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Article highlights 
1. Epigenetic events contribute to the complexity of ageing process.  

2. A global decline of genomic DNA methylation as well as nuclear gene-

specific hypermethylation and hypomethylation events (epigenetic clocks) 

occur during ageing. 

3. Stochastic or environmental factors contribute to the intra-individual and inter-

individual DNA methylation heterogeneity at certain CpG sites (epigenetic 

drift).  

4. Mitochondrial DNA methylation changes involving both regulatory and 

coding regions are emerging to play a role in ageing. 

 

Abstract 

An increasing body of data is progressively indicating that the comprehension of the 

epigenetic landscape, actively integrated with the genetic elements, is crucial to delineate 

the molecular basis of the inter-individual complexity of ageing process. Indeed, it has 

emerged that DNA methylation changes occur during ageing, consisting mainly in a 

progressive process of genome demethylation, in a hypermethylation of gene-specific CpG 

dinucleotides, as well as in an inter-individual divergence of the epigenome due to 

stochastic events and environmental exposures throughout life, namely as epigenetic drift. 

Additionally, it has also come to light an implication of the mitochondrial genome in the 

regulation of the intracellular epigenetic landscape, as demonstrated by the being itself 

object of epigenetic modifications.  

An overview of DNA methylation changes occurring during ageing process at both nuclear 

and mitochondrial level will be described in this review, also taking into account the recent 

and promising data available on the 5-hydroxymethylcytosine. 
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Introduction 

The study of ageing and longevity in humans is a complex task, since the quality of the 

ageing process and the probability to attain longevity are the result of the interaction 

between the individual genetic background and the lifelong exposure to chronic and acute 

stressors. 

Owing to the high number of variables that are involved in the ageing process, the 

understanding of the mechanisms that determine the healthy versus unhealthy ageing is 

extremely difficult. Despite this complexity, in the seminal manuscript “Geroscience: 

Linking Ageing to Chronic Disease” (Kennedy, 2014) some of the most eminent scientists 

active in the field of ageing were able to reach a general consensus upon seven pivotal 

mechanisms (pillars), highly interconnected, that are central in determining the fate of 

ageing: mitochondrial metabolism, macromolecular damage, stem cells regeneration, 

proteostasis, adaptation to stress, inflammation and, last but not least, epigenetics.  

Among the epigenetic modifications, the study of DNA methylation changes that occur 

during physiological and pathological age has increasingly attracted researchers' interest. 

The first reports in this sense date back to the 1990s, when gene-targeted approaches were 

used to investigate age-associated variations in specific tissues (Ahuja et al., 1998; Choi et 

al., 1996; Issa et al., 1996, 1994). Starting from 2006, the advent of microarray technologies 

for the study of DNA methylation has boosted the research in this field, both in terms of 

genomic coverage and of number of samples analyzed (Bibikova et al., 2006).  
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In the last five years, multiple evidence about the presence of epigenetic marks, in terms of 

methylation and hydroxymethylation, have gradually emerged to also occur into 

mitochondrial DNA within D-loop and coding genes (Shock et al., 2011; Bellizzi et al., 

2013; Ghosh et al., 2014; D’Aquila et al., 2015). It follows that, as for the epigenetic 

changes at nuclear level, also the mitochondrial epigenetic signature is being evaluated 

according to ubiquitous factors and correlated to peculiar phenotypes, including ageing and 

several diseases. As it is so often the case, the noteworthy amount of data generated by 

these analyses has provided some important hints on the epigenetic landscape of human 

ageing, but has also raised many questions that still demand to be addressed.  

 

Nuclear DNA methylation and hydroxymethylation  in ageing 

Existing data on several human tissues support the view that during ageing three 

phenomena coexist: 1) a global decline of genomic DNA methylation; 2) systematic 

hypermethylation and hypomethylation events that involve specific genomic regions, 

referred as age-Differentially Methylated Regions (a-DMRs); 3) an increase in intra-

individual and inter-individual DNA methylation heterogeneity at certain CpG sites, 

referred as epigenetic drift (Bacalini et al., 2015, Zampieri et al., 2015, Jones et al., 2015). 

Global decrease in the genomic content of DNA methylation was described in multiple 

human tissues during ageing and it is due to loss of methylation at repetitive tandem and 

interspersed elements (Jintaridth and Mutirangura, 2010; Richardson, 2003). Age-

associated genomic hypomethylation can significantly impair genomic stability by 

promoting the activation of transposable elements (Alexeeff et al., 2013; De Cecco et al., 

2013). In addition, Yuan et al. (2012) found that large megabase-scale hypomethylation 

blocks occur in blood during ageing and that they significantly overlap with those observed 

in cancer, confirming an important link between the two processes (Yuan et al., 2015). Also 
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in this case, hypomethylation blocks that occur during ageing can have an impact on the 

general structure of chromatin, as they tend to be associated with nuclear lamina-associated 

domains (Kelly et al., 2012). 

