weights of edges between new vertices
are the sum of weights of edges between vertices in the
communities represented by these new vertices. The two
steps are repeated until the local maximal value of mod-
ularity is obtained. FastMod is very fast and can deal
with networks with millions of vertices, based on the fact
that the modularity gain of vertex moving can be easily
computed:

δQ = [

∑
win + ki,in
2W

− (

∑
wtot + ki
2W

)2]

− [

∑
win

2W
− (

∑
wtot

2W
)2 − ki

2W
]

(9)

here win is the total weight of the edges in the community
where vertex i can be moved to, and wtot and ki,in are
the total weight of the edges associated with the com-
munity and the degree of vertex i in that community,
respectively. SAMod uses minus modularity as energy to
be minimized. At each temperature, a number of ran-
dom updates are accepted with some probability: if the
energy is reduced the update is definitely accepted, oth-
erwise it is accepted with a probability inversely propor-
tional to the exponential increase of energy. The random
updates are generated jointly by a series of individual
vertex movements from one community to another and
collective movements involving merging two communities
and splitting a community. EOMod reformulates mod-
ularity as the sum of individual vertex contributions. It
initially splits the whole network into two random parts
with equal number of vertices, and each connected com-
ponents is considered an initial community. It then iter-
atively moves the vertex with lower modularity contribu-
tion from one community to another until local maximal
of modularity is reached. After that each community
found is treated as a separate network by deleting its
links to other communities and the process continues un-
til the total modularity cannot be improved any further.
We can summarize the procedure to combine network

preprocessing with already developed community detec-
tion algorithms as follows:
Step 1. Set the random walk length t to a suitable value,

and calculate the quantity
∑t

τ=1 P
τ (i) for each vertex i

of the input network with a weighted adjacency matrix
W , where P τ = (D−1W)τ , and D is the diagonal matrix
with weighted degrees of vertices on its diagonal;
Step 2. For each edge (i, j) of the network, calculate the
cosine similarity of behavior patterns of vertex i and j,
i.e. wij = cos(

∑t
τ=1 P

τ (i),
∑t

τ=1 P
τ (j)), and set wij as

its new weight;
Step 3. Run Step 1 and Step 2 iteratively for several
rounds I.
Step 4. Feed the finally weighted network into a commu-
nity detection algorithm adopted, and output the com-
munity decomposition of the original network.

The procedure can be divided into two main phases:
preprocessing of the original network (step 1-3) and de-
composition of the newly obtained network into commu-
nities (step 4). The complexity of step 1 depends on the

computation of
∑t

τ=1 P
τ (i), which can be done on aver-

age in O(< k >t), where < k > is the average number
of neighbors of vertices (degrees) in the network. If the
degree of a network is bounded, as it is always the case
in real applications, calculating

∑t
τ=1 P

τ (i) is done in
constant time. Thus the cost of step 1 is O(n). It is easy
to show that for L edges in the network the average cost
of step 2 is O(L < k >), which is O(n < k >) for a sparse
network. Consequently, the total cost of the first phase is
O(IL < k >) orO(In < k >) for a sparse network. As we
will show later in Section IV, few iterations of step 3 are
sufficient to distinguish the intra- and inter-community
edges and thus the complexity of the first phase is O(n) if
the network is sparse and its degree is bounded. The cost
of the second phase is that of the community detection
algorithm adopted, which are O(n2 log n) for both Eigen-
Mod and EOMod, and approximately O(n) for FastMod.
The complexity of SAMod is far higher than that of the
three others and cannot be simply estimated in terms of
n or L for its dependence on the parameters used. In all
applications in this paper, we find that the first phase
of the procedure is fast and thus does not impose heavy
burden on the total cost.

Before applying the procedure to detect communities
in networks, the parameter t of random walk length needs
to be specified in advance (step 1). Since the conver-
gence speed of random walk is exponential, t in practice
should not be chosen too large, i.e. possibly not greater
than log(n). To examine the influence of t on the cosine
similarity more thoroughly, we consider an extreme case
when t → ∞. As it has already been found [32, 36],
when t → ∞ the probability of random walker being on
a vertex j only depends on the degree wj· of vertex j:

lim
t→∞

P t
ij =

wj·

2M
, 1 ≤ i ≤ n (10)