In epigenome-wide association studies (EWAS) on ageing, regression analyses have been 

extensively used to identify the epigenetic clocks, that is those loci that are reproducibly 

associated with age across individuals (Jones et al., 2015). Several tissues were 

investigated, including blood, peripheral blood mononuclear cells (PBMCs), monocytes, T-

cells, adipose tissue, saliva, breast, prefrontal cortex, skin, liver, kidney and muscle. These 

analyses identified tissue-specific age-Differentially Methylated Regions (DMRs), 

frequently located outside CpG islands, but highlighted also the existence of several 

concordant results between different tissues (Day et al., 2013). For example, the CpG island 

of ELOVL2 gene, initially identified in blood (Garagnani et al., 2012), is an omnipresent 

result in the top ranking age-DMRs in almost all EWAS studies (Bacalini et al., 2015, 

Bacalini et al., 2016, Ronn et al., 2015, Steegenga et al., 2014, Reynolds et al., 2014, 

Giuliani et al., 2016). With a methylation status that in blood systematically increases with 

age from 0 to 100 years this locus appears a real swiss-clock in most of the tested tissues, 

and a replication-dependent process has been proposed to underlie the age-associated 

hypermethylation (Bacalini et al., 2016, Bacalini et al., 2015; Garagnani et al., 2012).  

Prompted by the identification of so reproducible age-DMRs, researchers have attempted to 

investigate possible functional effects of these DNA methylation changes that can justify 

their association with the biological age of an individual. However, the effective 

contribution of age-DMRs to the ageing phenotype is still an enigma. In most cases age-

DMRs resulted not associated with changes in expression of the corresponding genes 

(Steegenga et al., 2014; Yuan et al., 2015). Yuan et al. (2015) noted that in blood age-

associated hypermethylation preferentially occurs at genes that are not expressed, while 
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hypomethylation tends to involve genes that are expressed in this tissue. This observation 

suggests that age-associated changes in DNA methylation tend to stabilize baseline patterns 

of transcription and it can explain why age-DMRs are not associated to large alterations in 

gene expression (Yuan et al., 2015). On the other side, as age-DMRs are highly 

reproducible among different tissues, it is unlikely that they are affected by alterations in 

the tissue microenvironment that can occur during ageing (Weidner et al., 2014). We cannot 

exclude that a substantial fraction of age-DMRs is a “by-product” of the ageing process 

itself, for example a track of cell divisions that entail the accumulation of epigenetic 

mutations at permissive locations (Reynolds et al., 2014). However, some important 

exceptions exist. Recently methylomic and gene expression profiles on monocytes were 

evaluated in a very large cohort including 1224 individuals, and few age-DMRs that are 

associated with changes in gene expression during ageing were identified (Liu et al., 2013). 

In an another study, age-related hypermethylation of BDNF and SST, two genes implicated 

in several brain diseases, was associated to a decrease in their expression in orbital frontal 

cortex (McKinney et al., 2015). 

Finally, epigenetic drift is an important component of DNA methylation remodeling during 

human ageing, although less easy to detect than directional changes. Epigenetic drift 

accounts for those variations in the epigenetic patterns that are not shared by individuals 

because they are stochastic or driven by specific environmental cues. The impact of 

epigenetic drift during ageing is particularly evident when methylomic profiles of twins are 

compared (Fraga et al., 2005; Heijmans et al., 2007; Martino et al., 2013; Pirazzini et al., 

2012) and when longitudinal studies are performed (Bjornsson et al., 2008; Talens et al., 

2012). These studies have shown that some regions of the genome are more prone to 

epigenetic drift than others and that the ability to maintain methylomic signatures is 

influenced by the genetic background of the individual (Bjornsson et al., 2008). 
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Accordingly, in a very recent paper Slieker et al. (2016) identified several thousands of 

Age-related Variably Methylated Positions (aVMPs) that show an increased variability with 

ageing and that are associated in trans with the expression of genes involved in DNA 

damage and apoptosis (Slieker et al., 2016). Moreover, Gentilini et al. (2015) demonstrated 

that the number of stochastic epigenetic mutations, that is changes in DNA methylation 

levels that are subject-specific and not shared by the rest of the population, tend to increase 

exponentially during ageing (Gentilini et al. 2015). 