Let tc be the converged steps of random walk, then if
t ≥ tc, P

t ≈ C. Here C is a n×n constant matrix whose
rows are identical vectors with jth entry being

wj·
2M . The

behavior quantity
∑t

τ=1 P
τ can thus be separated into

7

two partial sums over tx < tc and tα ≥ tc:

t∑
τ=1

P τ =



tx∑
τ=1

P τ + (tα + 1− tc)C, t ≥ tc,

tα = t; (11)
tx∑

τ=1

P τ + 0, t < tc,

tx = t.(11′)

Let X =
∑tx

τ=1 P
τ and Pα =

∑t
τ=1 P

τ −
∑tx

τ=1 P
τ . Co-

sine similarity can then be rewritten in a similar way:

Simcos(xi, xj)

=
(xi, xj) + (xi, α) + (xj , α) + (α, α)√

(xi, xi) + 2(xi, α) + (α, α)
√

(xj , xj) + 2(xj , α) + (α, α)
.

(12)

here xi and α are the ith rows of X and Pα, respec-
tively. When t → ∞, (α, α) → ∞, which makes
Simcos(xi, xj) → 1 for any pair of edge endpoints i
and j. Edge weighting is in such case equivalent to
simply ignoring all edge weights in the original network
and thus produces a binary network. This is undesir-
able since we never obtain any information on the net-
work structure but loose valuable information contained
in edge weights. Information needed to distinguish inter-
and intra-community edges comes merely from the local
structure of a network. Therefore we need to choose a
small value of t to preprocess network by edge weight-
ing. The strategy to choose the value of t is similar to
that for choosing the number of principal components
able to reveal the internal structure of the data with
Principal Component Analysis (PCA, [37]) widely used
in data mining and pattern recognition. If we imagine
P τ s (1 ≤ τ ≤ t) like principal components, the value
of t < tc is chosen to best explain local structure of the
network and can be thought of as follows: the P τ s cor-
responding to smaller values of τ account for as much
of the information on local structure in the network as
possible. It is also possible to choose t < tc as large as
possible, however, random walks corresponding to larger
value of t give little additional information on the net-
work’s local structure while introducing additional infor-
mation on global network structure that is not so useful
in distinguishing inter- and intra-community edges and
sometimes misleading (i.e. relevant information on local
structure contains noises). Furthermore, larger t results
in more iterations for the procedure to eliminate unnec-
essary or misleading information. Although there is so
far no theoretical foundation for determining the opti-
mal values of t, in our experience, we observed that in
most cases small values like t = 2, 3, 4 are sufficient to
capture the information on local structure of the net-
work without over-determining it (t = 2, 3, 4 are chosen
to reflect the fact that triplets, triangles and rectangles
are more frequently found within communities than be-
tween). Moreover, for a very sparse network the value of
t should increase while for a very dense network decrease,

due to the exponential converging speed of the random
walk. The choice of small values of t achieves good em-
pirical compromise between efficiency and accuracy as we
will see in a series of examples in next section.

IV. APPLICATIONS

To experimentally validate the effectiveness of the com-
bined procedure, we apply it to a number of real and
synthetic networks with known community structure.

A. Zachary’s Karate Club Network

This network is constructed by W. W. Zachary [34],
and consists of 34 vertices representing members of a
karate club and 78 edges to show friendship relations be-
tween its members. The network had been split into two
disjoined groups (the first one consists of 16 vertices: 1-
8, 11-14, 17-18, 20, 22, and the second one consists of
the rest) due to the disagreement between the admin-
istrator and the instructor of the club during the years
in which W. W. Zachary studied it. The network has
become one of the well-known benchmarks to test com-
munity detection algorithms [12–14, 21, 29], and, when
optimizing modularity, it is always split into four groups
(similar to the ones shown in Fig. 2 (b) except vertex 10
is put in the red up-triangle group, with modularity value
0.4188 in most cases, including EigenMod and EOMod).

(a) (b)

FIG. 2. (a) Community partition of Zachary karate club net-
work when t = 3; (b) Community partition of Zachary karate
club network when t = 4. All four modularity-based algo-
rithms produce the same results when optimizing the modu-
larity of partitions of the reweighted network.

The output of FastMod somewhat depends on the in-
put order of the vertices though the influence is limited.
When we permute the input order of vertices, the maxi-
mal modularity that FastMod can achieve is 0.4198 (also
the highest modularity that SAMod can achieve), and
the exact partitioning is shown in Fig. 2 (b) where ver-
tex 10 is now in the group with most of its friends. To test
the random walk preprocessing, we choose two random
walk lengths: t = 3 and t = 4. We iterated 5 times to
reweight the network (I = 5), and fed the novel network

8

into all four modularity-based algorithms introduced in
section III. Results are shown in Fig. 2 with different
random walk lengths. For FastMod, we permuted the
input order of the vertices and chose the partition with
the highest modularity. For the two stochastic algorithms
SAMod and EOMod, we ran them under no less 30 differ-
ent initial conditions and selected the partitions with the
highest modularity on the weighted network. The differ-
ence between the partitions in Fig 2 (a) and (b) consists
of different subdivision of the second groups from the real
splitting. Intuitively, the partition in Fig. 2 (a) is more
natural than the one in Fig. 2 (b) since vertex 25, 26
and 32 form a triangle and the blue square vertices form
a much more compact group. As we have seen, when
optimizing modularity calculated on the original net-
work, both EigenMod and EOMod obtained lower mod-
ularity (0.4188) while FastMod and SAMod can achieve
higher modularity (0.4198). After the network was pre-
processed, the results of all the four modularity-based
algorithms became consistent. Such an interesting phe-
nomenon indicates that modifying the topology of the
original network by edge reweighting changes the search-
ing space of modularity landscape and sometimes facili-
tates the heuristics to achieve optimal modularity.

B. Network of American College Football Teams

We applied the proposed procedure to the network of
American college football games during the fall regular
season 2000 [5]. The network contains 115 vertices repre-
senting teams and 613 edges representing games played
between the teams. The 115 teams come from 12 confer-
ences and games are more frequent between teams from
the same conference than between teams from different
conferences. We first applied all the four modularity-
based algorithms to this network to reproduce the results.
All the methods decompose the network into 10 commu-
nities, but the values of modularity obtained are different,
namely 0.6009, 0.6046, 0.6044 and 0.6043 by EigenMod,
FastMod, SAMod and EOMod, respectively. The dif-
ferences among these partitions are the different assign-
ments of vertices 37 (CentralFlorida), 59 (LouisianaT-
ech), 60 (LouisianaMonroe), 64 (MiddleTennesseeState),
83 (NotreDame) and 98 (LouisianaLafayette). For exam-
ple, vertices 37, 59, 60, 64 and 98 are merged by EOMod
into the conference ”Southeastern”, while by SAMod ver-
tices 59, 60, 64 and 98 are put into ”Conference USA”
and vertex 37 is moved to conference ”Mid-American”.
Although the difference between values of modularity ob-
tained by EigenMod and FastMod is a little more signifi-
cant, the only difference between the partitions of Eigen-
Mod and FastMod is the classification of vertex 83. We
thus conjecture that the searching space of values of mod-
ularity on the original network contains many local min-
ima resulting in such inconsistent behaviors of the four
modularity-based algorithms.
To preprocess this network, we again used two ran-

dom walk lengths: t = 3 and t = 4, and fed the pro-
cessed weighted network into all four algorithms. Al-
though these algorithms give different partitions when
directly acting on the original network, the partitions
obtained become consistent when the preprocessed one
is fed. To see more clearly the decomposition behavior of
the proposed procedure, we visualized the confusion ma-
trix whose elements (i, j) represent the number of com-
mon vertices found both in community i by the proposed
procedure and in real community j. The columns of the
confusion matrix were rearranged to make the diagonal
elements as large as possible to obtain the one-to-one cor-
respondence between the communities found and the real
ones, see Fig. 3. The procedure decomposes the network
into 12 communities when t = 3 and 11 communities
when t = 4. The difference is that community indexed
11 is merged into community indexed 7, i.e. the elements
of the 11th row of the matrix in Fig. 3 (a) are moved and
added to the 7th row (see the difference between the con-
fusion matrices in Fig. 3 (a) and Fig. 3 (b)). The group
in green square and the blue arrow in Fig. 4 illustrate this
merging. In these two partitions, the real community ”In-
dependence” (indexed 6) is disassembled and its members
are distributed to three other conferences. This is due
to the fact that teams in the conference ”Independence”
play more games with inter-conference teams than those
in their own conference, which is against the definition
used here that vertices in the same community have more
edges than vertices in different communities. The values
of modularity calculated on the original network of the
partitions with t = 3 and that with t = 4 are 0.6032 and
0.6010, respectively. Although the values obtained by the
proposed procedure appear to be smaller than the maxi-
mal one (i.e. 0.6046), we find that the partitions are more
natural than those obtained by solely applying the detec-
tion algorithms to the network. If we use the number of
correctly classified vertices as quality index, i.e. accuracy,
we can quantify this assumption. To calculate the accu-
racy, we first searched the correspondence with maximal
total sum of common members between the communi-
ties found by the procedure and the real ones. In order
to make the correspondence to be a one-to-one mapping,
we assigned the real community index to the newly found
one with the largest common members and each real com-
munity index could only be assigned once. We continued
this assignment until all found communities had been re-
indexed or the indexes of the real communities were used
up. Consequently, the accuracy is the sum of the num-
ber of common members between found communities and
their corresponding real communities (for example, the
accuracy of the proposed procedure at t = 3 is the sum
of the diagonal elements of the matrix shown in Fig. 3
(a)). This type of accuracy is a very stringent measure
to put emphasis not only on the correct classification of
the vertices into communities but also on the correctness
of the number of communities found. By this index of
performance, both partitions found by the proposed pro-
cedure correctly classify 104 vertices out of 115 vertices