In most of the studies that we have described so far, the cohorts analyses for age-associated 

changes in DNA methylation included subjects with an age range from 20-30 to 80-90 

years. Data on the epigenetic determinants of longevity and of extreme longevity (semi-

supercentenarians: subjects who reached an age of 105-109 years, and supercentenarians: 

subjects who reached an age of 110 years) are still sparse, although they are of great interest 

to disentangle the basis of healthy ageing. 

In the first study on the epigenome of centenarian subjects, Gentilini et al. analysed a cohort 

including blood samples from 21 female centenarians, their female offspring and unrelated 

female controls and demonstrated that age-associated decrease in global DNA methylation 

was delayed in centenarians' offspring, suggesting that the maintenance of the DNA 

methylation machinery can contribute to longevity (Gentilini et al., 2012). Xiao et al. used 

the methyl-DNA immunoprecipitation sequencing approach to characterize the whole-blood 

methylome of 4 Chinese female centenarians and 4 middle-aged controls (Xiao et al., 

2016). According to gene ontology analysis, the identified DMRs were enriched in 

pathways associated to age-related diseases, like type-2 diabetes, cardiovascular disease and 

Alzheimer's disease, leading the authors to conclude that an epigenetic-mediated 

suppression of disease-related pathways contributes to a long-lived phenotype. More 

recently, whole blood methylomic predictors of old-age mortality were identified in a 
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cohort a 111 nonagenarians. Interestingly, the identified CpGs were enriched in genes 

involved in the NF-κB pathway, supporting its role in the regulation of mammalian lifespan 

(Jylhava et al., 2016). It is worth to be noted that these studies share a common drawback: 

because, by definition, long-lived subjects do not have age-matched controls, it is difficult 

to distinguish age-related from longevity-specific DNA methylation patterns. In this sense 

the use of nonagenarians and centenarians offspring, that are a recognized model of healthy 

ageing, could be advantageous to identify epigenetic markers of human longevity (Bucci et 

al., 2016, Westendorp et al., 2009). 

Finally, special attention has to be dedicated to the recent boost of studies analyzing the 

association between DNA methylation age (DNAmAge), estimated using the so called 

epigenetic clocks, and ageing phenotypes. With the term of epigenetic clock we refer to a 

mathematical model that, on the basis of the DNA methylation level of specific CpG sites, 

returns the estimated age of a subject. The first, and most successful, of the currently 

available epigenetic clocks was developed by Horvath, includes 353 CpG sites and 

performs well in most tissues in predicting the age of an individual (Horvath, 2013). Two 

additional age predictors, based on 71 CpG sites (Hannum et al., 2012) and just 3 CpG sites 

(Weidner et al., 2014) were further developed specifically for whole blood. Epigenetic 

clocks, in particular Horvath’s clock and, to less extent, Hannum’s clock, have proven to be 

informative not only of the chronological age of an individual, but also of his/her biological 

age, that is, of his/her health status in terms of physical and cognitive fitness (Horvath et al., 

2014; Marioni et al., 2015). Age acceleration (that is, an estimated DNAmAge higher than 

chronological age) was concordantly (and impressively) registered for several age-related 

conditions, including Down syndrome (Horvath et al., 2015), Alzheimer’s (Levine et al., 

2015) and Parkinson’s (Horvath et al., 2015) diseases, HIV-infection (Boulias et al., 2016, 

Rickabaugh et al., 2015) HIV-associated neurocognitive disorders (Levine et al., 2016),  
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frailty (Breitling et al., 2016), liver obesity (Horvath et al., 2014), menopause (Levine et 

al., 2016) and cancer (Levine et al., 2015, Zheng et al., 2016). In addition, four studies 

reported an association between epigenetic age and mortality (Marioni et al., 2015, Chen et 

al., 2016, Christiansen et al., 2016, Perna et al., 2016). What about epigenetic clocks and 

exceptional longevity? To our knowledge, only one study has evaluated this topic so far 

(Horvath et al., 2015). Authors estimated DNAmAge in peripheral blood mononuclear cells 

from 82 semi-supercentenarians (mean age: 105.6 ± 1.6 years), 63 semi-supercentenarians' 

offspring and 47 controls age-matched with the offspring population. Semi-

supercentenarians resulted 8.6 years younger than expected and, even more interestingly, 

their offspring had a DNAmAge in average 5.1 years than age-matched controls, sustaining 

the existence of epigenetic determinants of human longevity. 