9

(vertices in ellipses and square are considered to be mis-
classified, see Fig. 4), while partitions found by directly
feeding the network into the four modularity-based algo-
rithms correctly classify 100 vertices. The higher accu-
racy by the proposed procedure results from the different
classification of the conference ”Sun Belt”. The confer-
ence ”Sun Belt” is merged by pure modularity-based al-
gorithms into the conference ”Mountain West” (due to
resolution limit), while most of its team members are cor-
rectly identified by the proposed combined procedure as
an independent community. The advantages of random
walk network preprocessing in this case are two folds.
First, network preprocessing makes the behaviors of the
four modularity-based community detection algorithms
consistent. Secondly, and more importantly, network pre-
processing helps the four algorithms to find more natural
communities, i.e. it can not only assign vertices to their
true communities but also predict the number of commu-
nities more correctly.
We also used this network to show that iterative edge

reweighting makes the behavior patterns of vertices in the
same community become consistent. For example, vertex
1 and vertex 5 in this network are in the same commu-
nity. Fig. 5 shows that their patterns quickly become
consistent after 3 iterations. Iterative reweighting puts
iteratively heavier weights on the intra-community edges
and lighter weights on the inter-community ones, which
makes a random walker starting from a vertex spend most
of its time visiting its neighbors in the same commu-
nity and hardly reach vertices outside the community. In
all the applications in the present paper we iteratively
weighted each network 5 times (I = 5) if not explicitly
declared.

C. Clique Chain Networks

We tested our method on the same synthetic dataset
on which Fortunato and Barthélemy identified modular-
ity resolution limit [16]. Fig. 6 gives two types of clique
chain networks. The network in Fig. 6 (a) consists of
30 identical cliques, with 5 vertices each, connected by a
single edge. The one in Fig. 6 (b) is a network with two
pairs of identical cliques and the big pair has 20 vertices
each while the other pair is a pair of 5-vertex cliques.
Intuitively, the cliques are the natural communities and
proper community detection algorithms should find them
correctly. If the network is not preprocessed, none of the
four modularity-based methods can correctly identify the
regularity of cliques being communities. The communi-
ties they detect are the combinations of cliques. If the
network is preprocessed first, i.e. iteratively reweighting
edges with t = 3 or t = 4, they all correctly decompose
the network into cliques. We further performed testing
on ten similar clique chain networks by varying the num-
ber of cliques chained. The results are summarized in
Table. I. Note that the combined procedure correctly de-
tects the number of cliques over the whole range, while

13 0 0 0 0 0 0 0 0 0 2 0

0 10 0 0 0 0 0 0 0 0 0 0

0 0 9 0 0 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0 0 0 0 0

0 0 0 0 8 0 0 0 0 0 2 0

0 0 1 0 0 8 0 0 0 0 0 0

0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 1 0 4 0 0 1 0

0 0 0 0 0 0 0 0 8 0 0 0

0 0 0 0 0 0 0 0 0 9 0 0

0 0 0 0 0 1 0 3 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 12

1

2

3

4

5

6

7

8

9

10

11

12

7 9 5 3 2 12 10 11 8 1 6 4

fo
un

d
co

m
m

un
ity

 in
de

x

real community index

(a)t=3

13 0 0 0 0 0 0 0 0 0 2 0

0 10 0 0 0 0 0 0 0 0 0 0

0 0 9 0 0 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0 0 0 0 0

0 0 0 0 8 0 0 0 0 0 2 0

0 0 1 0 0 8 0 0 0 0 0 0

0 0 0 0 0 1 12 3 0 0 0 0

0 0 0 0 0 1 0 4 0 0 1 0

0 0 0 0 0 0 0 0 8 0 0 0

0 0 0 0 0 0 0 0 0 9 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 12

1

2

3

4

5

6

7

8

9

10

merged

12

7 9 5 3 2 12 10 11 8 1 6 4

real community index

fo
un

d
co

m
m

un
ity

 in
de

x

(b)t=4

FIG. 3. Confusion matrix constructed by the communities
found by the proposed procedure and the real ones. Row la-
bels represent the labels of the communities found and column
labels are real community indexes (as they are labeled in [5],
plus 1). The columns are rearranged to make the diagonal el-
ements as large as possible. (a) Confusion matrix with t = 3.
(b) Confusion matrix with t = 4.

the four algorithms initially find the correct number of
cliques but fail when the number of cliques increases as
shown analytically [16]. Similarly, the four algorithms
find 3 communities of the network in Fig. 6 (b) with two
20-vertex cliques correctly detected and the other one
identified as the combination of the 5-vertex clique pair.
In contrast, the combined procedure detects all 4 cliques
correctly. The success of the combined procedure is due
to the incorporation of the information on the local struc-
ture of the networks.

Besides the arguments in section III, we further gen-
erated a series of the same type of networks as the one
shown in Fig. 6 (a) but varied the number of chained
cliques from 100 to 2000 to get more intuition on the ef-
fect of parameters t and I on the behavior of the proposed
procedure. Random walk lengths t were chosen from 1

10

TABLE I. Results for the resolution limit test on networks made out of cliques chained by a single edge. The number of cliques
ranges from 20 to 30. Without network preprocessing, all four modularity-based methods cannot detect the correct number of
cliques as it increases. If the networks are preprocessed as suggested in the paper, all of them detect the cliques correctly. Here
EitherMod represents either of the four modularity-based algorithms.

Number of cliques
Methods 20 21 22 23 24 25 26 27 28 29 30
EigenMod only 20 21 14 15 16 16 16 16 16 16 16
FastMod only 20 21 22 12 12 13 13 14 14 15 15
SAMod only 20 21 21 12 12 13 14 14 15 16 16
EOMod only 20 21 14 14 12 13 15 15 16 16 16
Preprocessing+EitherMod 20 21 22 23 24 25 26 27 28 29 30

FIG. 4. Result with random walk length t = 3. In this
case, the combined procedure finds 12 communities, which is
consistent with the ground truth number of communities. 11
out of 115 vertices in ellipse and in square are misclassified
by the suggested accuracy index.

to 6, and at each value of t the number of iterations I in-
creased from 1 to the first value able to detect the correct
number of cliques chained in a network. Table II summa-
rizes the results. The information on local structure of
such type of clique chain networks can be fully expressed
by t = 1 since all the vertices in the same community
(clique) can be visited in a one step walk. Thus the num-
ber of iterations necessary to extract relevant information
is only one in all cases. When t increases, information on
global structure of the network is also included, therefore
more iterations are needed to extract relevant informa-
tion on local structure from the one on global structure
that may hinder the procedure to quickly differentiate
inter- and intra-community edges. Such type of clique
chain networks are so special that they are different from
most of real-world networks. When applying the pro-
posed procedure to networks with realistic features, dif-
ferent combinations of the parameters t and I show very
good and similar performance if networks possess clear

0 50 100
0

0.05

0.1

0.15

0.2
Iteration #1

0 50 100
0

0.1

0.2

0.3

0.4
Iteration #2

0 50 100
0

0.1

0.2

0.3

0.4
Iteration #3

0 50 100
0

0.1

0.2

0.3

0.4
Iteration #4

0 50 100
0

0.1

0.2

0.3

0.4
Iteration #5

0 50 100
0

0.1

0.2

0.3

0.4
Iteration #6

FIG. 5. Iteration quickly makes the behavior patterns of ver-
tices in the same community consistent. Vertex 1 (red solid)
and vertex 5 (black dash-dot) in the network of American col-
lege football teams are chosen to illustrate this phenomenon.