Furthermore, recent findings have shown that the process of 5-mC oxidation catalyzed by 

the TET family of methylcytosine dioxygenases leads to the 5-hydroxymethylcytosine (5-

hmC), namely “the sixth base” (Tahiliani et al., 2009; Kriaucionis and Heintz, 2009). The 

dynamic distribution of this new mark, with a significant tissue-specificity that is in very 

high brain but almost scarce in liver, and the association with euchromatin and gene 

promoters and enhancers, is progressively outlying its involvement in the regulation of gene 

expression thus providing a new piece in the epigenetic modifications puzzle (Munzel et al., 

2011; Jin et al., 2011; Szulwach et al., 2011a, b). 

Only few data are available to date on the 5-hmC levels in ageing and almost all come out 

from studies on brain tissue. Chouliaras et al., by searching for changes of 5-hmC in the 

mouse hippocampus, observed an age-related increases in levels of 5- methylcytidine (5-

mC) that was prevented by calorie restriction (CR), thus suggesting the geroprotective 

effects of CR may be exerted via epigenetic mechanisms such as methylation and 

hydroxymethylation of DNA (Chouliaras et al., 2012). In addition, the designation of the 
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first genome-wide maps of 5-hmC in mouse cerebellum and hippocampus at postnatal day 

7, 6 weeks and 1 year of age, revealed a progressive rise of 5-hmC in short interspersed 

nuclear element (SINE) and long tandem repeat (LTR) either during neurodevelopment, 

either with age in cerebellum. The depletion of 5-hmC on the X chromosome was observed 

in both males and females at all ages, with the sole exception of Xist and Utx genes 

characterized by 5-hmC enrichment in females. Consistent 5-hmC features were found in 

human cerebellum (Szulwach et al., 2011b). Furthermore, age-specific differentially 

hydroxymethylated regions (DhMRs) were found preferentially located within candidate 

genes for fragile X mental retardation protein (FMRP) and autism, thus suggesting that 

abnormal alteration of 5-hmC may contribute to the onset of neuro-developmental disorders 

(Wang et al., 2012). Likewise, 5-hmC levels were higher in the hippocampus of old than in 

young mice and in selected DNA sequences of the mouse 5-LOX gene, a known target of 

ageing (Chen et al., 2012). Studies carried out on human post-mortem brain tissue samples 

of different age revealed an age-related raise of about 50% and 200% of 5-hmC levels in the 

cortex and in the white matter, respectively (Kraus et al., 2015). Conversely, a significant 

decrease with ageing of the global 5-hmC amount was more recently documented in human 

blood cells from healthy donors, in association with increased levels of 5-carboxylcytosine 

(5-caC) and partly ascribed to acquired mutations in TET2 gene (Valentini et al., 2016; 

Buscarlet et al., 2016). 

 
Mitochondrial DNA methylation and hydroxymethylation and ageing 
 

Although it has been debated for a long time, and finally accepted only recently (Shock et 

al., 2011; Bellizzi et al., 2013; Hong et al., 2013; Gosgh et al., 2014; D’Aquila et al., 2015; 

Liu et al., 2016) the methylation of mitochondrial DNA (mtDNA) has been observed since 

1973 (Nass, 1973; Cummings et al., 1974; Dawid, 1974; Groot and Kroon, 1979;  
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Shmookler Reis and Goldstein, 1983, Pollack et al., 1984). In the last five years, with the 

development of more innovative and sensitive techniques, multiple evidences about 

mtDNA methylation and hydroxymethylation have gradually emerged so as to coin the term 

“mitoepigenetics” that indicates the complex bidirectional interaction between the nuclear 

and mitochondrial genomes relatively to epigenetic landscape (Manev and Dzitoyeva, 2013; 

Ghosh et al., 2015; van der Wijst and Rots, 2015). As for the epigenetic changes at nuclear 

level, also mitochondrial epigenetic signature is influenced by ubiquitous factors (airbone 

pollutants, metal-rich particulates, drugs, diet) and correlates to peculiar phenotypes, 

including ageing, and several diseases, including Down syndrome, amyotrophic lateral 

sclerosis, Alzheimer and Parkinson diseases, cardiovascular diseases, nonalcoholic fatty 

liver disease, polycystic ovarian syndrome and cancer (Infantino et al., 2011; Chestnut et 

al., 2011; Pirola et al., 2013; Byun et al., 2013; Baccarelli and Byun 2015; Blanch et al., 

2016; Jia et al., 2016; Byun et al., 2016; Liao et al., 2016). 