(a) (b)

FIG. 6. Illustration of two types of clique chain networks. (a)
Network made of 30 cliques, with 5 vertices each, connected by
a single edge. (b) Network made out of two pairs of identical
cliques, with big pair having 20 vertices each and the other
pair 5 vertices each.

community structure, as will see in the coming subsec-
tion.

D. LFR Benchmark Networks

All the networks we have tested so far are small or
special. To test the random walk preprocessing on larger
networks, we used a recently introduced class of bench-
mark networks with realistic features like power law dis-
tributions of degree and community size [38]. The vertex
degrees of a network are controlled by a power law dis-

11

TABLE II. Relationship between random walk length t and number of iterations I to identify correct number of cliques in
clique chain networks. Each clique contains 5 vertices and the number of cliques varies from 100 to 2000.

Number of cliques/100
I

t 1 2 3 4 5 6 7 8 9 10-13 14-16 17 18-20
1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 3 3 4 4 4 4 5 5 5 5 6 6
3 2 3 4 4 5 5 5 5 6 6 6 6 7
4 3 4 5 5 5 6 6 6 6 7 7 7 8
5 3 4 5 6 6 7 7 7 7 8 8 9 9
6 3 5 6 7 7 7 8 8 8 9 10 10 10

tribution with exponent t1, and the community size also
distributes according to power law with exponent t2. The
ratio between the external degree of each vertex with re-
spect to its community and the total degree of the vertex
is determined by a common mixing parameter µ. The
larger the value µ of a network is, the harder it is to
detect communities in it.
SAMod and EOMod are stochastic algorithms and

thus need to rerun many times to obtain comparable re-
sults, this results in much higher computational cost. In
addition, compared to SAMod and EOMod even with
a large number of repetitions, EigenMod and FastMod
are empirically found to perform much better on LFR
networks both in accuracy and efficiency. For this rea-
son in this validation on LFR networks we only reported
the improvements on EigenMod and FastMod to see if
the proposed procedure is effective. We first generated
a set of undirected binary networks with 1000 vertices.
For the exponent of the degree distribution and that of
the community size, the default values provided by the
algorithm were used: t1 = −2, t2 = −1. The mixing
parameter µ varies from 0.05 to 0.8. The average degree
and the maximal degree are 20 and 50, respectively. To
preprocess these networks, we set the random walk length
to 3. We used the same strategy to calculate accuracy
and the results are presented in terms of the fraction of
correctly classified vertices to ease figure readability. The
performance comparison on this set of networks is shown
in Fig. 7 (a). Since our strategy for calculating accuracy
will penalize heavily the results with wrong prediction
of the number of communities, we can see from the fig-
ure that EigenMod and FastMod cannot correctly detect
communities in these networks even if the networks have
clear community structure (0.35 ≤ µ ≤ 0.5). The reason
is that resolution limit occurs when optimizing modular-
ity on the partitions of these networks. Conversely, after
the networks are preprocessed, EigenMod and FastMod
can correctly detect communities as long as µ ≤ 0.6. The
problem of resolution limit becomes even worse when the
number of vertices in the network increases and the com-
munity sizes are diverse. We further generated two other
sets of networks to confirm the comparison. The vertex
number of the first set of networks is 5000 each, while
that of the second one is 10000. The parameters for gen-

erating these larger networks are the same as those for
1000-vertex networks except that the minimal commu-
nity size and the maximal community size in the 10000-
vertex networks are respectively 20 and 200 to make the
community size more diverse. The results are shown in
Fig. 7 (b). We only presented the performance for Fast-
Mod, but for EigenMod it is similar. Since the problem of
resolution limit becomes more severe in these cases, the
performance of FastMod without network preprocessing
becomes so bad that it cannot detect communities cor-
rectly in the entire range of the mixing parameter. As
expected, the performance of FastMod becomes excel-
lent if the networks are preprocessed before they are fed
into the modularity-based algorithm. If networks pos-
sess clear community structure, different random walk
lengths will give very similar results. When µ ≤ 0.5,
the procedure by network preprocessing with t = 2, 3, 4
correctly detects the communities in LFR networks (see
Fig. 8). The reason is that in such cases the procedure
will quickly set very small (nearly vanishing) weights on
inter-community edges (Fig. 7). When µ > 0.5 (i.e.
the external degree of a vertex is larger than the inter-
nal one), community structures of LFR networks become
fuzzier, and it is much harder for the procedure to dif-
ferentiate intra-community edges from inter-community
ones. As a consequence, weights for real inter-community
edges cannot be quickly reduced and more iterations are
needed. For example, when we iterate 10 times to weight
edges of LFR networks with 5000 vertices, the procedure
with t = 3 can correctly detect communities as long as
µ ≤ 0.6, showing higher performance than that with 5
iterations (Fig. 8, µ > 0.55).

V. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a combined proce-
dure to enhance the ability of modularity to detect com-
munities in complex networks. The proposed procedure
combines previously developed community detection al-
gorithms with random walk network preprocessing and
aims at alleviating the resolution limit problem of mod-
ularity optimization. By analyzing the resolution limit
of modularity optimization in weighted undirected net-

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mixing parameter µ

fr
a

ct
io

n
 o

f
co

rr
e

ct
ly

 c
la

ss
ifi

e
d

 v
e

rt
ic

e
s

N = 1000

FastMod
PreFastMod
EigenMod
PreEigenMod

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mixing parameter µ

fr
a

ct
io

n
 o

f
co

rr
e

ct
ly

 c
la

ss
ifi

e
d

 v
e

rt
ic

e
s

N=5000, FastMod
N=5000, PreFastMod
N=10000,FastMod
N=10000,PreFastMod

(b)

FIG. 7. Performance comparison with or without ran-
dom walk network preprocessing. (a) Performance on net-
works with 1000 vertices. (b) Performance on networks with
5000 and 10000 vertices. PreFastMod means the proce-
dure that combines network preprocessing with FastMod, and
PreEigenMod represents the procedure that combines net-
work preprocessing with EigenMod.

works, as the simple extension of the similar analysis in
undirected binary ones, we find that the resolution limit
of modularity optimization can in theory be overcome as
long as we can iteratively reweigh differently intra- and
inter-community edges. Network preprocessing is thus
used to iteratively put much heavier weights on possible
intra-community edges but far lighter weights on inter-
community ones. The processed network is then fed into
the adopted modularity-based community detection al-
gorithm to produce the partition with the highest mod-
ularity, which corresponds to the community decomposi-
tion for the original network. We applied the combined
procedure to sets of real and synthetic networks. The
experimental results demonstrate that the procedure can
detect communities as natural as possible and alleviate
the resolution limit problem of modularity optimization.

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mixing parameter µ

fr
a

ct
io

n
 o

f
co

rr
e

ct
ly

 c
la

ss
ifi

e
d

 v
e

rt
ic

e
s

N = 5000

t = 2, I = 5
t = 3, I = 5
t = 4, I = 5
t = 3, I = 10

FIG. 8. Performance comparison on 5000-vertex LFR net-
works with different random walk lengths and iterations.

To preprocess the network, we use random walk as a
surrogate of dynamic process on it to explore its local
structure, which gives us enough knowledge to differenti-
ate intra- from inter-community edges. We use the sum
of transition matrices of random walks in path length 3
or 4 to induce a quantity matrix. Each row of this ma-
trix is a vector to be used as the behavior pattern of
a vertex. Due to the exponential convergence speed of
random walk, small random walk length is empirically
chosen to capture enough information on local structure
without over-determination and should be not greater
than log(n), with n being the number of vertices in the
network. Based on the fact that random walks triggered
on vertices in the same community have similar trajec-
tories, an edge is likely to be an intra-community edge
if the behavior patterns associated with the two vertices
it connects are very similar, and the likelihood is deter-
mined by the cosine similarity between patterns. All the
edges in the network are weighted by such likelihoods,
and a new weighted network with much clearer commu-
nity structure than the original one is induced. Itera-
tively performing edge weighting for a few rounds gives
more and more knowledge on intra- and inter-community
edges, this knowledge can then be used by previously
developed modularity-based community detection algo-
rithms to find more natural communities. We combined
the network preprocessing with several state-of-the-art
modularity-based algorithms. Improvements on the re-
sults produced by these algorithms indicate the effective-
ness of the proposed procedure.