The first evidence about an association between mitochondrial epigenetic marks and ageing 

was provided in 1983, with the observation that, in cultured fibroblasts, methylation of 

mtDNA genomes decreases with culture age (Shmookler Reis and Goldstein, 1983). More 

recently, Dzitoyeva et al., (2012) by analyzing brain samples from differently-aged mice, 

observed that, during ageing, the 5-hydroxymethylcytosine levels decreased in the frontal 

cortex and not in the cerebellum, although no ageing-associated changes in TET mRNAs 

were found. The authors also reported an increase in the expression of selected mtDNA-

encoded genes in the frontal cortex, that could be ascribed to the 5-hydroxymethylcytosine 

increase since the 5-methylcytosine levels remained unchanged during ageing. Conversely, 

no changes of the 5-hydroxymethylcytosine status as well of mRNA changes of mtDNA-

encoded genes have been found in the cerebellum, despite an increase of TET2 and TET3 

expression. Thus, it seems that progressive changes in these mitochondrial epigenetic marks 
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occur during lifespan in a region-specific manner (Dzitoyeva et al., 2012).  In addition, an 

age-dependent modulation of mtDNMT1 expression was reported in the brain (Dzitoyeva et 

al., 2012). Moreover, D’Aquila et al. (2015), by analyzing human mitochondrial genes 

encoding for 12S (MT-RNR1) and 16S (MT-RNR2) ribosomal RNA, revealed the 

occurrence of methylation at a CpG site of MT-RNR1. High methylation levels of the above 

site (>10%) were more frequent in old women with respect to younger controls (D’Aquila 

et al., 2015). Based on differential methylation within this gene, a 9-year long follow-up 

survey showed that subjects with high methylation levels exhibit a mortality risk 

significantly higher than subjects with low levels suggesting a still unclear functional role 

for MT-RNR1 methylation (D’Aquila et al., 2015). What is more, Mawlood et al. (2016) by 

evaluating the methylation levels of 133 CpG sites in the mitochondrial genome by Illumina 

sequencing, further confirmed the role of MT-RNR1 methylation in ageing, although they 

showed a negative correlation between two MT-RNR1 CpG sites and ageing (Mawlood et 

al., 2016). The two contradictory results about the correlation between MT-RNR1 

methylation and ageing could be explained by the fact that this correlation could be site-

specific and strongly influenced by gender, environmental factors, nutrition and drugs, as 

also demonstrated for age-related nuclear epigenetic changes (Byun et al., 2013; Chen et al., 

2012; Terry et al., 2011; Delgado-Cruzata et al., 2014). 

The functional role of methylation and hydroxymethylation of the mitochondrial genome 

remains still poorly elucidated. Their arrangement in some genes and in peculiar regions, 

such as promoter regions and conserved sequence blocks, their occurrence in non-CpG 

sites, the low levels of mtDNA methylation observed in some analyses, the methylation 

limited to the L-strand might imply a functionality of both epigenetics processes. 

Asymmetrical effects on the expression of mtDNA in mtDNMT1 over-expressed cells were 

reported, with increased levels of ND1 (encoded by the H strand) and decreased levels of 
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ND6 (encoded by the L strand) (Shock et al., 2011). An inverse correlation between mt-

ND2 and mt-ND6 expression was also observed in pathological phenotypes (Pirola et al., 

2013, Feng et al., 2012). Van der Wijst and Rots suggested that mtDNA methylation 

regulates the binding of TFAM and, consequently, its activity, to mtDNA either directly or 

indirectly by acting on proteins that post-translationally modify TFAM and, thus, modulate 

its affinity for DNA. This regulation could result in an increased DNA compaction and in a 

reduced accessibility for POLRMT and TFB2B factors therefore inducing mitochondrial 

biogenesis rather that electron transport subunit transcription (Van der Wijst and Rots, 

2015). Other hypothesis suggest that mtDNA methylation could be involved in the 

processing of mitochondrial polycistronic primary transcript (Iacobazzi et al., 2013, Cotney 

et al., 2009; McCulloch et al., 2002; Davenport et al., 1976). 

 

Conclusions 

A massive amount of studies have showed that profound changes in DNA methylation and 

hydroxymethylation patterns, both at nuclear and mitochondrial level, occur during human 

ageing. Nevertheless, our knowledge about the intimate connection between epigenetic 

changes and ageing is still at the beginning.  For example, in many cases is still not clear if 

epigenetic changes are a “readout” of the aged phenotype, or if on the contrary they play an 

active role in driving this complex process. At the same time, the relationship between 

nuclear and mitochondrial changes in DNA methylation/hydroxymethylation has not been 

exhaustively investigated yet, although they certainly exist as suggested by the effect of 

mtDNA variability on nuclear epigenetic profile (Bellizzi et al., 2012). Further studies are 

urgently need to uncover the role of epigenetics in human ageing and longevity, with the 

ultimate aim of identifying drugs and interventions that, by modulating DNA methylation 

and hydroxymethylation patterns, could foster healthy ageing worldwide. 
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