Although modularity presents a resolution limit that
prevents it to some extent from being effective in all ap-
plications, its effectiveness can be enhanced by combining
modularity optimization with a suitable strategy as the
random walk network preprocessing suggested here. The
benefit coming from the procedure is that we do not need
to develop a completely new community detection algo-
rithm but it is possible to adopt any already developed

13

method without modification and with limited computa-
tional extra cost. We expect the proposed procedure to
be applied to a variety of networks, including social and
biological ones.

ACKNOWLEDGMENTS

The authors thank M.E.J Newman for providing
Zachary Karate club network and American football net-

work data. The authors also thank M.E.J Newman, A.
Arenas, S. Fortunato, R. Lambiotte, R. Guiméra, for
sharing the codes or tools with us. This work is sup-
ported by National Natural Science Foundation of China
under grant No. 60873133 (NSFC, No. 60873133).

[1] R. Albert and A. L. Barabási, Reviews of modern physics
74, 47 (2002).

[2] M. E. J. Newman, SIAM Review 45, 167 (2003).
[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and

D. U. Hwang, Physics Reports 424, 175 (2006).
[4] G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee,

IEEE Computer 35, 66 (2002).
[5] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci.

USA 99, 7821 (2002).
[6] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature

435, 814 (2005).
[7] M. E. J. Newman and M. Girvan, Phys. Rev. E 69,

026113 (2004).
[8] M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).
[9] L. Donetti and M. A. Munoz, Journal of Statistical Me-

chanics: Theory and Experiment, P10012(2004).
[10] S. Fortunato, V. Latora, and M. Marchiori, Phys. Rev.

E 70, 056104 (2004).
[11] R. Guiméra and L. A. N. Amaral, Nature 433, 895

(2005).
[12] J. Duch and A. Arenas, Phys. Rev. E 72, 027104 (2005).
[13] S. White and P. Smyth, in SIAM Data Mining Confer-

ence (Society for Industrial Mathematics, 2005) p. 274.
[14] M. E. J. Newman, Proc. Natl. Acad. Sci. USA 103, 8577

(2006).
[15] S. Fortunato, Physics Reports 486, 75 (2010).
[16] S. Fortunato and M. Barthélemy, Proc. Natl. Acad. Sci.

USA 104, 36 (2007).
[17] J. Ruan and W. Zhang, Phys. Rev. E 77, 016104 (2008).
[18] Z. Li, S. Zhang, R. S. Wang, X. S. Zhang, and L. Chen,

Phys. Rev. E 77, 036109 (2008).
[19] J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110

(2006).
[20] J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész,

Eur. Phys. J. B 56, 41 (2007).
[21] A. Arenas, A. Fernández, and S. Gómez, New J. Phys.

10, 053039 (2008).
[22] R. Lambiotte, J. Delvenne, and M. Barahona, arXiv:

0812.1770 (2009).
[23] T. Evans and R. Lambiotte, Phys. Rev. E 80, 016105

(2009).
[24] J. C. Delvenne, S. N. Yaliraki, and M. Barahona, arXiv:

0812.1811 (2008).
[25] S. Van Dongen, PhD Thesis University of Utrecht(2000).
[26] D. Harel and Y. Koren, Lecture Notes in Computer Sci-

ence 2245, 18 (2001).
[27] M. E. J. Newman, Phys. Rev. E 70, 056131 (2004).
[28] A. Arenas, J. Duch, A. Fernandez, and S. Gómez, New

J. Phys. 9, 176 (2007).
[29] H. Zhou, Phys. Rev. E 67, 041908 (2003).
[30] H. Zhou, Phys. Rev. E 67, 061901 (2003).
[31] H. Zhou and R. Lipowsky, Lecture Notes in Computer

Science 3038, 1062 (2004).
[32] P. Pons and M. Latapy, Lecture notes in computer science

3733, 284 (2005).
[33] D. Lai, H. Lu, and C. Nardini, Physica A: Statistical

Mechanics and its Applications 389, 2443 (2010).
[34] W. W. Zachary, Journal of Anthropological Research 33,

452 (1977).
[35] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and

E. Lefebvre, Journal of Statistical Mechanics: Theory
and Experiment, P10008(2008).

[36] J. Noh and H. Rieger, Phys. Rev. Lett. 92, 118701 (2004).
[37] K. Fukunaga, Introduction to Statistical Pattern Recog-

nition, 2nd ed. (Academic Press, 1990).
[38] A. Lancichinetti and S. Fortunato, Phys. Rev. E 80,

016118 (2009).

